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Figure 1: We propose an interactive method to edit the parameters of procedural programs that generate vector patterns, where users
interactively transform a set of points and constrain other ones to fixed locations. During the interaction, we solve for the procedural
parameters with a gradient-based method since our patterns are differentiable with respect to the procedural parameters for both boundary
and interior points. Here we show, for each pattern, the starting, middle and end frames of two sequential edits. Here, and in all figures, we
mark in blue the transformed points, in red the fixed ones, and we draw the trajectory of the transformed points in blue in the middle frame.

Abstract
Procedural assets are used in computer graphics applications since variations can be obtained by changing the parameters
of the procedural programs. As the number of parameters increases, editing becomes cumbersome as users have to manually
navigate a large space of choices. Many methods in the literature have been proposed to estimate parameters from example
images, which works well for initial starting points. For precise edits, inverse manipulation approaches let users manipulate the
output asset interactively, while the system determines the procedural parameters.
In this work, we focus on editing procedural vector patterns, which are collections of vector primitives generated by procedural
programs. Recent work has shown how to estimate procedural parameters from example images and sketches, that we
complement here by proposing a method for direct manipulation. In our work, users select and interactively transform a set
of shape points, while also constraining other selected points. Our method then optimizes for the best pattern parameters
using gradient-based optimization of the differentiable procedural functions. We support edits on large variety of patterns with
different shapes, symmetries, continuous and discrete parameters, and with or without occlusions.

CCS Concepts
• Computing methodologies → Computer graphics;

1. Introduction

Procedural methods are often used in computer graphics as they
provide controllable, high-quality, and resolution-independent as-

sets such as textures or shapes. Users generate different assets by
either writing new procedural programs or by changing the param-
eters of existing ones. By far, the most common case is the lat-
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ter, considering that large libraries of programs are readily avail-
able [Ado22]. As the number of parameters increases, which is
typical for high-quality programs, editing time grows significantly
since users have to manually search a large parameter space to find
the values that generate a desired asset.

Many recent works have investigated automated methods to es-
timate the parameters of procedural programs. These prior work
differ in the user interaction they support. Example-based methods
determine the procedural parameters that best match a given ex-
emplar (see for example [HDR19, LLGRK20, SLH∗20, RGF∗20,
HHD∗21, HGH∗22]), by formulating the problem as an optimiza-
tion procedure. These methods are helpful to provide users with
a starting point for further editing. Direct manipulation methods
let users manipulate the asset directly, while an optimization pro-
cedure finds the best procedural parameters that match the edit.
These methods differ in the manipulations they support; for exam-
ple [MB21,CSQ∗22] let users directly drag surface points for edit-
ing procedural meshes and CAD models, while [PTG02, Pel10] let
users drag shadows and highlights to edit illumination. These direct
manipulation methods have the advantage of letting the user guide
the optimization interactively, while receiving real-time feedback
on what the procedural program can achieve, sidestepping the is-
sues that example-based methods exhibit when asked to reproduce
an asset that the procedural program cannot achieve.

In this work, we propose pEt, a method for direct manipulation
of procedural vector patterns. We consider patterns made of collec-
tions of vector graphics shapes generated by a procedural program.
Editing such patterns by manipulating a slider-based interface re-
mains cumbersome due to the high number of non-independent pa-
rameters. Inspired by the user interaction scheme of [MB21], we let
users edit procedural vector patterns by interactively transforming
user-selected points on the patterns’ shapes (see Figure 1 for exam-
ples). We formulate the problem as determining, by optimization,
the procedural parameters that minimize the distance between the
user-transformed points and the corresponding pattern-computed
points. The optimization runs interactively for each mouse event,
letting users guide patterns toward the desired appearances. This
lets users perform final edits in a goal-based manner, possibly start-
ing from the pattern parameters determined by the example-based
method of [RSP22].

Our formulation depends on two insights that make this work
different from prior works in this area. A naive formulation would
only let users transform all selected points, as is done in [MB21]. In
the case of vector patterns, this is not sufficient to express complex
pattern manipulations.

Instead, we also allow users to set constraints on some pattern
points, inspired by similar ideas explored in goal-based illumi-
nation [PTG02]. Throughout the paper we show that this simple
change is sufficient for users to guide the editing precisely (see Fig-
ure 2 for an example). Also, procedural vector patterns are often
written imperatively as programs that issue shape drawing com-
mands, such as emitting SVG shapes. In this representation, we
cannot directly express our optimization constraints. Instead, we
consider procedural vector patterns represented as functions that
take as input the parametrized coordinates of each shape point, and
output the point positions. This change of representation makes it

possible to compute the gradients of the points positions with re-
spect to the pattern parameters, making the pattern end-to-end dif-
ferentiable.

We tested the method on a variety of patterns with different char-
acteristics, shown throughout the paper. We consider edits that alter
the shape positions, the pattern symmetries, the number of shapes
and the deformation of the shapes, showing examples where we
edit continuous and discrete parameters, as well as parameters are
affected by noise functions. Overall we found pEt to work well for
all cases.

2. Related Works

In this section, we review related works that use direct manipulation
or example-based methods.

2.1. Direct Manipulation

The idea of direct manipulation has been previously explored in
other domains, such as vector graphics, 3D models and rendering.
One of the first examples of direct manipulation dates back to the
work of [BB89], that proposes a system for the edit of Bézier curves
by selecting a point where the curve should pass through, without
directly editing its control points. [HLC19] proposes a bidirectional
programming system for the creation of programs that generate
vector graphics. In their interface, users can edit the program text
or the output shapes, with the result mirrored in both modes.

A similar bidirectional approach is proposed in [CSQ∗22] for
3D CAD. In this work, users directly manipulate the output shapes,
while the system estimates the parameters of the program and
maintains its validity. Inverse edits are performed by minimizing
constrained optimization objectives that represent changes in ge-
ometry, deformation, program parameters as well as physical per-
formance. [GKG∗22] proposes a method for direct manipulation of
3d meshes using a bounding-box hierarchy. Upon selecting an ob-
ject, the corresponding bounding-box is identified, and its vertices
are transformed. The system minimizes the distance between the
transformed points and the selected bounding-box vertices to es-
timate the procedural parameters. [GBLM16] proposes an editing
approach that allows users to explore variation of the patterns as
the user performs a manipulation. Although the space of possible
variations is exponential, this work provides a tool that identifies a
set of intuitive and distinct variations the user could choose from.

[IMH05] propose a system for the interactive manipulation of
2D shapes by moving mesh vertices as constrain handles, with-
out requiring a predefined skeleton. Their system recomputes the
remaining vertices position by updating the triangles rotation and
scale, thus minimizing their distortion. [JBPS11] investigates the
use of blending weights for 2D and 3D object deformation con-
trolled by handle points or cages, ensuring a simpler design and
easier user control. Further works in the Inverse Kinematic field
are extensively discussed in the survey of [ALCS18].

The work that mostly inspired our own is [MB21], which demon-
strated inverse control when editing 3D meshes generated by node
graphs. This work focuses on amending the graph network to sup-
port automatic differentiation that is then used for parameter solv-
ing. On the other hand, our work differs since our programs are
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Figure 2: The same procedural program can produce significantly different results by changing just the parameters assignment. Here two
examples program are edited to produce three variations. For each variation, we show the first frame and the last frame of the optimization
procedure.

Figure 3: Different edits can be expressed by selecting different
points and either transforming or fixing them. (Top) The stripes are
translated by transforming a set of 16 points. (Bottom) The distance
between stripes is edited by transforming a set of 8 points, while
fixing another 8 points.

written in a general programming language, namely Python, and
are automatically differentiated. Furthermore, we propose changes
to the selection, including selecting points in the shapes’ interior,
which is not supported by their work.

In the rendering domain, [PTG02] proposes an interface for edit-
ing shadows by clicking and dragging them, while the algorithm
determines the location of the corresponding point lights. The same
work also introduces the idea of adding constraints to the edits.
[Pel10] extends these ideas to the editing of environment maps.
While both these works explore direct manipulation ideas, they do
so without requiring an optimizer since it is possible to analytically
compute light positions in the case of shadows and highlights. Fur-

ther appearance, lighting and material editing approaches as well
as how the combination of user interaction paradigms and render-
ing back ends provide a usable system for appearance editing are
comprehensively analyzed in the survey of [SPN∗14].

2.2. Example-Based Methods

In example-based methods, sometimes called inverse procedural
methods, users provide an example as input while the algorithm
determines the procedural program parameters or the structure of
a procedural program that generate a similar output. This area of
research has been heavily explored, so here we focus only on a
few works. In general though, example-based methods are comple-
mentary to direct manipulation ones since the former works better
as starting points during design, while the latter works best when
performing final edits.

The works that are most closely connected to our own are the
ones that estimate vector graphics parameters. [LLGRK20] pro-
pose a method for differentiating the rendered image of vector
graphics primitives and uses it to fit input images. [RGF∗20] show
how to support compositing operations by proposing a method to
differentiate them. [RSP22] propose a method for fitting vector
graphics patterns to input images by differentiating the signed dis-
tance field of the vector primitives. Our work handles patterns sim-
ilar to [RSP22], but supports interactive edits rather than offline
optimizations.

Among other inverse design tasks, the ones involving tex-
tures are the most relevant to our work. [EL99, EF01] introduce
non-parametric texture synthesis using greedy stochastic methods.
[KEBK05] proposes an optimization method that refines the en-
tire texture. [GEB15, GEB16] use convolutional neural networks
for non-parametric textures, followed by [ZZB∗18] that uses gen-
erative adversarial networks to reproduce textures non-stationary
attributes. [BBT∗06] and [HLT∗09] aim at synthesizing patterns
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by analyzing elements and properties from reference vector pat-
tern provided by users. [IMIM08] also allow users to specify a
local growth area as a constraint to the synthesis process. Simi-
larly, [TWY∗20] explores the stochastic synthesis of curve patterns.
[MWLT13] propose a method for generating spatio-temporal repe-
titions based on a combination of a constrained optimization and
a data-driven computation, while [ROM∗15] explores repetitive
structure synthesis using descrete elements or continuous geome-
tries. A more comprehensive review of the example-based methods
can be found in [GAM∗21]. [GSH∗20, HHG∗22, ZHD∗22] are re-
cent examples of the many methods that stochastically synthesize
realistic material maps guided by input images. These methods fo-
cus on non-parametric synthesis, while we concentrate on editing
parametric patterns.

Recent work aims at editing materials expressed as parametric
models. [GHYZ19] estimate graph parameters by exploring the
parameters space with a Markov Chain Monte Carlo approach.
[HDR19] use neural networks to select a procedural model from a
library and estimate their procedural parameters, while [HHD∗21]
propose a semi-automatic pipeline for SVBRDFs proceduraliza-
tion. [GHS∗22] propose a generative model for procedural mate-
rials that are represented as node graphs, and let users to autocom-
plete those graphs too. [SLH∗20] use differentiable material graphs
to fit parameters to input images, while [HGH∗22] make complex
node differentiable by using neural network proxies.

Inverse procedural methods have been explored in many other
areas of 3d graphics, as reviewed in [ADBW16]. These methods
differ in the representation of the procedural program, and thus
the optimization methods. [SBM∗10, GJB∗20] propose solutions
to derive L-system parameters and rules from input images of
vegetation. [SPK∗14] estimate the parameters of tree generators,
while [TMK∗19] do the same for knitwear. [WYD∗13, ZZBW15,
NBA18] propose methods to define shape grammars for procedural
buildings and facades taking as input example images.

3. Algorithm

We consider procedural programs that generate patterns made of
collections of vector shapes, such as grids, stripes, radial patterns,
optionally with occlusions and deformations of shapes. Users can
edit procedural patterns by either changing the program code, or
altering the program parameters. In this work, we focus on simpli-
fying the latter task. The output of procedural programs can dif-
fer substantially by just changing its parameters, as shown in Fig-
ure 2, but as the number of parameters increases, the edits become
very time-consuming. [RSP22] show how to estimate the procedu-
ral parameters to match an example image, which works well for
an initial estimate, but that cannot be further edited with the same
method. To fine-tune procedural patterns, we propose an interactive
direct manipulation method where users select and transform a set
of points on the patterns, while our algorithm solves for the proce-
dural parameters interactively at each mouse event. Our method is
general with respect to the pattern type and its parameters, and only
requires the pattern to be differentiable, which we obtain using au-
tomatic differentiation. In the following sections, we will describe
the method and motivate its design, starting from the user interac-
tion.

3.1. User Edit

In pEt, users edit patterns by selecting arbitrary sets of points on the
pattern shapes and transforming them. We consider sets of points,
instead of single ones, since different selections correspond nat-
urally to different edits, for the same points transformations (see
Figure 3 for an example).

A possibility for implementing the interface would be to select
and transform each set of points separately, as this offers the most
control. However, this modality has two main issues. Since each
transformation requires a separate mouse action, this would end in
a non-interactive optimization of the pattern parameters, preventing
users to naturally guide the edit by exploiting a real-time preview of
the result. The second, and more important one, relates to optimiza-
tion, whose interactive execution greatly enhances convergence, as
shown in Figure 5.

Running the optimization for each mouse event means that the
current procedural parameters are close to the optimal ones, so
gradient-based optimization is more likely to find the optimal so-
lution and not get stuck in local minima. Figure 8 shows the loss
values throughout the offline optimization with reference to the on-
line optimization ones, using the same program and selection al-
ready shown in Figure 5. The descending behavior is visible in both
of them, although the online optimization always reached a lower
convergence rate with reference to the offline one.

Due to this, we suggest a more straightforward user interface
in which users select one set of points that will undergo the same
transformation, as defined by mouse operations, and a second set
of points, possibly empty, that will remain fixed throughout mouse
interaction. In this interface, the transformed points guide the edit
interactively, while the fixed points constrain it. This kind of inter-
face has been proposed for interactive goal-based editing of illumi-
nation [PTG02, Pel10]. For pattern editing, using transformed and
fixed point sets allows users to interactively express a wide variety
of pattern transformations while maintaining a simple interface, as
shown specifically in Figure 3 and in all figures in this paper.

We also prototyped an interface where users select and transform
whole shapes at once, as opposed to points on them, since it feels
natural for patterns made of rigid elements. However, we found
that this interface is too constraining since it cannot express entire
classes of valid pattern edits that we aim to provide. Furthermore,
by selecting individual points we can also support patterns with
procedurally deformed shapes, as shown in Figure 4.

In our prototype, users transform points by applying an affine
transformation, namely translation, rotation or scaling, to the points
original positions. While additional transformations can surely be
implemented, we did not find it necessary for all the results in
this paper. We should note that these transformations do not map
directly to most of the parameters in the procedural patterns we
tested.

In our current implementation, we compute the positions of the
transformed points by re-transforming the starting points’ locations
according to the current mouse position. The optimizer is instead
initialized with the procedural parameters’ found in the last frame.
This makes the optimization more stable and allows users to guide
the edit where desired. We also tested a different approach where
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Figure 4: Procedural deformations, here obtained by applying
noise functions to the shape outlines, are controlled in the same
manner as other transformations.

Figure 5: Besides providing interactive feedback while editing, op-
timizing procedural parameters per-frame gives better final results,
compared to optimizing only once at the end of the interaction se-
quence (we compare the results with the same total number of iter-
ations).

transformations are applied to the positions computed using the
procedural parameters estimated in a previous optimization step of
the edit, thinking that users might be able to better guide the opti-
mizer. Instead, we found that the optimization suffers from drifting
since tiny errors accumulate over time and do not cancel out during
mouse interaction, as shown in Figure 6.

We can formally write the user interaction in our system as com-
puting the transformed points T t ps from the positions of the se-
lected points ps at the t-th frame of mouse interaction. The trans-
formation T depends on the type of selected points, being a linear
transformation Mt for the edited points s ∈ E, or the identity func-
tion for the fixed points s ∈ F . In summary, we can write

T t ps =

{
Mt ps s ∈ E
ps s ∈ F

(1)

3.2. Loss Function

We determine the procedural parameters by gradient-based opti-
mization. In our formulation, we minimize the L2 distance be-
tween the positions of the edited points and the positions of the
same points computed by the procedural function, for each frame
of mouse interaction. We treat transformed and fixed points in the
same manner in the loss function.

A natural way to implement this loss is to consider points on the

Figure 6: In our prototype interface, we apply transformations
starting always from the initial, correct configuration, since we ob-
served drifting of the solution if the transformations are applied to
the configuration of the last frame. In this example, the resulting
pattern shows an undesired pattern rotation, as well as a misalign-
ment due to the updated grid spacing.

boundary of vector shapes since vector primitives are represented
by their boundaries, e.g. vertices of polygons or points on tessel-
lated splines. In fact, this is what is done in prior work on goal-
based 3d shape editing [MB21], where users can only select the
vertices of the boundary meshes. This makes the implementation
trivial since boundary vertices are a finite set of uniquely identi-
fied items so they can be tracked by both the user interface and the
procedural program without any additional work.

Our first prototype was implemented in this manner. But we
quickly found that many valid edits cannot be expressed by edit-
ing only boundary points, for example as shown in Figure 7. For
this reason, we extended the selection to also consider points in the
interior of each vector shape.

This slight modification requires significant changes in the eval-
uation of the loss function since interior points are not uniquely
identified, which is necessary to ensure that both user interface and
optimizer track the same points. In our prototype, we require the
procedural pattern to be able to evaluate the position of all points
in each shape, both boundary and interior. We identify points with
a shape identifier, which is uniquely defined, and by a parametriza-
tion of the shape interior, which allows us to identify all shape
points. In our implementation, the user interface determines both
shape identifiers and points parameters during selection. We can
then freely transform the points by acting only on their location,
while the optimization uses the fixed point identifiers to compute
the location of the corresponding points.

To put things formally, we model procedural vector patterns as
functions f (i,Θ) that take as input a point identifier i and compute
the point location p̃ in the pattern. The point identifier i = (d,u,v)
is comprised of a discrete shape identifier d together with two con-
tinuous coordinates (u,v) that identify points in the interior and
boundary of the shape d. The procedural pattern depends on the
procedural parameters Θ = {θk}, which are the parameters that we
optimize for. With this notation, we can write the optimization we
perform at each frame t as
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Figure 7: In this example, the user intent is to rotate the grid with-
out rotating the individual shapes. To do so, the user needs to fix
some points to disambiguate between rotation and say translation
and scaling during interaction. (Top) Selecting only points on the
shape boundary induces unwanted shape transformations. In fact,
as shown by the orange and green points, the user intent is not re-
spected in this case. (Bottom) On the contrary, by selecting points
in the interior of the shape, a rotation of the grid is specified pre-
cisely, and user intent is fully respected.

Θ
t = argminΘ

1
N

N

∑
s
||T t ps − f (is,Θt)||2 (2)

where ps = f (is,Θt) for t = 0 (3)

3.3. Optimization

We minimize the previously defined loss using gradient descent,
relying on the automatic differentiation computation of the gradi-
ent of the procedural functions f with reference to its parameters.
By optimizing procedural parameters at each frame, the per-frame
optimization converges in few iterations since the procedural pa-
rameters Θ

t at frame t are used as initialization when computing
the parameters Θ

t+1 for the next frame t + 1. In this manner, gra-
dient descent finds the optimal solution with a small number of
iterations, likely without incurring in local minima.

The program function f performs a vectorized computation of
the points position if a packed vectorized parametrization is pro-
vided, thus improving the system speed. In the subsequent section,
we will cover the main aspects of our editing tool.

We implemented our prototype using PyTorch since it provides
robust automatic differentiation for our patterns. We optimize pro-
cedural parameters using the Adam optimizer [DB15] with a learn-
ing rate of 0.002. We use a maximum of 125 iterations, but we allow
the optimization to stop sooner if the loss is below a threshold of
0.0005, corresponding to a negligible distance between the sets of
points.

Our formulation scales trivially to complex patterns since it de-

Figure 8: Comparison between per-frame optimization, shown left,
and optimization performed only in the last frame, shown right, for
the edit in Figure 5. Besides providing feedback while editing, per-
frame optimization has a lower end loss (0.0016) than end-only
optimization (0.0327), for the total number of iterations. Peaks in
the per-frame optimization correspond to mouse events.

pends on the selection size and not the number of shapes in the pat-
tern itself. We further improve speed by vectorizing the evaluation
of the procedural patterns, to ensure that we evaluate the function
for all points at once.

We support both continuous and discrete pattern parameters.
Continuous parameters are left unchanged during optimization, and
clamped to their valid range once the optimization terminates in
each frame of mouse interaction. Discrete parameters are treated as
continuous during optimization, and rounded to their discrete val-
ues at the end of each frame. The discrete behavior is implemented
in the procedural function itself that rounds of the continuous op-
timization parameter to the internally discrete one. This rounding
does not cause any trouble since shape identifiers remain unique,
thus the selected ones remain uniquely identified. We support dis-
crete parameters for which a continuous counterpart is well defined,
such as the number of elements in the rings of Figure 1 (B) or the
number of elements and subdivisions in Figure 9 (H). On the con-
trary, discrete parameters such as enums are not handled.

We should also note that occlusion between shapes does not
cause any concern during the optimization since points are uniquely
identified and the procedural function can compute the position of
any parametrized point, whether or not these points are visible in
the final rendering. The only implementation detail needed is to
support the selection of hidden points in the user interface, which
can be done in a manner similar to vertex selection in 3D software.

4. Results

In this section, we collect the results obtained while editing a vari-
ety of procedural vector patterns, summarized in Table 1 and shown
in all the figures of the paper. We performed all the tests on a ma-
chine with an AMD Ryzen 9 CPU with 3.4 GHz frequency. The edit
sequences discussed here, and displayed in the supplemental video,
were re-computed offline from the original mouse interactions, for
reproducibility and for further comparisons with the synthetic tests
presented later. On our machine, our implementation reaches in a
range of 0.9 ms to 2.8 ms per iteration. In our tests, time increases
with the number of points selected, but remains constant through-
out all iterations of an optimization step.

We tested patterns with a growing number of parameters from 9
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Table 1: Statistics of the edits shown throughout the paper. For each edit we report the number of parameters and shapes of the pattern,
the number of transformed and fixed points, the number of mouse events of the stroke, and the number of iterations performed during the
optimization (mean value, minimum and maximum early exit iteration). For real edits, we report the loss at the end of the optimization,
while for synthetic tests we report the MSE between the target parameters and the correct values. Each table row corresponds to a different
program, where more than an entry is reported when a sequence of edits is performed consecutively on the same pattern.

Figure Num. Num. Transf. Fixed Mouse Number of Final Average
Number Params. Shapes Points Points Events Iterations Loss MSE
Fig. 7 B 9 25 1 1 42 25, 6, 42 0.0013 2 ·10−6

Fig. 9 A 10 121 | 98 3 | 6 1 | 1 27 | 25 57, 24,125 | 76, 21,125 0.0019 | 0.0013 1 ·10−6 | 4 ·10−5

Fig. 9 E 10 49 | 84 3 | 5 3 | 1 42 | 28 53, 23, 87 | 97, 64,125 0.0020 | 0.0023 2 ·10−4 | 6 ·10−4

Fig. 9 F 10 49 | 105 5 | 10 1 | 8 5 | 5 102, 20,125 | 111, 42,125 0.0083 | 0.0016 8 ·10−4 | 1 ·10−4

Fig. 4 A 10 16 7 6 18 119,114,125 0.0216 9 ·10−5

Fig. 9 C 14 20 | 20 6 | 17 4 | 0 36 | 39 117, 26,125 | 104, 32,125 0.0061 | 0.0005 7 ·10−5 | 1 ·10−4

Fig. 9 G 16 31 | 31 10 | 5 1 | 6 41 | 26 73, 29,125 | 107, 84,125 0.0005 | 0.0005 4 ·10−5 | 1 ·10−4

Fig. 3 A 17 31 | 18 16 | 8 0 | 8 45 | 44 65, 19,119 | 51, 16,105 0.0002 | 0.0005 2 ·10−5 | 3 ·10−5

Fig. 6 A 20 32 54 0 18 102, 84,125 0.0051 4 ·10−4

Fig. 9 B 20 50 | 50 40 | 12 1 | 13 17 | 18 123,108,125 | 27, 13, 40 0.0010 | 0.0010 1 ·10−4 | 1 ·10−4

Fig. 9 D 20 37 | 37 1 | 4 1 | 0 34 | 27 4, 2, 33 | 19, 3, 64 0.0023 | 0.0025 1 ·10−6 | 6 ·10−6

Fig. 9 H 20 59 | 59 3 | 4 4 | 4 11 | 15 35, 20, 56 | 34, 15,125 0.0006 | 0.0015 4 ·10−6 | 6 ·10−6

Fig. 1 A 20 25 | 32 8 | 64 0 | 0 53 | 39 30, 8, 96 | 46, 20, 97 0.0010 | 0.0007 2 ·10−5 | 2 ·10−5

Fig. 2 B 20 41 | 18 17 | 36 17 | 0 18 | 8 116, 52,125 | 111, 22,125 0.0223 | 0.0006 3 ·10−4 | 4 ·10−4

18 4 4 18 30, 13, 85 0.0013 4 ·10−4

Fig. 2 B 23 39 | 63 32 | 5 0 | 5 37 | 25 86, 45,125 | 124,112,125 0.0007 | 0.0006 1 ·10−4 | 1 ·10−4

63 5 0 44 16, 6, 29 0.0007 1 ·10−4

Fig. 1 B 26 41 | 41 9 | 4 18 | 0 24 | 15 105, 64,123 | 110, 15,125 0.0024 | 0.0016 3 ·10−6 | 4 ·10−5

to 26. In all cases, we converge to a solution with low loss value
within the allotted iterations. The final loss value does not depend
on the number of parameters, while the pattern complexity impacts
the number of iterations. On the contrary, the number of selected
points does not significantly influence the number of iterations nor
the final loss. The type of edit does slightly influence the number
of iterations, that always remains within the maximum budget.

We tested patterns with different types and number of shapes
as well as with different symmetries. In our tests, we included pat-
terns with continuous and discrete parameters. The latter are shown
when editing the circular patterns of Figure 1 (B) and Figure 9 (D,
H), and they are handled as discussed in the previous section. We
finally verified that shape occlusion can be handled without con-
cerns by editing the shingles patterns in Figure 9 (A, E) where we
selected points on the topmost shape without introducing unwanted
constraints on the occluded shapes. None of these factors signifi-
cantly affect the final loss nor the number of iterations.

We optimize all parameters at once. This allows us perform com-
plex edits that require the concurrent change of multiple parame-
ters, as shown in Figure 2 (B–first edit), Figure 9 (B–first edit) and
Figure 9 (H–first edit), where, respectively, 4, 4 and 2 parameters
are modified concurrently. Furthermore, the use of a gradient-based
solver ensures that parameters that do not affect the current edit are
left unchanged during interaction, like in the edit of Figure 2 (A) or
Figure 3.

From a user perspective, our method is simpler than using slid-
ers since artists do not have to find which parameters produce

a desired change. This becomes important as the number of pa-
rameters increase, which does not affect our method but makes
slider-based manipulation more cumbersome. The example in Fig-
ure 1 (B) shows a complex case with 26 parameters, for which find-
ing the correct slider to change could be time-consuming in a man-
ual scenario.

Besides structured patterns, we support deformations in the pat-
tern shapes and in their placement, as shown in Figure 4 and Fig-
ure 9 (E, F). We obtained these deformations by applying noise
functions to the shapes boundaries and their transformations, as is
common in procedural texturing. These results show that we can
control procedural deformation just as well as structured patterns.

We also tested the accuracy of the optimized procedural param-
eters with respect to correct values. We consider the same edits as
in Figure 9 and use the estimated procedural parameters of the last
frame as target parameters. Then, for each frame, we compute a
set of parameters that is linearly interpolated between the starting
parameters and the target parameters. We compute the positions of
the selected points by evaluating the procedural function at each
frame with the linearly interpolated parameters. With these posi-
tions, we estimate the procedural parameters with our method and
compare them with the correct ones used to generate the points po-
sitions. We perform the comparison by computing a mean squared
error. As shown in Table 1, these errors are very small in every
test we performed, and do not depend on the pattern, selection and
edit complexity. This tests confirms that we compute accurate pa-
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Figure 9: Gallery of edits on a variety of differentiable vector patterns such as grids, stripes, and radial patterns, with possibly occlusion,
deformation and jittering. For each pattern, we show two consecutive edits.
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rameters throughout the mouse interaction, thus proving users with
precise feedback while editing.

4.1. Limitations

We believe that our work has three main limitations. First, we sup-
port only shapes with parametrized interiors to perform selection
and optimization. While most vector graphics primitives are eas-
ily parametrizable, there may be others for which this is problem-
atic. One possibility would be to tessellate the shape interior as
planar meshes, and use the mesh vertices, that are unique, as inte-
rior points. This method is trivial to implement, and would certainly
solve the concern presented, but it may slow down the computation.

The second limitation, inherent in all optimization methods, is
the increase in computation time as the number of procedural pa-
rameters increases. In this paper, we show patterns with more than
twenty parameters, which would be quite cumbersome to manip-
ulate with sliders. However, scaling to hundreds or thousands of
parameters might become problematic. To support these cases, we
need a method that optimizes only the parameters that control the
users intended edit, expressed by both selection and mouse motion.
We leave this investigation to future work.

Finally, our method may fail when the user edits cannot be re-
produced by changes in the program parameters. For example, In
Figure 10, the user performs an edit equivalent to shearing the grid.
If the procedural program cannot generate a sheared grid, the op-
timization may incorrectly update other parameters to better fit the
transformed points with the ones computed by the program, as
shown in the top row. On the contrary, the resulting edit matches
the user intent perfectly if the procedural program can represent
the given edit, as shown in the bottom row.

Figure 10: A limitation of our approach is that user edits can pro-
duce undesired results if the procedural program has no parameter
combination that can fit user edits. In this figure, the user intent of
shearing the grid ends in a rotation update in a procedural program
that cannot express shearing (top), while it is correctly handled by
a program that can model the edit (bottom).

5. Conclusions

In conclusion, we presented a method for the direct manipula-
tion of procedural vector patterns. We support patterns expressed
as differentiable functions that take parametrized points as input
and compute the point positions as output. Users manipulate these
patterns by transforming sets of points, while constraining other
points. During the interaction, we optimize patterns at each frame
to give users real-time feedback on the edit, while ensuring an ac-
curate estimation of the pattern parameters. In the future, we plan
to explore methods to write procedural patterns automatically using
neural networks and language models.
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