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Figure 1: Rendering of different NeRF implementation depths results, without and with our proposed gradient scaling. Most NeRF rep-
resentations suffer from background collapse, building density close to the cameras. We propose a simple gradient scaling, which can be
easily implemented with any volumetric representation, preventing this build-up. We show examples of DVGOv2 [SSC22a, SSC22b], Ten-
soRF [CXG∗22], Instant NGP [MESK22] and MipNeRF 360 [BMV∗22] (without Ldist ) without (Original) and with our gradient scaling.

Abstract
NeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse,
creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is
caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes
receive significantly more gradients, leading to incorrect density buildup. We propose a gradient scaling approach to counter-
balance this sampling imbalance, removing the need for near planes, while preventing background collapse. Our method can
be implemented in a few lines, does not induce any significant overhead, and is compatible with most NeRF implementations.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Neural Radiance Fields (NeRF) [MST∗20] introduced a new way
to perform 3D reconstruction and rendering of real captured objects
and scenes given a set of multi-view images. The NeRF method is
based on differentiable volumetric rendering, guiding the presence
or absence of density and radiance at every point of the volume.

This flexible representation and the impressive reconstruction qual-
ity inspired a new line of research, improving the original formula-
tion with respect to a large variety of aspects including reconstruc-
tion quality, reconstruction speed, rendering speed, model com-
pression or required memory. Nonetheless, some issues, specifi-
cally background collapse and floaters remain present in the recon-
struction across most methods, especially for real scenes, pointing
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towards a more fundamental problem. In this work, we study and
propose both an hypothesis and a simple solution to the problem of
background collapse and near-camera floaters.

Background collapse symptoms are very visible floating artifacts
appearing close to the training cameras, mistakenly baking some
of the background as foreground density. This problem has been
identified by previous work [BMV∗22] which tackles this issue
with an additional term in the loss to force densities to concen-
trate and be close to a dirac [BMV∗22]. While this term indeed
results in reduced background collapse it does not explain it and
bakes some priors in the optimization, which might not be suitable
for all scenes. Another –often glossed over– detail that plays a role
in reducing background collapse is the use of a near plane during
ray-marching. It completely prevents gradients from backpropagat-
ing towards close camera regions as they are not sampled, but it is
scene dependent, has to be manually tuned, and is physically inac-
curate. Moreover, for complex capture with varying distances to the
subjects, no good scene-wide near plane might exist. On the con-
trary, we argue that any NeRF method should be able to trace rays
directly from the camera without resulting in background collapse
or floaters and that one possible cause for such artifacts is a dis-
proportionate amount of gradient received by near-camera volume
elements. We thus propose to scale the gradient during backprop-
agation to compensate for this imbalance using a very simple ap-
proximation. This scaling allows us to completely remove the need
for a near plane while preventing background collapse.

NeRF-based methods mainly differ in their underlying volumet-
ric data structure, which can be as simple as a Multi-Layer Percep-
tron [BMT∗21, BMV∗22, MST∗20], a voxel hash-grid [MESK22],
a tensor decomposition [CXG∗22] or even plain voxels [SSC22a].
We show that regardless of the chosen data structure, the recon-
structions benefit from our gradient scaling approach.

To summarize our contributions in this work are three-fold:

• Identify a possible root cause of background collapse as an im-
balance in the gradient received by near-camera regions.

• Propose a lightweight gradient scaling solution.
• Demonstrate its effectiveness for several methods with widely

varying data structures.

2. Related work

We show that our approach is beneficial to many existing
NeRF [MST∗20] related methods. We first cover radiance field-
based view-synthesis methods before further discussing the prob-
lem of background collapse and near-camera sampling in the ra-
diance field literature and how it has been addressed so far. For
more exhaustive coverage of the fast-paced recent literature, we
recommend the recent survey on neural rendering by Tewari et
al [TTM∗22].

NeRF representations NeRF [MST∗20] introduced a different
representation for novel view synthesis. Contrary to mesh-based
methods that rely on pre-computed geometry and reprojection
[OCDD15, HRDB16, HPP∗18, RK20, RK21, PMGD21] or point-
cloud-based methods [ASK∗20, KPLD21, RALB22, KLR∗22], ra-
diance field jointly optimize a three-dimensional volumetric den-
sity field and a six-dimensional radiance field through differentiable

ray-marching and volumetric rendering. This approach has been
adapted to use a wide variety of data structures to store the under-
lying fields providing varying quality, compactness, optimization
speed, and rendering speed trade-offs. The original line of work
[MST∗20, ZRSK20] used MLPs to represent the scene and was
later extended to prevent aliasing [BMT∗21], to handle unbounded
scenes [BMV∗22] and to better represent reflections [VHM∗22].
While these methods provide some of the highest-quality results,
they are relatively slow to optimize and very slow to render, of-
ten requiring several seconds per frame. To act upon these limita-
tions, several works reintroduced some locality in the representa-
tion to avoid evaluating a big MLP for each point of space. KiloN-
eRF [RPLG21] proposed to first train a NeRF before reproducing
the optimized field with tiny local MLPs, enabling faster rendering.
In a similar spirit, PlenOctrees [YLT∗21] bake an octree after train-
ing the original NeRF. Hedman et al propose to bake [HSM∗21]
a pre-trained NeRF to improve rendering speed, however, it does
not improve optimization time. Speeding up optimization has been
shown to be possible by directly optimizing a grid or voxel-based
data structure [STC∗22, SSC22a, SSC22b]. In this context of fast
optimization, compactness has also been improved using tensor
factorization [CXG∗22] or hashed-voxels [MESK22] and custom
CUDA kernels to enable extremely fast optimization and render-
ing.

We show that this choice of representation is orthogonal to our
contribution and that our gradient scaling can be easily integrated to
resolve background collapse by evaluating it on prominent methods
with diverse representations.

Floaters, Background collapse and Sampling Several works ob-
served and proposed solutions to the problem of floaters and back-
ground collapse in radiance field-based methods. Roessle et al.
[RBM∗22] propose to use depth priors to solve this issue in the con-
text of sparse capture, while in NeRFShop, Jambon et al. [JKK∗23]
acknowledge the problem of floaters and propose an editing method
to remove them. MipNeRF360 [BMV∗22] proposes a loss that en-
courages density to concentrate around a single point along the ray,
effectively reducing near-camera, semi-transparent radiance. This
relatively heavy loss was further made more efficient [SSC22b].
NeRF in the Dark [MHMB∗22] also proposes a loss on the weight
variance to reduce floaters. FreeNeRF [YPW23] discusses this is-
sue in detail, referring to it as "walls" and "floaters", noting that they
are present near the camera and thus propose to penalize density
near the camera with an occlusion loss. Using these losses however
imposes a prior on the scenes density distribution, which might not
be suitable for all content. Further, these methods do not explain the
root cause of the phenomenon and why the density builds up close
to the camera and not somewhere else. In this work, we provide
a possible explanation and solution to the problem of background
collapse and floaters caused by it, by noting that near-camera re-
gions are over-sampled and thus receive more intense and more
frequent gradients. A similar sampling problem was identified by
Nimier-David et al. [NDMKJ22] in the context of volumetric effect
optimization (e.g. smoke) where sampling proportional to the prod-
uct of transmittance and density leads to patches of density buildup,
while only sampling proportional to transmittance significantly re-
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duces artifacts. In our work, we do not modify the sampling but
account for its imbalance in the backpropagation step.

3. Analysis

In the following section we briefly review radiance fields optimiza-
tion (Section 3.1), we define the problem (Section 3.2) and present
our hypothesis for the cause of this issue (Section 3.3).

3.1. Neural Radiance Fields optimization

Most NeRF methods share common components and assumptions
to optimize their volumetric representation. Starting from a set of
images captured from calibrated cameras, the goal is to optimize
an emissive volumetric density to reproduce the appearance of the
input pictures when rendered with piece-wise constant volume ren-
dering. The general optimization framework selects pixels in the
input training images, generates a ray starting at the camera and
towards the chosen pixel, and performs ray-marching by sampling
the data structure at discrete positions along the ray to obtain colors
and density. The colors and density of these samples are integrated
to get a color for each ray cast through that pixel. The aggregation
of these colors is finally compared with the original pixel value, re-
sulting in a loss for optimization using stochastic gradient descent.

3.2. Problem Statement

Given only a set of calibrated input images, the NeRF reconstruc-
tion problem is ill-posed and naive solutions exist. For instance, a
planar surface close to each camera, reproducing their image con-
tent, could lead to reconstruction loss of 0. In practice, the nature of
the data structures and loss regularizers partially prevent this from
happening. However, some artifacts often remain: two of the most
prominent are floaters and a phenomenon referred to as background
collapse, where some geometry is reconstructed near the camera.
In turn, this incorrectly reconstructed geometry is seen, from other
viewpoints, as floating geometries. Note that while background col-
lapse results in floaters, some floaters might have a different origin
that our method does not address.

In Fig. 2 we visualize depth maps in false colors, going from dark
blue (close) to red (far). We can see dark blue regions in the depth
maps without regularizer loss (a), indicating that some geometry
is reconstructed near the camera. In MipNeRF360 the authors pro-
pose a relatively complex loss Ldist to partially solve both floaters
and background collapse – These issues are linked as the close-
camera density appears as floating geometry from other viewpoints.
For a given ray, the loss aims at consolidating sample weights into
as small a region as possible

While this loss partially prevents background collapse, it does
not explain it. Further, it pushes density to be concentrated, which
can be a problem if semi-transparent surfaces appear in the scene
as they are represented with partial density.

Another simple way to mitigate background collapse is to set a
near plane for the rays superior to zero, i.e. the rays do not start
from the camera center but a certain distance from it. In practice,
this trick is used in most NeRF-related work, but rarely discussed,

(a) no Ldist (c) with Ldist

Figure 2: Illustration of the problem of background collapse. Ldist
is a loss proposed in MipNeRF360 [BMV∗22] to prevent it.

nor its implications. Using a non-zero near plane prevents any gra-
dient to influence the pyramid formed by the camera center and the
near plane when optimizing for a pixel. On the other hand, it pre-
vents reconstruction and rendering in this pyramid, meaning that
one should carefully pick the near plane distance. If it is too close
to the camera, background collapse may arise, if it is too far, some
geometry would be missed during reconstruction and might lead
to other artifacts. Indeed, with a near plane positioned too far, the
model has to represent the color of the training pixel with density
after the near plane. While reasonable values can often be found
for the near plane distance, it requires per-scene tuning in the gen-
eral case. In the case of capture from varying distances from the
main subject(s), this near-plane distance may need to be set for ev-
ery camera independently. Further, when some content is captured
very close to the camera, no good value might exist.

3.3. Cause

We hypothesize that background collapse is primarily caused by a
disproportionate amount of gradient near-camera volumes receive.
As illustrated in Fig. 3, ray casting from a camera is akin to the
propagation of light and suffers from a similar quadratic decay.
Given a camera and a visible volume element and assuming equally
spaced samples along the ray, the density of samples falling in the
volume element is proportional to the inverse of the square of the
distance from that camera. This means that the volume close to the
camera is disproportionately more sampled than the rest of it and
that near-camera regions receive significantly more gradients per
volume element, encouraging a fast build-up of density, and creat-
ing floating artifacts.

Indeed, as data structures used to represent radiance fields are
generally continuous, a higher sampling rate of volume elements
directly translates to stronger and more frequent gradients for the
variables used to represent the density and color of the volume.
For instance, in the case of a semi-discretized representation, which
uses a voxel-like structure [STC∗22, MESK22, SSC22a, SSC22b],
weights have a local arrangement. In Direct Voxel Grid Optimiza-
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Figure 3: As rays spread from the camera toward the scene, the
density of points sampled decreases: all areas were sampled in the
first rectangle, while only 1

9 were in the second (marked with red
circles)

tion (DVGO) [SSC22a] and follow-up work (DVGOv2) [SSC22b]
only the eight weights associated with the corners of the voxel con-
taining a sampled point are affected by the backward pass. In these
cases, a higher density of sampling directly translates to gradients
received more often, and therefore faster updates. This same rea-
soning can also be applied to the different levels of hash grids
in NGP [MESK22]. In the case of MLP-like implicit represen-
tations [MST∗20, BMT∗21, BMV∗22], this higher sampling rate
translates to the MLP receiving a lot more signal for near-camera
space than elsewhere.

We also note that this sampling imbalance has the strongest ef-
fect early in the training when the low frequencies are not fitted yet.
At this early training stage, the gradients are likely to be locally
very aligned as they all push toward the same global direction. For
instance, if the colors predicted at early iterations for a small vol-
ume are varying around grey but the target is red, all points receive
approximately the same gradient to change the color to be redder.
In such cases, this means that the gradient for a weight influencing
a volume element scales linearly with the sampling density of this
volume and the weight changes faster.

3.4. Sampling in NeRF

Given a pinhole camera ci, with a view direction d⃗i, rays are sam-
pled uniformly for pixels on the image plane. Along those rays, as-
suming points are sampled linearly, the sampling density at a given
point p is given by:
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(a) Visualisation of the average number of cameras that see a point on a ray
as a function of distance to the ray origin. The score is averaged over all
cameras in 12 scenes from various methods [BMV∗22, CXG∗22, SSC22a,
MESK22]. Most points near cameras are only seen by a few cameras. Visi-
bility increases until it reaches the average subject distance before decreas-
ing again.
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(b) Visualisation of the average volumetric sampling for rays in the Bonsai
scene as a function of the distance to the camera. We see that volume units
close to the camera are over-sampled despite a low visibility.

Figure 4: Visibility of points on a ray (a) and average volumetric
sampling density (b), with respect to distance from a given camera.
Both axes use a logarithmic scale.
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1 class GradientScaler(torch.autograd.Function):
2 @staticmethod
3 def forward(ctx, colors, sigmas, ray_dist):
4 ctx.save_for_backward(ray_dist)
5 return colors, sigmas, ray_dist
6

7 @staticmethod
8 def backward(ctx, grad_output_colors, grad_output_sigmas, grad_output_ray_dist):
9 (ray_dist,) = ctx.saved_tensors

10 scaling = torch.square(ray_dist).clamp(0, 1)
11 return grad_output_colors * scaling.unsqueeze(-1), grad_output_sigmas * scaling,

grad_output_ray_dist

Figure 5: PyTorch source code for our gradient scaling operation. colors, sigmas, ray_dist are respectively the per-point color,
density, and distance to the cameras. The forward pass is the identity and the backward scales the gradients during back-propagation based
on Eq. 4. This module has to be called before integrating the points along the rays.

ρi(p) =
Visibility

vi(p) ×

FOV Sample Variation

|p− ci|
d⃗i · (p− ci)

×

Distance Decay

1
|p− ci|2

(1)

Where vi(p) is a visibility function (1 if p is in the camera field
of view and 0 otherwise). The second term accounts for the lower
spatial density of rays on the border while the third accounts for the
ray spreading with distance. For reasonable camera FOV, the effect
of the second term is negligible in comparison to the distance decay
and we can approximate |p−ci|

d⃗i·(p−ci)
≈ 1, giving us:

ρi(p)≈
Visibility

vi(p) ×

Distance Decay

1
|p− ci|2

= vi(p)× 1
(δi

p)2 (2)

With δ
i
p the distance between ci and p.

For a complete scene with n cameras, we can compute the sam-
pling density at a given point p as the sum of density from all cam-
eras:

ρ(p)≈
n

∑
i=0

vi(p)× 1
(δi

p)2 (3)

The main intuition given by the sum in Eq.3 is that for a point,
visible and close to a given camera, the sum is dominated by this
single camera term, while for points further away and at roughly
equal distance from the cameras, the visibility term is what plays
a significant role. For points near cameras, the inverse squared dis-
tance has a very significant impact, while these points tend to only
be visible to a few cameras. On the other hand, points around the
main subject of the capture tend to be visible by a lot more cam-
eras. This camera visibility phenomenon is illustrated in Fig. 4a.
In Fig. 4b we illustrate –on a log scale– the average sampling den-
sity along camera rays. We can see that near cameras, the density
is decaying quadratically and that despite lower visibility, the vol-
umes close to the camera are disproportionately densely sampled,
leading to a disproportionate amount of gradient for these regions.

4. Method

To compensate for the sampling density imbalance close to cam-
eras, we propose to scale the gradient that per-point characteristics
(such as density or color) back-propagate to the NeRF representa-
tion (MLP, voxel grid, etc...) during the backward pass. We propose
to apply the following gradient scaling:

s∇p = min(1,(δi
p)

2) (4)

i.e we replace ∇p by ∇p× s∇p. Where δ
i
p is the distance between

the point and the camera ray origin.

This scaling compensates for the dominating square density
close to the cameras while leaving the rest of the gradients un-
changed. Note that the scaling for a given point depends on the
camera from which the rays are cast.

For this proposed approach we assume that the typical distance
between the camera and captured content is in the order of 1 unit of
distance. We use this assumption to derive Eq. 4 and did not tune
scene scales during our experiments as most scenes respect this
assumption. In the case where the scene scale significantly differs
from this assumption and the captured content is at an order of σ

units of distances, the weighting can be replaced by:

s∇p = min(1,
(δi

p)
2

σ2 ) (5)

σ could potentially be estimated automatically based on camera
calibration.

Acting directly on the gradient is uncommon but designing a loss
to achieve a similar effect would be challenging: the loss would
need access to individual density/color of samples as it is not pos-
sible to influence individual points differently based on distance
after volumetric integration. Regularizing individual densities/col-
ors would impose a prior on their values while scaling gradients
reduces the speed at which they change. Further, a sample with 0
density does not contribute to the forward color but may receive a
significant gradient. Adding a new loss means adding the gradient
of that loss to the gradient of the other losses/regularizers (differ-
entiation sum rule), making it hard to reproduce the effect of the
scaling. In contrast, gradient scaling is straightforward and changes
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the update magnitude of density/color for samples near the camera,
helping to avoid local minima.

4.1. Non-linear space parameterization

Some methods [BMV∗22] use a non-linear parameterization of co-
ordinates f (p) ∈ R3 → R3 to fit an unbounded scene into bounded
coordinates. In such cases, the volume contraction of space should
be taken into account to scale the gradients. This contraction factor
is the absolute value of the determinant of the Jacobian J f of f . The
scaling thus becomes:

s∇p = min(1,
(δi

p)
2

|det(J f (p)| ) (6)

Depending on the mapping det(J f (p)) might be non-trivial to com-
pute. In our experiments, we do not use it, but future work may
require it. Indeed in MipNeRF360, the central space of the scene,
containing most cameras is unaffected by the mapping and thus the
Jacobian is the identity.

4.2. Implementation and performance

Implementing this operation in PyTorch is straightforward using
custom autograd.Function as shown in the 10 lines of code
in Figure 5. We also provide a JAX implementation in supplemen-
tal materials, directly compatible with the multinerf [MVS∗22]
codebase. Using this operation, a single call to it can be inserted
after the data structure (MLP, hash-grid, voxels, etc) has been
sampled, and just before point integration along the ray. This
ensures that each point gradient is scaled independently while
influencing the weights that control their characteristics (density
and color). The code presented in section 4.2, induces an overhead
of 100µs in the backward pass for 300k points, which is negligible
in the context of ∼50ms iterations. It can readily be used in most
codebases with minimal adaptations.

5. Evaluations

We empirically evaluate our solution for a wide range of volumet-
ric reconstruction methods and representations. While we do not
provide a theoretical analysis of the convergence properties of the
modified optimization, we find that the proposed scaling reduces
floaters for all tested methods while preserving or improving quan-
titative measures, including optimization loss.

5.1. Clamped quadratic scaling

Given the nature of the problem, a straightforward candidate could
be to scale gradients by (δi

p)
2 to compensate for the sampling den-

sity quadratic decay. While this indeed solves the near-camera sam-
pling imbalance problem, it leads to very strong gradients far from
the camera, preventing correctly learning surfaces as shown in Fig-
ure 6 (middle-row).

As described in equation 3, the sampling density at a given point
is the result of the sum of sampling densities from all cameras. This
means that the assumption of an inverse quadratic nature of the

sampling density for a volume element is mostly valid near each
given camera, as sampling from other cameras is negligible in this
area. We thus opted not to modify the gradient when reaching the
main content of the scene (around a depth of 1) and let the distribu-
tion of the camera guide the sampling density in these regions, as
illustrated in Fig 4b.

Having more cameras seeing a point has a potentially positive
effect as it focuses samples in interesting regions as opposed to the
near-camera sampling imbalance which is purely due to the nature
of the ray-marching process and produces artifacts. We illustrate in
Figure 6 that our gradient scaling approach helps focus the gradient
near the center of the scene, prevents background collapse, and that
using a purely quadratic scaling results in worse convergence and
reconstruction.

We compare three different approaches of gradient scaling using
a custom implementation of NGP [MESK22]. For all of them, we
set the near plane to 0. In the top row we can see that without any
scaling, density builds up very quickly near the training camera,
and while some of it is removed throughout the optimization, some
of this close-camera density remains at the end. In the middle row,
we can see that scaling purely quadratically leads to a bias toward
far density. The table is reconstructed in the background at first and
the optimization does not recover from this bad initialization. We
present the results of our clamped gradient scaling in the bottom
row. We clearly observe the advantage of the method, the geome-
try of the table is quickly and well reconstructed, and it converges
towards a better estimate without background collapse.

5.2. Gradient scaling for various NeRF representation

In this section, we show the effect of adding gradient scaling to
various existing methods and show that it removes background col-
lapse effects for all of them. This is particularly visible in the videos
available in Supplemental Materials. For each method we use their
implementation, as much as possible, leading to different color cod-
ings of the depth, we define it for each figure. Unless mentioned
otherwise we present testing views.

5.2.1. Improved Direct Voxel Grid Optimization

DVGO [SSC22a] uses a scalar voxel grid to represent density and
a grid of features with a shallow MLP for colors. We use the au-
thor’s implementation which includes the improvement proposed
in the follow-up work [SSC22b] and adjust it to enable our gradi-
ent scaling scheme using code similar to Fig 5. In Fig 7 we show a
comparison for two scenes with and without gradient scaling. Us-
ing our gradient scaling approach drastically reduces the amount of
near-camera floaters.

5.2.2. Instant NGP

Instant NGP [MESK22] uses a multilevel hash-grid of features and
a shallow MLP to represent both density and colors of a scene.
We use a custom PyTorch NGP implementation with the gradient
scaling scheme implemented. In Fig 8 we show a comparison for
two scenes (Exotic Plant and Croissant) with and without gradient
scaling, this time we visualize training frames and their respective
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Figure 6: From left to right for each row: Expected Ray depth at 500, 1250, 2000 and 4000 iterations and rendered view at 4000 iterations.
Top: No scaling, Middle: Quadratic scaling without clamping, Bottom: our scaling approach. Without Scaling (top row) near camera density
arises early on and is never totally removed. With Quadratic Scaling, the table is badly reconstructed with far density and the method
only partially recovers. With our Scaling the table is correctly reconstructed early on and no near camera density builds up. The depth is
represented here with the plasma color palette, with purple close to the camera and yellow far.

depth after training. This shows the root cause of the problem: den-
sity appears very near cameras, perfectly matching the RGB ap-
pearance for this given camera, but leading to floaters when seen
from novel viewpoints. Using our gradient scaling approach, den-
sity does not build up near cameras.

5.2.3. TensoRF

TensoRF [CXG∗22] uses a factorized decomposition of a 4D tensor
representing the scene to model both density and color. We show
in Fig 9 a comparison to TensoRF and see similar improvement to
the other volumetric representations. The results using our scaling
show more coherent depth and do not exhibit floaters.

5.2.4. MipNeRF360

We compare to MipNeRF360 [BMV∗22] in Fig. 10. MipNeRF360
uses an MLP and a custom frequency encoding to model the scene
at several levels of detail, preventing aliasing. A non-linear scene
parameterization allows to handle unbounded scenes. As MipNeRF
proposes a loss to limit the problem of background collapse, we
show comparisons to different settings. We have three axes we act
on, use of the Ldist proposed by MipNeRF360 [BMV∗22], setting
of the near plane to 0 (np = 0) and use of our proposed scaling
s∇p. We can see that combining Ldist with our scaling s∇p yields
the best results. We believe the reason for this finding is that Ldist
has value beyond its partial effect on background collapse. It adds
a solid density prior which is applicable to the scenes used in the
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Figure 7: Results of Improved Direct Voxel Grid Optimization [SSC22a, SSC22b] original method (No Scaling) and improved with our
proposed gradient scaling. Regions showing significant artifacts are highlighted with white rectangles. We can see that depth is more coherent
with our gradient scaling, preventing floaters to appear. The depth is represented here with a warm-cool color palette, with red close to the
camera and blue far. This is particularly visible in the top left and bottom right results and in the videos in Supplemental Materials.

paper, making the combination of our scaling and Ldist beneficial.
As with the other volumetric representations, these effects are most
visible in the videos available in Supplemental Materials.

Details MipNeRF360 uses a non-linear coordinate parameteriza-
tion to fit an unbounded space in a bounded box and distributes
samples linearly in disparity space to compensate for the contrac-
tion of coordinate, using a function g(x) = 1/x to parametrize the
rays. Using this same function with a near plane very close to 0
would put most samples just in front of the camera, in our tests
when setting the near plane to zero we use g(x) = 1/(1+ x). As
described in Sec.4.1, we don’t use the Jacobian rescaling for Mip-
NeRF360 because the central part of the scene’s coordinates, which
contains most cameras, is unaffected by the reparameterization.

5.3. Quantitative evaluation and discussions

We report PSNR, SSIM, and LPIPS [ZIE∗18] metrics for the evalu-
ated methods with and without our gradient scaling in Tab. 1 and for
the different variants of MipNeRF360. All metrics are computed
on held-out test images, provided with the dataset when possible,
or randomly selected.

Overall our method leads to better metrics for most tests ex-
cept for MipNeRF360. While the quantitative difference is small, it
mainly depends on the visibility of the floaters in test views, which
might be a relatively sparse event depending on the dataset. Fur-
ther, setting the near plane to zero allocates slightly fewer samples
to the center of the scene which can have a slightly negative impact
on reconstruction when there is no near-camera geometry. Floaters
are more likely to be visible when test cameras are slightly further
away from the scene center than training cameras. We find that the

qualitative evaluation test paths, shown in Supplemental Material,
better show the improvement provided by our approach.

6. Conclusion

We present a simple, yet efficient, gradient scaling approach, re-
moving the need for near-plane setting in NeRF-like methods while
preventing background collapse. Our method is computationally
efficient and solves a sampling imbalance existing in most pub-
lished approaches. This is particularly important in capture sce-
narios where objects are arbitrarily close or at varying distances
from the cameras. Our scaling is directly applicable to most NeRF-
like representations and can be easily integrated with a few lines of
code.
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Figure 8: Results of InstantNGP [MESK22] with and without our
scaling. Views shown here are training views. Regions showing
significant artifacts are highlighted with white rectangles. As with
other volumetric representations, our proposed scaling helps re-
construct more coherent scenes. This is particularly visible in the
videos available in Supplemental Materials. The depth is repre-
sented here with the plasma color palette, with purple close to the
camera and yellow far.
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Figure 9: Results of TensoRF [CXG∗22] with and without our scaling. Regions showing significant artifacts are highlighted with white
rectangles. Here too, our scaling proves efficient in removing floaters due to background-collapse. TensoRF depth visualization attributes
blue to red color to the background, the object depth follows the plasma color palette, with purple close to the camera and yellow far.
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Figure 10: Comparison to MipNERF360 [BMV∗22] with different design choice, with and without Ldist, with a near plane at 0.2 or np = 0
and with or without our proposed gradient scaling s∇p. We see here artifacts close to the camera near the floor. Our results combining Ldist
and s∇p, shows the best reconstruction. The depth is represented with deep blue close to the camera and deep red far. As with other methods,
this improvement is particularly visible in the videos available in Supplemental Materials.
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