
Mean Value Caching for Walk on Spheres

Ghada Bakbouk Pieter Peers

College of William & Mary

Abstract
Walk on Spheres (WoS) is a grid-free Monte Carlo method for numerically estimating solutions for elliptical partial differential
equations (PDE) such as the Laplace and Poisson PDEs. While WoS is efficient for computing a solution value at a single
evaluation point, it becomes less efficient when the solution is required over a whole domain or a region of interest. WoS
computes a solution for each evaluation point separately, possibly recomputing similar sub-walks multiple times over multiple
evaluation points. In this paper, we introduce a novel filtering and caching strategy that leverages the volume mean value
property (in contrast to the boundary mean value property that forms the core of WoS). In addition, to improve quality under
sparse cache regimes, we describe a weighted mean as well as a non-uniform sampling method. Finally, we show that we can
reduce the variance within the cache by recursively applying the volume mean value property on the cached elements.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Partial differential equations (PDEs) form the basis of many fun-
damental computer graphics problems. The recently introduced
Monte Carlo Geometry Processing (MC-GP) framework [SC20]
offers an exciting new strategy for solving PDEs defined over vol-
umes without the need to discretize or create a grid. At its core,
MC-GP builds on the Walk on Spheres (WoS) algorithm for solving
PDEs. Due to its conceptual similarity to path tracing, many Monte
Carlo innovations and solution strategies from rendering have been
applied to MC-GP, such as importance sampling [SC20] and re-
verse and bidirectional algorithms [QSBJ22].

Monte Carlo techniques are very effective for computing a solu-
tion estimate at a single evaluation point. However, in many prac-
tical cases, the solution over the whole volume or region of in-
terest in the volume is desired. Because the solution estimate is
computed for each evaluation point separately and independently,
many similar sub-walks are recomputed multiple times. To re-
duce recomputation, prior work looked at interpolation with Mov-
ing Least Squares [Nea04] of forward walks, and reusing reverse
walks [QSBJ22]. While the former is biased, the latter still requires
a large number of reverse walks to ensure a sufficiently dense over-
lap with each evaluation point.

In this paper we present a novel method for reusing forward
walks that is easy to implement in existing WoS frameworks. At the
core of our method is the volume mean value property, hence we
call our method (volume) mean value caching. The volume mean
value property is the volumetric counterpart of the (boundary) mean
value property that enables walking on spheres. We show that sim-

ply performing the first step in a WoS-walk over the sphere’s vol-
ume instead of its boundary leads to a filtering method that greatly
reduces Monte Carlo noise over multiple parallel WoS estimates
covering a volume. We also show that the volume mean value prop-
erty leads to an efficient caching scheme that is unbiased for uni-
formly distributed cache samples. In addition, to equalize variance
between evaluation points, we describe a (consistent) non-uniform
sampling strategy. Furthermore, we introduce a weighted volume
mean value property to improve the smoothness of the solution
when using a low number of cache samples. Finally, we show that
by recursively applying the volume mean value property, we can
also reduce the variance in the cache itself.

We validate our mean value caching strategy on a variety of
PDEs and show that we can reduce the required sample count by
several orders of magnitude for equivalent error levels. In summary,
our contributions are:

• A hybrid volume and boundary mean value formulation of WoS;
• An unbiased post-processing filtering method for reducing

Monte Carlo noise over uniformly distributed WoS estimates;
• A mean value caching and gathering method for reusing WoS-

walks that is unbiased for uniformly distributed cache samples,
and consistent for a non-uniformly sampled cache;

• A weighted volume mean value formulation; and
• A recursive algorithm for reducing the variance within the cache.

2. Related Work

Walk on spheres [Mul56] was introduced to computer graph-
ics in the context of grid-free Monte Carlo geometry process-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Editors)

DOI: 10.2312/sr.20231120 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0002-5616-957X
https://orcid.org/0000-0001-7621-9808
https://doi.org/10.2312/sr.20231120

G. Bakbouk & P. Peers / Mean Value Caching for WoS

ing [SC20] for solving PDEs with Dirichlet boundary conditions,
and it has been extended to solve PDEs with spatially varying coef-
ficients [SSJC22] and Neumann boundary conditions [SMGC23].
WoS has been successfully applied to fluid simulation [RLSO∗22]
and inverse PDE problems [YVJ22]. In this paper, we introduce
a caching and filtering strategy for reusing walks in grid-free
Monte Carlo methods for solving PDEs. While we focus on stan-
dard WoS walks [SC20], our method only requires a Monte Carlo
estimate and thus it is compatible with recent advances in this
area [SMGC23].

In addition to introducing a Monte Carlo geometry processing
framework, Sawhney et al. [SC20] explore multiple variance reduc-
tion strategies common in rendering such as importance sampling
and control variates. Sawhney et al. also report that Monte Carlo
rendering denoising methods [RMZ13, KBS15] are effective for
Monte Carlo geometry processing. However, these denoising meth-
ods do not leverage the properties of the underlying PDE, and thus
offer no guarantees on the accuracy of the denoised solution. A key
difference between the rendering equation and PDEs is that once
irradiance is recorded at the camera sensor, no further transport to
neighboring pixels is possible. In contrast, the PDE solution rep-
resents an equilibrium, and solutions to neighboring points are re-
lated through the mean value property. In this paper, we will lever-
age this relation to provide unbiased filtering. Sawhney et al. also
propose to reduce computation costs by adaptively sampling the
domain and approximating solutions between samples using MLS
interpolation [Nea04]. However, as noted by Sawhney et al., the re-
sulting solution is biased. In contrast, we leverage the mean value
property to obtain an unbiased solution from uniformly distributed
cache samples, and a consistent solution for a non-uniformly sam-
pled cache.

Qi et al. [QSBJ22] derive a bidirectional formulation for WoS
that introduces reverse walks starting at the boundary. In addition,
Qi et al. also introduce a two-pass reverse WoS algorithm, where
the first pass consists of computing and storing reverse walks.
During evaluation, all points that overlap with the largest ball are
summed and weighted by the corresponding Green’s function. Our
algorithm also stores walks, but in contrast to Qi et al., we store
forward paths. This gives us better control over the distribution of
cache samples, and thus the number of samples per ball during
the gathering stage. Furthermore, since our method only requires
an unbiased estimate of the solution at each cache point, we can
easily incorporate other estimation algorithms [SMGC23] without
the need to derive a ’reverse’ variant. Finally, our method supports
variance reduction within the cache by leveraging the volume mean
value property and the known distribution of sample points over the
domain; this distribution is unknown when using reverse walks.

In concurrent work, Miller et al. [MSCG23] describe a boundary
value cache method that stores solution values and their gradients
at the boundary of the target domain or region of interest. Instead of
storing the samples, Miller et al. follow a progressive approach of
splatting the cache entries directly to evaluation points. Our method
differs in that we store samples within the volume and that we do
not require estimates of the gradients. We explicitly store the cache
samples in a KD-tree alleviating the need to know the evaluation
points a-priori. Furthermore, Miller et al. rely on the free-space

Green’s function which exhibits a singularity at cache points. In-
stead, we leverage the volume mean value property of harmonic
functions which does not suffer from such singularities, although
the cache could be undersampled close to the boundary. Finally,
our method supports leveraging the samples in the cache itself to
reduce the variance on each of the cache samples, which further
translates to a reduction in variance when evaluating the PDE solu-
tion for points not in the cache.

Caching/sample reuse has been extensively explored in Monte
Carlo rendering by using: virtual point lights [Kel97, DKH∗14],
(ir)radiance caching [WRC88, JDZJ08], photon maps [HJ09,
HOJ08, Jen96], reservoir sampling [BWP∗20, OLK∗21], filter-
ing [ZJL∗15], etc. Similar to two-pass methods such as VPLs and
photon mapping, we also store ’paths’ for reuse in the second pass.
Our method differs in that we store forward walks, and add connec-
tions at the front; in contrast, reverse paths are stored in rendering
and then connected to a forward path. Our method is most similar
to irradiance caching in that we also store “forward paths”. How-
ever, in contrast to irradiance caching, our “interpolation of sam-
ples” is based on the volume mean value property which does not
introduce additional bias. Finally, our method can also be consid-
ered a special case of ReSTIR where the reweighting/resampling is
not needed because nearby samples are valid thanks to the volume
mean value property.

3. Background

In this paper, we will focus on solving Laplace and Poisson partial
differential equations, for which the solution u should satisfy:

∆u = f on Ω,

u = g on ∂Ω, (1)

where ∆ is the Laplace operator defined as the sum of the unmixed
second partial derivatives, Ω is the domain with boundary ∂Ω, f
is the source term, and g is the boundary condition; when f = 0,
Equation (1) is a Laplace partial differential equation. Leveraging
the mean value property, the solution value to Equation (1) at any
point x ∈ Ω can be expressed as:

u(x) =
1

|∂Br(x)|

∫
∂Br(x)

u(y)dy+
∫

Br(x)
f (y)Gr(x,y)dy, (2)

where Br(x) is a ball with radius r around x fully contained in Ω,
and Gr(x,y) is the Green’s harmonics function on the ball Br(x).

Walk on Spheres (WoS) offers a convenient Monte Carlo-
based algorithm for solving Equation (2), by sampling xk+1 ∼
p∂Brk (xk)(xk+1) for the boundary term (1st term), and yk ∼
pBrk (xk)(yk) inside the ball Brk (xk) to estimate the source term (2nd
term):

⟨u(xk)⟩=
⟨u(xk+1)⟩

|∂Brk (xk)|p∂Brk (xk)(xk+1)
+

f (yk)Gr(xk,yk)

pBrk (xk)(yk)
, (3)

where x0 is set to the evaluation point x, and ⟨u(xk)⟩ = g(xk) if
xk ∈ ∂Ω. While the ball Brk (xk) in Equation (3) can be of any ra-
dius rk as long as Brk (xk) ⊆ Ω and centered around xk, in practice
we take the largest possible ball Brk (xk) such that it touches ∂Ω in
order to minimize the number of steps needed to terminate the walk

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2

G. Bakbouk & P. Peers / Mean Value Caching for WoS

at the boundary. Unless the boundary ∂Ω has a (partially) spheri-
cal boundary, the intersection Brk (xk)∩ ∂Ω has zero area measure.
Thus xk is never sampled on the boundary ∂Ω, and consequently the
walk never terminates. Therefore, an ε-shell is defined around the
domain boundary ∂Ω, and if xk falls within this shell, g is directly
read out for the nearest point on the boundary and the walk is termi-
nated. This approximation introduces a small bias [SC20]. While in
theory, First Passage Surface methods can avoid the ε-shell bias, in
practice these methods are limited to restricted polygonal boundary
configurations [GHD97, MH03].

4. Volume Mean Value Property

The mean value theorem is critical in transforming the partial dif-
ferential equation in Equation (1) into an integral form (Equa-
tion (2)) that can be numerically solved with Monte Carlo integra-
tion. However, there also exists a volume version of the mean value
property†:

u(x) =
1

|Br(x)|

∫
Br(x)

u(y)dy, (4)

that takes the mean over the volume of the ball Br(x) instead of the
boundary ∂Br(x). Note, for brevity we omit the source term con-
tribution; we will discuss adding the source term in Section 8. The
volume mean value property follows directly from the boundary
mean value property:∫

Br(x)
udV =

∫ r

0

(∫
∂Bρ(x)

udS
)

dρ, (5)

= u(x)
∫ r

0

(∫
∂Bρ(x)

dS
)

dρ, (6)

= u(x)
∫

Br(x)
dV, (7)

where V,S, and ρ are the volume, surface and radial measures, re-
spectively. The first step in the above derivation follows from the
co-area formula, and the second step from the boundary mean value
property.

While we could, similarly to Equation (3), apply Monte Carlo in-
tegration on Equation (4), it would likely yield slower convergence
in practice than regular (boundary) WoS. However, we can also
combine both. One possible combination, that we will leverage in
this paper, is to select x1 = z ∼ pBr(x)(z) and xk+1 ∼ p∂Brk (xk)(xk+1)

for k > 0, such that:

⟨u(xk)⟩=


⟨u(z)⟩

|Br(x)|pBr (x)(z)
if k = 0,

⟨u(xk+1)⟩
|∂Brk (xk)|p∂Brk (xk)

(xk+1)
otherwise.

(8)

In other words, we only apply the volume mean value property to
the first step in the recursion, and follow regular WoS for subse-
quent steps. Note, for clarity we use z to denote volume-sampled
points and xk for boundary-sampled points.

We can leverage this Monte Carlo formulation in two applica-
tions: filtering and caching.

† We will refer to the mean value property in Equation (2) as the boundary
mean value property.

1 sample/pixel WoS Filtered Reference

Figure 1: Solutions to a Laplace PDE with OPEN DIAMOND &
CROSS boundary conditions for 500×500 evaluation points com-
puted with (left) 1 WoS-walk per evaluation point, (middle) filtered
results of the 1 WoS-walk result, and a reference solution (right)
computed with 20,000 WoS-walks per evaluation point.

Filtering Suppose that an estimate of u(x) is available for a dense
set of N evaluation points zi, i ∈ [1...N] (with known distribution)
computed with Equation (3). Each solution value ⟨u(zi)⟩ will have
some unbiased error proportional to the number of Monte Carlo
samples. To reduce the Monte Carlo noise, one could increase the
number of samples. However, an alternative strategy would be to
leverage Equation (8), and define a secondary volume estimator for
u(x) for any x ∈ {zi}:

⟨u(x)⟩= 1
K ∑

zi∈Br(x)

⟨u(zi)⟩
|Br(x)|pBr(x)(zi)

, (9)

where K the number of evaluation points zi in the ball Br(x). Note,
that the computation of the estimators ⟨u(zi)⟩ follows the second
term in Equation (8) (i.e., regular WoS), and Equation (9) is re-
lated to the first term in Equation (8). Therefore, the average over
all points zi (appropriately weighted) within the ball Br(x) yields
an estimate of the solution at x with lower variance than its origi-
nal corresponding zi sample. For example, assume the solution to
a PDE is desired in the 2D image domain Ω2D, and a single sam-
ple WoS estimate is computed for each pixel (i.e., zi is uniformly
distributed over Ω2D: pΩ2D(zi) ∼ 1

|Ω2D|). The resulting image will
be extremely noisy (e.g., Figure 1 (left) shows a 1 sample WoS so-
lution of a Laplace PDE with OPEN DIAMOND & CROSS bound-
ary conditions at 500× 500 resolution). We can then filter the re-
sult by averaging all pixel estimates in the largest disc around each
pixel, yielding an unbiased smoother result (middle) closer to the
reference (right). Equation (9) provides an unbiased estimate with
a significantly lower variance (∼ 1/

√
|Br(x)| when zi is uniformly

sampled), without computing any new samples. However, the vari-
ance reduction depends on the radius of the ball, hence evaluation
points close to a boundary benefit less from filtering than evaluation
points far away from the boundary.

Mean Value Caching We note that Equation (8) does not require
that the evaluation point x coincides with an a-priori sampled zi.
Hence, Equation (8) can also be used to estimate solutions in be-
tween sampled points zi. Furthermore, there is no restriction on
using the same set of samples for computing the volume integral
between two neighboring evaluation points. Leveraging both ob-
servations yields a straightforward and efficient 2-pass mean value
caching strategy. In a first pass, we compute solution estimates

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3

G. Bakbouk & P. Peers / Mean Value Caching for WoS

WoS (250K walks) Caching (50K walks) Reference

Figure 2: Mean value caching (middle) demonstrated on a Laplace
PDE with COLORED DIAMOND boundary conditions at 500×500
evaluation points, computed with on average one WoS-walk per 5
evaluation points, and compared to a regular WoS solution (left)
computed with five times as many walks (1 per evaluation point).

using WoS (or any other unbiased estimate via alternate methods
such as Walk on Stars [SMGC23] or First Passage Surface meth-
ods [GHD97,MH03]) at N cache points zi, i∈ [1...N] uniformly dis-
tributed over Ω and store the solution estimates in a cache for subse-
quent reuse in a second pass. In practice, similar to path tracing, we
only take a single sample at each walk-step when recursively com-
puting Equation (3) (i.e., the estimate from a single WoS-walk).
During evaluation, we gather the solution at any point x ∈ Ω simi-
lar to Equation (9) using the largest possible ball Br(x)⊆ Ω around
x. Because zi is uniformly sampled in Ω, it follows that:

pBr(x)(zi) =
1

|Br(x)|
. (10)

In practice, we store the WoS-walk estimates and corresponding
positions zi as keys in a KD-tree to quickly find all zi within the ball
Br(x). If the number of WoS-walk samples within a ball Br(x) falls
below a user-set threshold (1 in our implementation), we switch to
a regular WoS estimate; this often occurs close to the boundaries
where the expected length of the WoS-walks is short, and thus an
estimate can be obtained with few steps. In this paper when the ball
is empty, we only use a single regular WoS-walk to better demon-
strate the effects of mean value caching; in practice, more samples
are needed to obtain high quality estimates.

Figure 2 compares a solution estimate of a Laplace PDE with
the DIAMOND boundary conditions computed using a mean value
cache constructed from 50,000 WoS-walks uniformly distributed
over Ω against a regular WoS solution computed with five times as
many walks (i.e., 250,000) and a converged WoS solution estimate
computed with 20,000 WoS-walks per evaluation point (5,000M
walks in total). Even though only 1/5th of the WoS-walks are com-
puted (compared to 1 WoS-walk per evaluation point), the mean
value cache produces results with significantly less variance. Com-
pared to the reference solution (computed with 100,000 times more
walks), differences are mostly noticeable close to the boundary due
to the reduced gathering radius.

Mean value caching is unbiased if the solution value estimates
at the sample point zi are unbiased. Sharing samples between the
estimates of neighboring points does not introduce bias, but rather it
correlates the unbiased errors between neighboring points making
the result visually easier to interpret.

Region of Interest In order for Equation (9) to provide an unbiased
estimate of u(x) during gathering, it is important to ensure that each
point in the ball Br(x) can potentially be covered by a cache sample
zi. In other words, the pdf pBr(x)(zi) > 0. To ensure this condition
is met, care needs to be taken when the region of interest or the
domain Ω is not fully enclosed by the boundary ∂Ω. In such a case,
we must ensure that the ball Br(x) does not only stay within the
boundary ∂Ω, but that the ball also remains fully inside the region
in which we sampled zi. As a consequence, the gathering radius
can become very small for points close to the boundary of the re-
gion of interest, and thus the variance of the solution estimate will
increase for these points. To reduce variance at the region bound-
ary, we recommend to sample zi in a slightly larger area than the
region of interest. However, to better demonstrate the quality of so-
lutions obtained with mean value caching, all results shown in this
paper are computed without oversampling, and we use a matching
sampling and gathering region.

5. Weighted Volume Mean Value Property

When moving the ball Br(x) to a neighboring point x′, some sam-
ples will enter the new ball Br′(x

′) and some will leave the ball
Br′(x

′). At low sample rates, the number of sample points zi within
each ball Br(x) can be low, and hence the impact of samples enter-
ing and leaving the ball can induce an abrupt change in the solution.
Due to the correlated sampling, such discontinuities can be visually
noticeable. While the estimate is not incorrect, it goes against the
expectation that u(x) varies smoothly.

To address this issue, we introduce the weighted volume mean
value property:∫

Br(x)
w(ρ)udV =

∫ r

0
w(ρ)

(∫
∂Bρ(x)

udS
)

dρ, (11)

= u(x)
∫ r

0
w(ρ)

(∫
∂Bρ(x)

dS
)

dρ, (12)

= u(x)
∫

Br(x)
w(ρ)dV. (13)

In other words, weighting the solution value with any weighting
function that only varies along the radius in the ball Br(x) yields an
unbiased estimate of the solution value and the only difference is a
change in normalization factor from |Br(x)| to W =

∫
Br(x) w(ρ)dV

(i.e., the integral of the weighting function over the ball), which can
be computed analytically or by a Monte Carlo estimator:

⟨W ⟩= w(ρi)

pBr(x)(yi)
, (14)

where yi ∼ pBr(x)(yi), and ρi = ||x− yi||. At the cost of introduc-
ing some bias, this estimate can also be computed by reusing the
weights w(ρi) (i.e., the same samples as those used for computing
the weighted average of the solution value u(yi)). In our implemen-
tation, we employ the latter biased solution and normalize by the
summed weights as this produces visually smoother results.

Figure 3 (1st vs. 3rd row) demonstrates weighting by a Gaus-
sian function with standard deviation equal to the radius of the ball
σ

2 = r. However, any arbitrary radial function is also valid. The dif-
ferences are most visible for smaller cache sizes around the black
arms of the cross.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4

G. Bakbouk & P. Peers / Mean Value Caching for WoS

6. Non-uniform Sampling

As noted before, the variance on the solution estimates gathered
from the non-weighted mean value cache is inversely proportional
to (the square root of) the volume of the ball when the sample points
zi are uniformly distributed in Ω. The radius of the ball is deter-
mined by the shortest distance to the boundary ∂Ω. Consequently,
the solution estimates closer to the boundary exhibit more variance.
This is suboptimal as we would like to have a roughly constant
number of samples for any ball in Ω. This can be achieved by us-
ing a non-uniform distribution for zi that is inversely proportional
to the volume of the largest ball at zi. To avoid division by zero,
we introduce a µ-shell around the boundary in which we sample
uniformly. Furthermore, to avoid undersampling far away from the
boundary, we impose a minimum sampling density λ. Combining
all yields a sampling of zi proportional to:

zi ∼

{
max

(
|Bµ(zi)|

Q|Bri (zi)| ,
λ

Q

)
if ri > µ

1
Q otherwise

(15)

where Q is an appropriate normalization factor such that the pdf
integrates to one over Ω. In practice, we directly sample zi using
rejection sampling. We first uniformly sample a candidate position,
as well as an additional acceptance random variable ξ ∈ [0,1]. If ξ

is less than the unnormalized pdf in Equation (15) (i.e., with Q= 1),
then we accept the sample. In our implementation we set µ = 2ε×
104 = 0.02 and λ = 0.02;

A key challenge when evaluating Equation (8) for a point x is
that we need to know the pdf pBr(x)(zi) for each sampled point zi.
This pdf has the same shape as Equation (15) inside the ball. Hence,
only an appropriate normalization factor Q needs to be determined
such that Equation (15) integrates to one over the ball. An analyti-
cal expression for Q is difficult because both the integration domain
(i.e., ball) and Equation (15) depend on the geometry of the bound-
ary ∂Ω. At the cost of introducing some bias, we solve this problem
by using weighted importance sampling [BSW00]:

u(x)≈
∑i

⟨u(zi)⟩
pΩ(zi)

∑i
1

pΩ(zi)

. (16)

Note that the normalization factor Q, the number of samples N, and
the ball size Br(x) cancel out. As we will empirically show in Sec-
tion 9, due to the smoothness of the solution u(x), the impact of the
bias is small in practice.

Figure 3 compares the mean value cache solution estimates of a
Laplace PDE on the OPEN DIAMOND & CROSS boundary condi-
tions obtained with uniform and non-uniform placement of 25,000,
50,000, and 150,000 cached WoS-walks. We show both weighted
and unweighted solution estimates to better demonstrate the impact
of non-uniform sampling. We include weighing in Equation (16)
by replacing 1

pΩ(zi)
with its weighted version w(zi)

pΩ(zi)
. At low sam-

pling rates, uniform sampling provides a better estimate away from
the boundary (best visible in the 25,000 WoS walk case). How-
ever, non-uniform sampling provides a better estimate close to the
boundary, and it converges more quickly to an artifact-free solution;
at 150,000 WoS-walks (a little bit more than a walk on average for
every two evaluation points) there are still minor sampling artifacts

25,000 50,000 150,000

U
nw

eighted
U

niform
N

on-uniform
W

eighted
U

niform
N

on-uniform

Figure 3: Comparison of solution estimates of a Laplace PDE
on the OPEN DIAMOND & CROSS boundary conditions computed
with (weighted and non-weighted) mean value caching for uniform
versus non-uniform placement of 25,000, 50,000, and 150,000
WoS-walks. Non-uniform sampling produces better results close to
boundaries at the cost of a less smooth result away from the bound-
ary. This can be alleviated with weighting (e.g., below the black leg
of the cross at 50,000 non-uniform samples).

visible for uniform sampling, while non-uniform sampling exhibits
smooth boundaries.

7. Recursive Mean Value Caching

The above strategies aim to reduce the variance during gathering.
However, we can also leverage the volume mean value property to
reduce the variance of the cached WoS-walks. First, observe that
Equation (9) also holds at the sample points zi themselves. Hence,
we can improve the solution value estimates u(zi) by gathering and
averaging the neighboring samples. Second, the updated estimates
u(zi) are also valid unbiased estimates of the solution, and hence
the volume mean value property is also applicable, and thus Equa-
tion (9) can be applied again. This leads to a recursive algorithm
where we diffuse the estimates to the cached points’ solution val-
ues. Eventually, the estimates will converge to an equilibrium state.

Intuitively, recursively applying Equation (9) will compute the
Poisson kernel over the union of all balls Bri(zi) for each sample

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5

G. Bakbouk & P. Peers / Mean Value Caching for WoS

No Recursion 1 Recursion Step 6 Recursion Steps

1,000
2,000

Figure 4: Effect of recursive variance reduction within the cache
on the solution estimate of a Laplace PDE with the RED CORNERS

boundary conditions for 500× 500 evaluation points and a cache
size of 1,000 and 2,000 uniformly sampled WoS-walks. More recur-
sion steps result in smoother solutions (best visible in darker areas
near the boundaries).

point zi. Hence, the tighter the union of balls follows the bound-
ary ∂Ω the closer the Poisson kernel will be to the Poisson kernel
over Ω. However, the boundary conditions over the boundary of the
union of balls are implicitly determined by the initial WoS-walks.
For example, a boundary condition not sampled by the initial WoS-
walks cannot contribute to the solution. Characterizing the relation
between the boundary approximation on the union of balls and the
boundary condition g is an interesting avenue for future research.
Furthermore, recursive mean value caching also bears similarity to
Finite Element Methods such as iterative radiosity [CW16] albeit
starting from very different initial conditions (i.e., Monte Carlo es-
timates of the solution).

Figure 4 compares solution estimates from cached solution val-
ues without recursion, with one recursion step, and with 6 recur-
sion steps for 1,000 and 2,000 samples on a Laplacian PDE with
the RED CORNERS boundary conditions for 500× 500 evaluation
points. Recursive application of the volume mean value property
leads to smoother solutions.

8. Source Term Contribution

The previous discussions only consider the case where there is no
source term. To derive a volume variant of the source term, we in-
tegrate Equation (2) (scaled by |∂Br|/|BR|) over all possible radii
equal or smaller than the radius R of the largest ball BR(x) around
x, such that the resulting integral equals Equation (4) plus an addi-
tional source term S(x). The source term S(x), corresponding to the
integration of the 2nd term in Equation (2), can then be written as:

S(x) =
∫ R

0

|∂Br(x)|
|BR(x)|

(∫
Br(x)

f (y)Gr(x,y)dy
)

dr, (17)

=
∫

BR(x)
f (y)

(∫ R

||x−y||

|∂Br(x)|
|BR(x)|

Gr(x,y)dr
)

dy. (18)

Source term f WoS (20K/point) Uniform (2M size)

Figure 5: Comparison of the solution estimate for 500×500 eval-
uation points for a Poisson PDE (left) with a boundary condi-
tion g = 0 around the perimeter, obtained with regular WoS with
20,000 samples per evaluation point (middle) and with uniform
non-recursive mean volume caching (right) with 2M cache sam-
ples (i.e., 1/2,500th the number of WoS-walks).

The second step leverages that Gr(x,y) is only defined if y ∈ Br(x),
i.e., the ball Br(x) must have radius r larger than the distance
||x− y||. Denoting the inner integral as ΓR(x,y) yields an expres-
sion similar to the regular WoS source term:

S(x) =
∫

BR(x)
f (y)ΓR(x,y)dy. (19)

The exact form of ΓR(x,y) depends on the definition of the Green’s
function Gr(x,y) in the domain Ω. For example, substituting the 2D
Green’s function on a disc in Equation (18), yields:

ΓR(x,y) = GR(x,y)+
1

4|BR(x)|

(
||x− y||2 −R2

)
. (20)

As before, we compute the cache samples u(zi) using a regular
WoS-walk that includes the source term (Equation (3)). When gath-
ering, we average all cached samples zi within the ball BR(x) as
before, but also add the contribution from the source term S(x). We
compute the source term similarly to regular WoS, except that we
replace the Green’s function by ΓR(x,y). In our implementation, we
use an equal number of Monte Carlo samples yk as the number of
cache samples in BR(x) when evaluating S(x).

Figure 5 compares the solution estimates of a Poisson PDE (with
boundary conditions g = 0 around the perimeter) computed with
2,000,000 uniformly distributed cache samples (without recursion)
versus 20,000 WoS-walks per evaluation point at 500× 500 reso-
lution (i.e., 2500 times more walks).

9. Analysis

We perform a number of sensitivity studies and analyses to bet-
ter understand the properties and trade-offs of using mean value
caching with respect to the different algorithm parameters.

Convergence Figure 6 plots the convergence of (unweighted)
mean value caching with uniform and non-uniform sampling, with
and without recursive evaluation, expressed by the mean square
error for four Laplace PDEs with different boundary conditions:
COLORED DIAMOND, COLORED BOX, ZEPHIR, and LADYBUG.
The latter two are examples of a real world graphics application;
namely, a vector representation of smooth-shaded images with dif-
fusion curves [OBW∗08]. The mean squared errors are computed

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6

G. Bakbouk & P. Peers / Mean Value Caching for WoS

COLORED DIAMOND COLORED BOX ZEPHIR LADYBUG

Figure 6: (Log) MSE plots of mean value caching with uniform and non-uniform sampling, and with and without recursive evaluation of the
cache estimates for Laplace PDEs with 4 different boundary conditions. PDEs with non-smooth boundary conditions (i.e., COLORED DIA-
MOND and COLORED BOX) benefit more from non-uniform sampling and recursive evaluation than PDEs with smooth boundary conditions
(i.e., ZEPHIR and LADYBUG).

µ = ε,λ = 0 µ = 0.005,λ = 0 µ = ε,λ = 0.02 µ = 0.02,λ = 0.02 µ = 0.02,λ = 1

Solution
E

stim
ate

Sam
ple

D
istribution

Figure 7: Impact of µ and λ parameters on the non-uniform cache sample distribution demonstrated on a Laplace PDE with OPEN DIAMOND

& CROSS boundary conditions with a cache size of 30,000. Setting µ and λ too low results in a clumping of samples around the boundaries.
Conversely, setting λ too high converges to a uniform distribution.

with respect to a solution estimate computed with 20,000 WoS-
walks per evaluation point (1000 × 1000 for the LADYBUG and
ZEPHIR and 500 × 500 for the COLORED DIAMOND and COL-
ORED BOX). Note that we do not include a baseline error-plot for
regular WoS as it is unclear how to compute the MSE when we
are using fewer than 1 WoS-walk per evaluation point; the maxi-
mum number of samples in the above graphs corresponds to ap-
proximately 1 cache sample per evaluation point. Figure 8 shows
solution estimates for each of the four PDEs for selected cache
sizes. From these results, we observe that recursive evaluation pro-
duces the lowest MSE overall for an equal cache size. The over-
all error for non-uniform sampling (without recursion) is typically
higher at low sampling rates because it focuses more effort on the
boundary regions, whose contribution to the error is relatively small
(i.e., fewer evaluation points are near a boundary than away from
a boundary). However, visually, the variance around boundaries is
more pronounced. For PDEs with relatively smooth boundaries, the
difference between uniform and non-uniform sampling, as well as
recursive evaluation, is small (e.g., LADYBUG and ZEPHIR). For
PDEs with less smooth boundary conditions (e.g., COLORED DIA-
MOND and COLORED BOX), the differences between the variants

are more significant and they benefit more from combining non-
uniform sampling and recursive evaluation.

Impact of µ and λ Our prior analysis shows that non-uniform sam-
pling can improve convergence. The non-uniform sampling distri-
bution detailed in Section 6 is determined by two hyper-parameters:
µ (the lower bound on the ball radius for which we want to equalize
the sample density), and λ (the overall minimum sample density
far away from the boundary). Figure 7 demonstrates the impact of
µ and λ on a Laplace PDE with the OPEN DIAMOND & CROSS

boundary conditions. When µ is set equal to the width of the ε-shell,
and λ is set to zero (Figure 7, first column), we see that almost all
samples are placed within the ε-shell. This violates the condition
that the pdf of a sample zi cannot be zero inside a ball, and con-
sequently the solution estimate is incorrect. Increasing µ improves
results, but places too few samples away from the boundary (2nd
column). For a small cache size, this will again converge to the pre-
vious case. Setting a non-zero value for λ improves the results, but
when µ is small (3rd column), we gain little benefit from the non-
uniform sampling. In our implementation, we set both µ and λ to
0.02 (4th column), which strikes a good balance between clump-
ing cache samples close to the boundary and not neglecting the re-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

7

G. Bakbouk & P. Peers / Mean Value Caching for WoS

Direct Evaluation Recursive Evaluation Direct Evaluation Recursive Evaluation
Uniform Non-uniform Uniform Non-uniform Uniform Non-uniform Uniform Non-uniform

3,000
10,000

50,000
300,000

COLORED DIAMOND COLORED BOX

10,000
50,000

300,000
1,000

,000

ZEPHIR LADYBUG

Figure 8: Selected visualizations of (unweighted) mean value caching with uniform and non-uniform sampling and with and without recursive
evaluation for a Laplace PDE with with four different boundary conditions.

gions away from the boundary. Finally, setting λ = 1 (5th column)
is equivalent to uniform sampling.

Statistics Empirically, we find that the average number of cache el-
ements within a ball is linearly proportional to the size of the cache

and dependent on the geometry of the boundary conditions. For the
OPEN DIAMOND & CROSS boundary, the ratio is approximately
5.3% of the cache samples, while for the more complex geometry
of the LADYBUG, the ratio is 10 times smaller (0.5%).

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8

G. Bakbouk & P. Peers / Mean Value Caching for WoS

The average number of recursive iterations required to reach
equilibrium in the cache is less scene-dependent, and in general
equilibrium (using a 0.0001 MSE threshold) is reached in approxi-
mately 5 iterations.

As noted in Section 4, we switch to regular WoS when the num-
ber of cache elements falls below a user-defined threshold (1 in
our implementation). The percentage of evaluation points below
the threshold is dependent on the cache size. For a Laplace PDE
with the OPEN DIAMOND & CROSS boundary conditions with
500× 500 evaluation points, 2.6% of evaluation points fall in this
category for a cache size of 5,000, 0.62% for a cache size of 25,000,
and none for a cache size of 500,000 (i.e., on average 2 WoS-walks
per evaluation point).

10. Discussion

Computation Cost The computation cost of mean value caching
can be approximated as the sum of generating the cache and the
cost of reusing the cached walks at each evaluation point:

O(MVC) = (B×W ×N)+((B+C)×M), (21)

where B is the cost of a finding the nearest point on the boundary,
W is the average WoS walk length, and C the cost of averaging the
cache points in the ball, N is the number of cached points, and M
is the number of evaluation points. Hence, the ratio of the number
of evaluation points M versus the cache size N plays an important
role, as well as the relative cost B of determining the size of the ball
versus the cost C of gathering the samples from the cache within a
ball. For comparison, the cost for regular WoS is:

O(WoS) = B×W ×M×S, (22)

where S is the number of Monte Carlo samples per evaluation point.
An equal run-time comparison is difficult as timings are implemen-
tation and PDE dependent. For example, for a PDE with constant
boundary values, regular WoS requires fewer samples to achieve
low variance. Moreover, depending on the distribution of the cache
samples, different data structures can yield more efficient results.
For example, if the cache samples are densely and regularly dis-
tributed, then a grid structure instead of a KD-tree can reduce the
cost of sample look-up in a ball to constant time complexity.

In our current implementation, uniformly distributed mean value
caching is not competitive compared to regular WoS because we
always gather as many cache samples as possible. To illustrate:
in the COLORED BOX, the central evaluation point averages ap-
proximately 3/4 of the whole cache, imposing a significant com-
putational overhead. This could be resolved by imposing a max-
imum number of cache samples to average per evaluation point.
The non-uniformly distributed mean value cache does not suffer
from this issue because the distribution is chosen such that each
ball contains approximately the same number of cache samples.
Furthermore, for PDEs with boundaries with simple geometries
(such as the ones shown in this paper), the cost B of determining
the nearest point on the boundary is negligible and thus B << C
which disadvantages mean value caching: O(MVC) ∼ C×M ver-
sus O(WoS)∼W ×M×S with typically C >>W ×S; for complex
boundary geometry we expect that B ≈ C. However, even under
these unfavorable conditions, we found that recursive mean value

Reverse Bidir. w/ 16 samples Recurs. Non-uniform

1
,000

20
,000

300,000

Figure 9: Comparison between recursive non-uniform mean value
caching, reverse WoS, and bidirectional WoS (with 16 forward sam-
ples) on a Laplace PDE with the COLORED BOX boundary con-
ditions. Even at 300,000 walks, reverse WoS shows artifacts near
boundaries (e.g., in the blue region at the top right), and bidirec-
tional WoS exhibits significant Monte Carlo noise at the center.

caching with non-uniformly distributed cache samples stored in a
KD-tree is approximately twice as fast as WoS for equal error on
the COLORED BOX boundary conditions.

Similarly, a comparison with reverse WoS [QSBJ22] is diffi-
cult too. Reverse WoS is more efficient for sparse boundary con-
ditions, but it becomes less efficient on dense boundary conditions.
The bidirectional 2-pass WoS algorithm [QSBJ22] combines the
strengths of both forward and reverse walks. However, if the re-
verse walk estimates are unreliable, the bidirectional algorithm re-
verts to classic WoS. Figure 9 shows a comparison of mean value
caching versus reverse and bidirectional WoS on a Laplace PDE
with the COLORED BOX boundary conditions for an equal num-
ber of cached versus reverse walks. This PDE has dense boundary
conditions, and both reverse and bidirectional WoS exhibit slower
convergence than mean value caching. We argue that reverse WoS
and mean value caching are complementary algorithms; combining
the strengths of both is an interesting avenue for future research.

Gathering vs. Splatting Reverse WoS (without
caching) [QSBJ22] and the boundary value caching
method [MSCG23] employ splatting instead of creating a
cache. In contrast, our method, as well as the two-pass reverse
WoS method [QSBJ22], rely on gathering samples from the
cache during evaluation. Splatting has less memory overhead, and
typically splatting is more efficient than gathering with a KD-tree
and on-par with a grid data structure when used for dense caches.
However, splatting requires prior knowledge of the evaluation

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

9

G. Bakbouk & P. Peers / Mean Value Caching for WoS

points. In contrast, gathering is more effective when the evaluation
points are irregularly distributed. Furthermore, gathering allows us
to construct the cache before the evaluation points are known, and
thus it enables the reuse of the cache over multiple simulations.

Caching sub-walks Currently, we only store the estimate of a
complete WoS-walk in the cache. However, each sample point on
the ball surface during a WoS-walk also yields an estimate at that
point, and thus it could also be added to the cache. We observe that
the resulting distribution of cache entries zi tends to naturally clus-
ter around the boundaries, which could be beneficial for mean value
gathering near boundaries. However, a key challenge in caching
sub-walks, and an interesting avenue for future research, is effi-
ciently determining the resulting pdf pBr(x)(zi) for a cache point zi
in the ball centered around an evaluation point x.

11. Conclusion

We presented mean value caching, a method for reusing WoS-walks
when evaluating a PDE over a domain or region of interest. At the
core of our method lies the volume variant of the mean value prop-
erty. Replacing the initial step in a WoS-walk with an estimate of
the volume mean value allows us to connect any point within a
ball to its center. Our method is efficient and easy to implement
in existing WoS frameworks. To further improve efficiency, we ex-
plored the use of the weighted volume mean value property and
non-uniform sampling. Finally, we showed that the estimates in the
cache can be further improved by recursively applying the volume
mean value property on the cache entries.

For future work, we like to explore how mean value caching can
be adapted for reverse WoS-walks [QSBJ22], improve efficiency
near boundaries by considering non-spherical filter kernels (cf. first
pass surfaces [GHD97, MH03]), and investigate recursive filtering
of noisy WoS estimates, e.g., using a small fixed ball size instead
of the largest possible ball for fast parallel GPU implementations.

Acknowledgments This work was supported by NSF grant IIS-
1909028.

References
[BSW00] BEKAERT P., SBERT M., WILLEMS Y. D.: Weighted impor-

tance sampling techniques for monte carlo radiosity. In Proceedings of
the Eurographics Workshop on Rendering Techniques 2000, Brno, Czech
Republic, June 26-28, 2000 (2000), Eurographics, Springer, pp. 35–46.
5

[BWP∗20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P.,
LEFOHN A., JAROSZ W.: Spatiotemporal reservoir resampling for real-
time ray tracing with dynamic direct lighting. ACM Trans. Graph. 39, 4
(Aug 2020). 2

[CW16] COHEN M. F., WALLACE J. R.: Radiosity and Realistic Image
Synthesis. Morgan Kaufmann Publishers Inc., 2016. 6

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE A.,
WALTER B., NOVÁK J.: Scalable realistic rendering with many-light
methods. Comput. Graph. Forum 33, 1 (Feb 2014), 88–104. 2

[GHD97] GIVEN J. A., HUBBARD J. B., DOUGLAS J. F.: A first-
passage algorithm for the hydrodynamic friction and diffusion-limited
reaction rate of macromolecules. The Journal of chemical physics 106,
9 (1997), 3761–3771. 3, 4, 10

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic progressive photon
mapping. ACM Trans. Graph. 28, 5 (Dec 2009), 1–8. 2

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progressive photon
mapping. ACM Trans. Graph. 27, 5 (Dec 2008). 2

[JDZJ08] JAROSZ W., DONNER C., ZWICKER M., JENSEN H. W.: Ra-
diance caching for participating media. ACM Trans. Graph. 27, 1 (2008),
7:1–7:11. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Ren-
dering Techniques ’96 (1996), pp. 21–30. 2

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (Jul
2015). 2

[Kel97] KELLER A.: Instant radiosity. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques (1997),
SIGGRAPH ’97, p. 49–56. 2

[MH03] MASCAGNI M., HWANG C.-O.: ε-shell error analysis for “walk
on spheres” algorithms. Mathematics and computers in simulation 63, 2
(2003), 93–104. 3, 4, 10

[MSCG23] MILLER B., SAWHNEY R., CRANE K., GKIOULEKAS I.:
Boundary value caching for walk on spheres, 2023. arXiv:2302.
11825. 2, 9

[Mul56] MULLER M. E.: Some continuous Monte Carlo methods for the
dirichlet problem. The Annals of Mathematical Statistics 27, 3 (1956),
569 – 589. 1

[Nea04] NEALEN A.: An as-short-as-possible introduction to the least
squares, weighted least squares and moving least squares methods for
scattered data approximation and interpolation. 1, 2

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H., BARLA P.,
THOLLOT J., SALESIN D.: Diffusion curves: A vector representation
for smooth-shaded images. ACM Trans. Graph. 27, 3 (Aug 2008), 1–8.
6

[OLK∗21] OUYANG Y., LIU S., KETTUNEN M., PHARR M., PANTA-
LEONI J.: ReSTIR GI: Path Resampling for Real-Time Path Tracing.
Comp. Graph. Forum (2021). 2

[QSBJ22] QI Y., SEYB D., BITTERLI B., JAROSZ W.: A bidirectional
formulation for walk on spheres. Comp. Graph. Forum 41, 4 (2022),
51–62. 1, 2, 9, 10

[RLSO∗22] RIOUX-LAVOIE D., SUGIMOTO R., ÖZDEMIR T., SHI-
MADA N. H., BATTY C., NOWROUZEZAHRAI D., HACHISUKA T.: A
Monte Carlo method for fluid simulation. ACM Trans. Graph. 41, 6 (Nov
2022). 2

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust Denoising
using Feature and Color Information. Comp. Graph. Forum (2013). 2

[SC20] SAWHNEY R., CRANE K.: Monte Carlo geometry processing: A
grid-free approach to PDE-based methods on volumetric domains. ACM
Trans. Graph. 39, 4 (Aug 2020). 1, 2, 3

[SMGC23] SAWHNEY R., MILLER B., GKIOULEKAS I., CRANE K.:
Walk on stars: A grid-free Monte Carlo method for PDEs with neumann
boundary conditions, 2023. arXiv:2302.11815. 2, 4

[SSJC22] SAWHNEY R., SEYB D., JAROSZ W., CRANE K.: Grid-free
Monte Carlo for PDEs with spatially varying coefficients. ACM Trans.
Graph. 41, 4 (Jul 2022). 2

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray tracing
solution for diffuse interreflection. In Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1988, Atlanta, Georgia, USA, August 1-5, 1988 (1988), Beach
R. J., (Ed.), ACM, pp. 85–92. 2

[YVJ22] YILMAZER E. F., VICINI D., JAKOB W.: Solving inverse PDE
problems using grid-free Monte Carlo estimators, 2022. arXiv:2208.
02114. 2

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.: Re-
cent advances in adaptive sampling and reconstruction for monte carlo
rendering. Comput. Graph. Forum 34, 2 (2015), 667–681. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

10

http://arxiv.org/abs/2302.11825
http://arxiv.org/abs/2302.11825
http://arxiv.org/abs/2302.11815
http://arxiv.org/abs/2208.02114
http://arxiv.org/abs/2208.02114

