
Generalized Decoupled and Object Space Shading System

D. Baker and M. Jarzynski

Oxide Games, USA

Figure 1: Rendered castle model (left) and the associated virtualized shadel sheet (right) with level of detail system (similar to a mipmap).

Abstract
We present a generalized decoupled and object space shading system. This system includes a new layer material system, a
dynamic hierarchical sparse shade space allocation system, a GPU shade work dispatcher, and a multi-frame shade work
distribution system. Together, these new systems create a generalized solution to decoupled shading, solving both the visibility
problem, where shading samples which are not visible are shaded; the overshading and under shading problem, where parts
of the scene are shaded at higher or lower number of samples than needed; and the shade allocation problem, where shade
samples must be efficiently stored in GPU memory. The generalized decoupled shading system introduced shades and stores
only the samples which are actually needed for the rendering a frame, with minimal overshading and no undershading. It does
so with minimal overhead, and overall performance is competitive with other rendering techniques on a modern GPU.

CCS Concepts
• Computing methodologies → Rasterization;

1. Introduction

Decoupled shading, also known as object space shading, is a
method of rendering specifically designed to address well known
weaknesses present in both forward and deferred renderers. Decou-
pled shading helps address mathematical stability problems caused
by evaluating shade samples at different locations each frame, as

well as the practical problems posed by compositing samples, frag-
ment wastage and randomized memory access.

The advantages of decoupling shading are well known. Until re-
cent advances in GPU architecture, decoupling shading remained
impractical due to both performance consideration and lack of
generalized GPU architectures. In 2016, the Nitrous game engine
demonstrated that limited decoupled and object space rendering

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Eurographics Symposium on Rendering (2022)
A. Ghosh and L.-Y. Wei (Editors)

DOI: 10.2312/sr.20221163 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0170-0848
https://orcid.org/0000-0002-0191-6067
https://doi.org/10.2312/sr.20221163


D. Baker & M. Jarzynski / Decoupled Shading

was practical for D3D12 and Vulkan class desktop GPU. The first
Nitrous title, Ashes of the Singularity, [Bak16] demonstrated that
despite wastage in overshading and general overhead of decoupled
shading, the increases in efficiency for shading in a decoupled man-
ner overcame these issues.

However, Nitrous 1.0 and Ashes of the Singularity did not repre-
sent a generalized solution for object space and decoupled shading.
Because the game is a top-down strategy game, the general prob-
lem of samples which were not visible being shaded was not overly
severe, the projected texel density was relatively constant for most
objects, and the terrain system was built with a limited variable rate
stitch map with shading controlled by the CPU.

Furthermore, artists were able to tune art assets to circumvent
object space and Nitrous 1.0 issues, with techniques such as not
texture mapping the underside of units, or mapping it with limited
texel density. This introduced additional cost and time to art assets
relative to deferred and forward rendering architectures. Further-
more, decoupled and object space shading produced other prob-
lems; the need to overshade required substantial amount of shade
buffer space, potentially more storage space even than a deferred
render, though the total bandwidth used was typically far less.

Though this solution worked well for Ashes of the Singularity,
it was not a generalized solution for decoupled and object space
shading. The same rendering technique would perform subopti-
mally where there is both significant occlusion and large variation
in shading samples across the domain of a single object.

In earlier versions of Nitrous, we attempted to solve the over-
shading and large texel variation by breaking up objects into
smaller chunks. While this approach had merits and mitigated some
of the aforementioned problems, it still required more memory and
performance was less than was desirable. Additionally, the burden
of building art assets broken into small chunks represented a non-
trivial cost to production. Part of this cost was related to art assets
needing to be built with a methodology which was considerably
different from conventional art pipelines and tool support.

For Nitrous 2.0 we therefore desired, based on our experience
and the experience of our partners, a solution with a number of
constraints and goals:

• Ability to consume art assets with minimal variation from exist-
ing tools and art processes. Most art assets have a normal map,
albedo map, a color map, and various attribute maps, sometimes
stored in vertices. The only extra burden for creation of assets
which is acceptable is the creation of a unique UV chart. We
note that the creation of the UV chart can be automated in many
cases.
• Ability to amortize shading (or parts of the shading) across mul-

tiple frames, decoupled temporally from rasterization, allowable
on a material by material basis.
• Have near perfect shade sample and shading coverage. Pixels on

the screen should be neither overshaded nor undershaded, nor
should back facing or occluded shading samples necessarily be
rendered.
• Maintain the filtering advantages of decoupled and object space

shading. One advantage of object space shading is that most
aliasing occurs only once during the capture of the shading at-

tributes and subsequent shading occurs on these captured at-
tribute buffers. This distinct advantage over other rendering tech-
nologies, such as forward, deferred, or even the Reyes architec-
ture, is among one of the fundamental reasons to use decoupled
shading.
• Efficiently store in GPU memory shade samples. Nitrous 1.0’s

shade packing scheme required significant wastage due to gutter
spaces and other problems. Though the memory was never read
or written to, it occupied valuable space in the high performance
memory for the GPU.
• Competitive with other real time rendering architectures such as

deferred, forward, and forward+ on a modern GPU. We define
competitive to be within 10% performance of a similar scene
implemented via forward or deferred.
• Allow arbitrary complex materials with relatively strong robust-

ness. Materials should render with high quality without massive
effort from shader authors. Capabilities such as complex mate-
rial layering should be supported. Decoupled shading materials
should be a super set of any material authorable in other render-
ing architectures.
• Be compatible with a variety of rendering technologies such as

rasterization or ray-tracing.
• Have simple, easy to understand, and real time adjustable perfor-

mance controls.

With these constraints in mind, we believe that the generalized
decoupled shading system solves all these problems and can be
used to render most types of scenes created for real time systems
today.

2. Related Work

The Reyes Rendering Architecture [CCC87] implemented a tech-
nique called object-based shading. Reyes subdivides surfaces into
micropolygons, that are approximately the size of a pixel, which are
inserted into a jittered grid – a super-sampled z-buffer, to introduce
noise and avoid aliasing. In object-based shading, shading happens
before rasterization, as opposed to forward shading where shading
takes place during rasterization in screen space, and deferred shad-
ing [DWS*88] takes place after rasterization. Since shading occurs
before occlusion testing in the z-buffer, overdrawing can occur.

Burns et al. [BFM10] built upon the Reyes by making two major
improvements: no longer requiring surfaces to be subdivided into
micropolygon size and shades 2×2 blocks of pixels on demand af-
ter performing visibility testing, reducing the number of samples
that are shaded but not used. Fascione, et al. [FHL*18] created
Makuna, a modern implementation of Reyes. While not developed
for real time rendering, it did make many improvements to Reyes
including decoupling shading and path sampling.

Ragan-Kelley et al. [RLC*11] proposed a hardware extension
based on decoupled sampling, sampling visibility and shading sep-
arately, and applying to depth of field and motion blur. Liktor and
Dachsbacher [LD12] used a deferred shading system where shad-
ing samples are cached when computed, to speed up the rendering
of stochastic supersampling, depth of field, and motion blur. Clar-
berg et al. [CTH*14] proposed hardware extensions for computing
shading in texture space, reducing the overshading problem and al-
lowed for bilinear filtering.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

134



D. Baker & M. Jarzynski / Decoupled Shading

Andersson, et al. [AHTA14] used an approach called texture-
space shading where each triangle is tested for culling and shades
its surface, while a geometry shader computes each visible trian-
gle’s size to determine where in a structure similar to a mipmap to
insert the triangle.

Hillesland and Yang [HY16] combined texture-space shading
and caching concepts and used a compute shader in D3D11 to gen-
erate a mipmap-like structure of object-based shading results. Sav-
ing triangle IDs in a visibility buffer [BH13], so that the vertex
attributes can be later accessed for interpolation.

Nitrous 1.0 and Ashes of the Singularity had a non-generalized
solution for decoupled shading [Bak16]. Baker used object-space
shading where objects can have any number of materials by uti-
lizing masks. Several large master textures were allocated and an
objects estimated area was assigned a proportion of the master tex-
ture, scaled to make all the shade requests fit. Texture-based shad-
ing was performed in a compute shader, where each material is
accumulated in the assigned master texture. Mipmap levels where
computed for the master textures. Finally, objects where rasterized
with the master textures used to shade them.

Mueller, et al. [MVD*18] created a system to atlas a large scene,
broken into parts, with CPU coarse culling, and streaming the shad-
ing at a lower FPS than the rasterization rate. We implemented a
similar system, including streaming the shading with a 100ms sim-
ulated delay, and shared shading between viewports for VR. Unfor-
tunately, our analysis showed memory requirements and shading
visibility was far too coarse to meet our goals. Our conclusion at
the time was that such an approach was not currently feasible for
production. Thus, this effort was abandoned in favor of our current
approach.

3. Architecture

The generalized decoupled shading engine consists of several com-
plex sub-systems which interact to render a provided scene. Be-
cause of the general complexity and latency of CPU and GPU in-
teraction, the systems and control flow remain largely on the GPU.
The primary responsibility of the generalized decoupled shading
engine is the allocation, generation, processing, and management
of shade elements, which we call shadels.

The process works by running two primary loops which may run
at different frequencies. For our upcoming title, Ara: History Un-
told, we always run them at the same temporal frequency. The first
loop is the raster frame, which corresponds roughly to what is typ-
ically thought of in deferred or forward renderers’ entire rendering
pipeline. The second loop is the shade frame, which performs the
actual shading. In the typical configuration, the shade frame runs at
no more than 30 times per second, while the raster frame runs at a
much higher rate, ideally as fast as the display device can display
which may be upwards of 200 times per second.

The raster frame and the shade frame have very different com-
putational needs. The raster frame involves mostly the use of ras-
terization hardware such as triangle rasterization and depth buffer,
where the shade frame requires only the use of compute shaders.
Because they can be run in parallel, in one configuration the shade

Figure 2: A pre-alpha screenshot of our upcoming title: Ara: His-
tory Untold

frame can co-execute on a compute queue in the D3D12 or Vulkan
API, running in parallel to the raster frame.

The raster frame process begins by collecting the scene for
the GPU rendering. It then dispatches this scene the shadel mark
prepass step. This step’s purpose is not to rasterize, but to mark
which shadels will be needed for the rasterization of the scene.
Once this is complete, this data is sent to the shade frame loop.

The raster frame then may either proceed to rasterize the scene
or wait for the shade frame to complete its work. If the raster frame
proceeds to render, it may optionally compare its current shadels to
the shadels which were marked in the shadel mark prepass. Shadels
which are missing are shaded immediately, so that there will be no
cracks, holes, or undersampling of the scene. Once the shadels are
shaded, the scene can then be rasterized.

In the shade frame loop, the process begins by performing a layer
space support expander to allocate shadels which are not directly
visible but which may contribute to the scene in indirect ways.
Once this is done, the shadels themselves are allocated. During
the allocation, data is collected for the actual use of shadels and
a global adjustment factor is computed to adjust the shading rate to
fit into the desired shade space to not exceed the number of shadels
allocated.

The next step is for the work queues to be generated, allocated,
and filled. Shadels must be dispatched for every object, for each
material instance on that object, and for each layer on that object.
Once shadels have been processed, they are sent back to the render
frame. Figure 3 illustrates these steps and the raster frame interac-
tion with the shade frame.

3.1. Objects, Shade requests and Materials

In Nitrous 2.0, the following things which are rendered through the
decoupled shading system are: objects which consist of triangles, a
material instance which goes with the object, dynamic and constant
data, which is generated by the application, and a group of arbitrary
resources, usually collections of textures.

All objects together represent a scene and anything which may
contribute to the final rendering of the screen should be in this

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

135



D. Baker & M. Jarzynski / Decoupled Shading

Figure 3: The Raster and Shade frames. The raster frame col-
lects the scene and prepares it for the GPU, then dispatches it to
the shadel mark prepass. The shadel mark prepass marks which
shadels need to be rasterized and sends this data to the shade frame
loop. Once the shadels have been processed in the shade frame loop
they are sent back to the render frame for rasterization.

Figure 4: A pre-alpha screenshot of Ara: History Untold. Every-
thing in this screenshot are rendering through the decoupled shad-
ing system, except for the trees, people, and special effects such as
fire.

scene. This scene is created implicitly by tracking all objects which
have been requested to be rendered. Scene culling and object refine-
ment occur before the decoupled shading system begins its process-
ing. Figure 4 is a scene from Ara: History Untold.

Objects have two distinct stages of existing. They may be instan-
tiated, which means that they exist somewhere in the world and will
have an object instance ID, and they may be also requested for ren-
dering - which means they will be rendered into the scene if they
are visible. Multiple objects may share material instances, and vir-
tually any buffer or GPU resource with the exception that they will
never share shadel space.

3.2. Attribute Processing

Triangulated meshes which we use typically have some attributes
stored in the vertices including: normal, positions, texture coordi-
nates, specular power, albedo, etc., which are interpolated across a

triangle for each pixel. In the decoupled shading system and in ob-
ject space rendering triangles are not used for shading, rather each
shadel has a collection of corresponding input attributes.

In our first implementation, triangulated meshes were converted
to have shadel input attribute textures. This process involved ren-
dering the model from the 2D texture parameter space into a buffer
(thereby capturing the rendered attributes) either repeating this pro-
cess for each shadel level (analogous to a mip level) or performing a
downsampling filter. In our Nitrous 2.0, rather than capturing each
individual attribute, we follow the approach of Hillesland and Yang
[HY16] and only capture the triangle ID. When the shading occurs,
the mesh index buffer and vertex buffers are bound as inputs to the
shadel shader. The triangle ID is used to look up the vertices, which
are used to interpolate the input attributes from the vertex data in
nearly the exactly same way as would occur during a forward or
deferred renderer. This has the advantage of using far less data, and
also kept attributes more consistent with any corresponding values
that might come from rasterized buffers such as shadow maps.

To capture the triangle ID, we rasterize the triangles in texture
space, with the output being only the triangle ID. The resolution of
this texture is captured at is controlled by a setting for each indi-
vidual asset. This is an asset cooking step and does not occur while
the game is running. This triangle ID is captured for each mip level
of the triangle ID texture. One problem that arose was that some-
times triangle or section of triangles on the mesh resulted in no
triangle ID being captured, due to triangles falling in between cov-
erage rules for rasterization. This can later result in geometry being
rendered and having no shadels which represent it.

To solve these problems, we make some important modifications
to other approaches to capture triangle IDs. After the attributes are
first generated as previously described, we capture them again, but
this time switch the rasterization mode to conservative rasterization
[AA05][HAO05]. This changes the coverage rule such that all tri-
angles will emit an attribute to any sample they touch. This process
is repeated similarly to the aforementioned process.

Next, the two triangle ID maps are merged. Non-conservative
rasterization is preferred, however if a sample exists in the conser-
vative rasterization where no sample exists in the non-conservative
version, the merged version uses the conservative rasterization sam-
ple. This process means that there is no chance that a triangle when
applied to rasterization, does not have any captured triangle IDs.
See Figure 5.

We have found that these improvements greatly increase the ro-
bustness of triangulated meshes such that in general the Nitrous
engine can consume most assets created for forward or deferred
renderers. In addition, by saving only the triangle ID, the only ad-
ditional memory for an asset is the creation of a triangle ID texture.

3.3. Virtualized shadel allocation

When objects are instantiated and could possibly render (but may
not be actually requested to render for a particular frame), they are
allocated shade space inside the virtualized shade space system. We
call them shadels as they are distinct from both texels and pixels,
because they could be implemented in a variety of ways depending

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

136



D. Baker & M. Jarzynski / Decoupled Shading

Figure 5: Merging triangle ID maps between non-conservative and
conservative rasterization. Preferring conservative rasterization
where samples exist and falling back to non-conservative where
conservative samples do not exist.

on the specific hardware being used. On some platforms, for exam-
ple, it might be more efficient to store shadels in a typeless buffer
rather than a texture. Currently, we use textures to store them but
have experimented with other storage methods.

The shadels are stored inside a large virtualized 2D space,
where virtualized 2D dimensions have been tested as large as
512K×512K. Each object is allocated with the maximum possi-
ble shadel density which could be needed for any subsection of the
object, including detail which might be introduced via a material
shade.

This massive virtual shadel sheet creates enough space such that
objects that are instantiated in the scene need not bound their max-
imum scale other than a very coarse maximum. Though the virtu-
alized texture is beyond the scope of what could practically be on
a GPU now or in the near future, the working set of shade samples
which could actually be touched is a tiny percent of this space.

The virtualized shadel sheet is created as a two level hierarchy,
but implemented in such a way as to require only one level of de-
pendent reads. The shadels themselves are stored in 2D blocks,
which we implemented as 8×8 chunks of shadels. The virtualized
shadel space consists of two memory buffers, implemented for con-
venience as two 2D textures: a 2D remap buffer and a shadel stor-
age buffer. The remap buffer contain three values: a 32-bit shadel
block start offset which marks the beginning index location of
the shadel storage buffer, the object instance ID which represents
which object the shadels belong to, and the occupancy field, a 64-
bit value which represents 1 bit for each of the chunks of shadels
if it is occupied or not occupied. Therefore, each entry in the 2D
remap buffer represents 8×8 chunks of shadels, if a shadel chunk
is also 8×8 then each entry in the remap buffer represents 64×64
contiguous shadels.

To address a particular shadel, the 2D shadel location is indexed
to the remap buffer which corresponds to it, and the sub index of
the shadel chunk is also calculated, which will corresponds to 1 of
the 64 bits in the remap buffer. The address of the shadel chunk is
then calculated by Formula 1. This gives the location of the shadel
chunk, where each shadel can easily be sub-indexed. The shadel
allocation ID number provides an index value which will be used
for the dispatching of work by the GPU.

Figure 6: Virtualized shadel allocation. 8×8 chunks of shadels
from a 2D shadel remap buffer are stored in a shadel storage buffer.

ShadelChunkStartIndex+ countbits(∼(ShadelSubIndex−1) & OccupancyField) (1)

For more extreme scenes, we experimented with an additional
level of indirection. In this scenario, we introduced a secondary
remap buffer and perform a similar allocation step. This configura-
tion introduces an additional dependent texture read, but increases
practical virtualized shade space dimensions to the 4M×4M range
at a small decrease in performance. Our experience was that this
additional shade space was unnecessary. However, it is possible to
use virtual resident textures to map pages in/out as necessary which
should allow these same resolutions with no additional passes and
minimal additional overhead.

The shadel storage buffer also has a level of detail system sim-
ilar to a mipmap in a texture. However, even though the remap
buffer may be stored in a 2D texture, the mip hardware and tex-
ture addressing capabilities are not used. This is due to unordered
access view (UAV) mapping challenges and alignment require-
ments which require specific rules for mip block alignment. Specif-
ically, because a shadel chunk is set to 8×8 and each entry the
remap buffer therefore corresponds to 64 shadels, single allocations
smaller than 64 shadels can’t be made in the shade space, even for
smaller mip levels.

Figure 6 shows an actual breakdown of the 2D remap buffer
along with the shadel detail levels. Note that past the first few en-
tries, each level of detail level takes the same amount of space. We
determined that for our own use, we did not need to allocate shadel
chunks smaller than 256 shadels in our shadel space. This observa-
tion meant that lower mip levels would all align to the same size,
which effectively means that some occupancy bits can never be set
on the edges of the lower mip level and some entries in the 2D
shadel remap buffer are never written to nor read from.

3.4. Shadel Mark Prepass

The shadel remap buffer allows locations in the virtual shadel
storage buffer to be physically mapped. Before the shadels can
be mapped, the renderer must mark the actual shadels which are

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

137



D. Baker & M. Jarzynski / Decoupled Shading

Figure 7: The marking process where an occupancy bit is set using
‘interlocked or’ corresponding to a 8×8 chunk of shadels.

needed. This process is called the shadel mark prepass. After this
prepass is complete, every shadel chunk which is needed for the
rasterization will be marked.

This process starts by clearing all bits from the bitfield element
of shadel remap buffer. If we chose to use a texture for the shadel
remap buffer, this clear is essentially free on most GPUs. Next, we
perform a proxy render of the scene. For Nitrous 2.0, this means
running the corresponding shader stages which render the objects
on the screen. This can include any type of shader, such as vertex
shader, hull shader, domain shader, a mesh shader, etc. Since GPUs
have complex and efficient pixel shader and rasterization hardware,
we want to repurpose the hardware.

To repurpose the pixel shader, the goal is to use the pixel shader
similar to a simple object rasterization. Each object has an associ-
ated start location and dimension entry given to it when it allocates
space in the virtualized shadel storage buffer. Because each object
has a unique UV chart, this chart is used to index shadels similarly
to a texture.

Because it is not a texture, an equivalent trilinear or anisotropic
filter need to be implemented manually. During the mark prepass,
the actual shadels will not be loaded but rather the shadels which
would be accessed during a filter need to be marked (8 in the case
of trilinear). This approach works for any type of filtering desired,
with old techniques such as bilinear able to give modest perfor-
mance gains on lower end hardware.

The marking process, illustrated in Figure 7, consists of the set-
ting an occupancy bit corresponding to a chunk of shadels (which
we usually set to 8×8). Every chunk of shadels allocated in the
virtualized shadel space has a single bit which corresponds to it.
Setting a single bit could be problematic with hardware since the
bit is co-located with other bits. We note that bits only need to be
set, and only 1 bit would ever be set for each shadel with most
shadels mapping to the same occupancy bit.

We use ‘interlocked or’ to set the bits for each shadel, with each
pixel on screen possibly setting 8 bits. Since most pixels in a GPU
are processed in the same unit as other nearby pixels, we take ad-
vantage of the write combiners on modern hardware such that the

Figure 8: Pipeline of our pixel shader. It takes advantage of the
fixed function rasterization, atomic operators, early z depth, write
combiners, and efficient caches.

actual amount of writes to system memory are on the order of only
2 to 4 bits per shadel chunk. If the shadel chunk size is 8×8, a 4K
screen writes only about 1 MB of actual data.

As fast as ‘interlocked or’ operations are, the overhead is still
too high. Because all bits were initialized to 0 and only 1 bit at a
time is set during each operation, a simple optimization is to read
the bit field first, and only perform the interlocked operation if the
bit needs to be set. This results in significant performance increases
since the bitfields are so small as to usually be in the L1 or L2 cache
on the GPU.

Another important performance optimization is to use the ear-
lydepthstencil pixel shader attribute to allow the hardware
to early exit work of shadels which cannot be visible. By using this
attribute, only shadels which will actually end up contributing to
the scene will be marked.

Figure 8 illustrates how we set up a pixel shader pipeline to take
advantage of fixed function rasterization, atomic operators, early z
depth, write combiners, and efficient caches. These aforementioned
hardware units have already been implemented on modern GPU
architectures and combined with the locality of pixel processing
effectively repurpose the GPU to make the pixel shader efficient as
marking the shadels with only one prepass of the geometry.

3.5. Shade Space Allocator

Once the shadel chunks are marked, the shadels must be allocated
in the shadel storage buffer. This process is performed by examin-
ing each bitfield which corresponds up to 64 shadel chunks. The
number of chunks needed for that shadel chunk cluster is the num-
ber of bits set in the bitfield.

This can be performed efficiently by first subdividing the shade
texel storage buffer into N subdivisions. The chunks can then be
allocated in parallel performing an atomic exchange increment on
one of the subdivisions by using any number of simple hash func-
tions to map a shadel group to a subdivision. The actual location of
an individual shadel chunk is computed by examining the set bits
of the shadel remap texture. Although this requires slightly more
reading of data for addressing, we note that it reduces the opera-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

138



D. Baker & M. Jarzynski / Decoupled Shading

Table 1: Memory requirements to store shadels per resolution with
4x MSAA.

Resolution Back Buffer Size Total Shadel Memory
1920×1080 16 MB 64 + 50 MB
2560×1600 32 MB 128 + 50 MB
3840×2160 64 MB 256 + 50 MB

tion to only one dependent read and the remap locations small size
means they are typically inside the L1 cache of the GPU.

3.6. Global Shade Space Adjuster

A typical scene produces large numbers of shadel chunks to shade.
For reasonable efficiently mapped objects, we have noted that as a
rule of thumb we need twice the number of shadels as we do pixels
in the screen resolution to be able to guarantee perfect shade cov-
erage as defined by similar texel coverage in a deferred or forward
renderer. This is given a certain amount of overlap due to trans-
parency and alpha blending. We note that this comparison is some-
what unfair to decoupled shading since a given pixel on the screen
has computed both it’s maximum LOD and at least one LOD less
to provide smooth shadel downfiltering. Thus, the number of sam-
ples used for a frame has a lower bound of about 25% more than a
forward or deferred renderer.

Because scenes can vary in complexity, it is possible for a given
scene to exceed the number of shaded samples in the shade allo-
cation buffer. This would cause incorrect rendering as the shade
samples have no memory to be stored. To mitigate this potential
problem, the current number of shadels is continuously uploaded
to the host CPU. As it approaches certain thresholds the system in-
creases a global mip bias value, which can fractionally adjust itself
to keep the number of shading samples to fit within the shade allo-
cation buffer. Because very small amounts of mip biasing decrease
the number of samples dramatically, we found that in the very rare
event the shade space hit our 2x rule, the perceived quality differ-
ence was imperceptible as the fractional mip bias never exceeded
the 0.1 mark.

Table 1 refers to the amount of memory needed to store the
shadels. Experimentally, a virtualized 2D map of 256K×256K
worked well for most scenes, so long as some effort was taken to
bind maximum shadel density and reallocate it as objects move fur-
ther and closer to the screen

3.7. Layer Shading

As part of the material system, Nitrous supports the concept of lay-
ered materials. Material layers exist as a series of layer images, with
a layer program executing on each layer image. Each layer image
is evaluated before the next layer can process, and layers can read
and write from arbitrary previous layers.

This is useful for any operation which requires neighborhood
information. For example, a height map can be converted into a
normal map by a material creating a height map in one layer, and

Figure 9: Pre-alpha render of Sappho, one of the leaders in Ara:
History Untold. The skin shader uses multiple layers and succes-
sive passes.

then computing a normal from that layer by processing the heights.
In another example, a skin shader can use successive passes to per-
form a blur on the shaded layer. Both of these cases are used by
materials in Ara: History Untold. Figure 9 is an example of the
layering process.

To support layers, generalized decoupled shading uses the same
allocation location to correspond and to address multiple image
layer sample planes, which can store these possible intermediate
image layers. However, because a layer may need support for a ker-
nel operation (e.g. a wider neighborhood to compute a normal), this
could create problems where these samples were never evaluated
because the shadel of that location would never be used for the fi-
nal composition in this scene. In practice, however, we never found
issues, the support needed for a kernel didn’t exceed the naturally
shown visible shadels. If this become a problem, a pass causing
visibility expansion could be added.

Layer images can also store values across frames. In this use
case, we buffer the remapping buffers for the previous frame and
allow access to the previous layer images directly from any mate-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

139



D. Baker & M. Jarzynski / Decoupled Shading

rial. Because any material can read and write to any layer image as
it desires, it is up to the individual material for how it might reuse
any intermediate value.

The retrieval of previous frames layer image samples works by
making a function call in the material which uses the previous
frame shadel’s allocation and storage. If a sample exists, it is re-
turned, otherwise, the function returns false so that the material can
decided how to proceed. This feature is exploited extensively in our
terrain material, where we cache the expensive blended attributes
that need to be generated.

3.8. Work Dispatch Aggregator and Allocator

Once shadel storage has been allocated and the system knows
which shadels need to be processed, it still needs to generate the
actual GPU commands to process the shadels. In Nitrous 2.0, all
shadels are processed via a compute shader, but shadels can be pro-
cessed easily by any capable computing device.

A naïve method is to evaluate shade samples is to evaluate the
entire shadel remap buffer for each object which has been sub-
mitted and for each layer. Early testing of this indicated that for
small workloads, this is sufficient however the larger the virtualized
shadel space, the more prohibitive this becomes since GPUs are ef-
ficient at terminating work early, this quickly becomes an O(n2)
operation.

Instead, the entire shadel remap buffer is examined, and a work
list is generated for each object which is to be rendered. This work
list consists of the virtual remap location of each shadel chunk and
the associated shadel detail level.

The work queue buffer is shared among all objects, and since
allocated into segments depending on how many work items are
needed for each object, each work item being effectively a shadel
chunk. Some objects are not visible at all, due to occlusion, frustum
or other conditions which might mean that their samples are not
touched. These objects will have a work count of 0 and take no
space in the work queue buffer.

When the work queue buffer is populated, a work dispatch pa-
rameter buffer is also populated with the start location of the work
queue to read and the number of items which will require shading.

Each entry in the work dispatch parameter buffer is referenced
via a dispatch indirect call, which corresponds to all the state re-
quired for the shading and processing of shadels for a particular
object with one indirect dispatch per material layer per object.

3.9. Frame Render

The frame rasterization occurs as a similar process to the shadel
mark prepass, however this time instead of marking the shadel
chunks which will be used, the shadels are read from the shadel
storage buffer using the already populated shadel remap buffer.

The frame render and shade mark preprocess should ideally run
at the same resolution and exactly replicate one another to guaran-
tee watertightness. Practically speaking if layer edge expansion is
enabled and because shadels are marked in chunks, the shadel mark

preprocess can be run at lower resolution often without noticeable
issues. Problems can arise from certain types of charting on some
high triangle count meshes, but can be mitigated by LOD choices
and carefulness in art preprocess. In our current implementation,
we chose to keep the resolutions the same, because we had a need
to have a screen resolution Z prepass for other rendering needs.

Our data indicates, that the shadel mark preprocess step is often
less than 1ms on modern GPUs even at high resolutions, therefore
we typically run the process at the full resolution to guarantee wa-
tertightness with lower resolutions reserved for lower performance
systems.

4. Results

4.1. Frame Analysis

One critical requirement for decoupled rendering is that to be us-
able, it must be both general purpose, and also be comparable to
other rendering architectures in terms of performance and memory.
This remains the key obstacle to using decoupled shading.

While the memory requirement is straightforward to determine,
the performance comparison is difficult. To be useful, this metric
should be applied to a full game scene. Unfortunately, it is not fea-
sible to implement the scene of our current title with an entirely dif-
ferent rendering architecture (some of our materials cannot be used
in a forward or deferred renderer), therefore we use some other
analysis to indicate if we met our goal with being competitive with
other rendering architectures.

Because our decoupled rendering architecture is fully compati-
ble with forward rendering, there is some reasonable analysis which
we can perform to get a good estimate of a direct performance com-
parison. By taking a frame trace of a typical scene, we can isolate
the particular parts of the frame which are specific to decoupled
shading and the parts which would be identical to or are similar to
a forward renderer. The ratio of these two numbers is a reasonable
estimate of the cost differential between the two rendering types,
with some caveats to be discussed.

To perform this analysis, we created a typical scene in our game.
We ran this scene on an Nvidia GeForce 1080 Ti at 1080p, with
4x MSAA, and it had an average frame time of around 24ms. This
scene has 8 million triangles, 6500 draw calls, 6GB of GPU Mem-
ory, 8MB CPU to GPU data upload per frame, and around a 5%
variance of frame time.

One important note about the scene, is that our foliage does not
run through decoupled shading. This is because the material for
our foliage is a simple, mostly lambertian material, meaning that
there is limited visual benefit for decoupled shading. Our foliage is
almost entirely fillrate/front end bound, and uses very little shader
compute resources.

In the timing for the scene, the total time directly required for
decoupled shading is about 2ms. This represents around 10% of the
total frame time. The shading represents around 40% of the frame.
At first glance, this would appear to be directly related to decoupled
shading, however, in a forward renderer this shading would occur
during the rasterization pass, so this represents a transfer of work
rather than overhead due to decoupled shading.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

140



D. Baker & M. Jarzynski / Decoupled Shading

Table 2: A frame analysis of a typical frame in our Decoupled Shading Engine (DSE) from Ara: History Untold, which featured 8 million
triangles and 6,500 draw calls.

Operation Description Timing (ms) DSE Only
DSE Mark buffer clear DSE Setup 0.25 Y
Terrain Overlay Terrain UI 0.5 N
Shadow maps Shadow Depth Raster 1 N
Rasterization Z Prepass 0.75 N
Rasterization DSE Shade Marking 1 Y
DSE Work Dispatch Control logic for DSE 0.75 Y
Shading Material Shading 10 N
Rasterization Final Scene Composite 1.25 N
Rasterization Foilage 4 N
Volumue Rendering Volumetric Effects 1 N
UI UI Effects 1 N
DOF Post Process 0.75 N
Color Curve Post Process 0.25 N

The major difficulty with the shading section is that the num-
ber of samples evaluated from a forward renderer and a decoupled
is not the same. A decoupled renderer will typically process more
samples, though this is not always the case since small triangles
will over shade in a forward renderer due to the fact pixels must
evaluate on a quad. Whereas in a decoupled renderer such as ours,
the shading granularity is higher and the renderer takes more sam-
ples on anisotropic edges.

However, we can use a couple of observations to estimate they
are likely approximately the same. We have also observed higher
GPU occupancy shading in decoupled shading than with forward
rendering due to better cache use and dispatching, with occupancy
often being near perfect if GPU register usage isn’t too high. There-
fore, while decoupled shading is likely processing more samples,
it can evaluate samples somewhat faster. Additionally, we observe
that 30-50% of a frame time spent shading is typical for many
games, based a variety of frame captures we have both down on our
own prior titles and the types of captures we have seen from other
games and engines. Therefore, 40% of our time spent in shading is
roughly in-line with our expectations.

We also ran timings on a similar scene on an AMD Radeon RX
6800 GPU. According to UserBench, this GPU is nearly identical
performance to the Nvidia GeForce GTX 1080 Ti. However, we
noted that while most of the timings were nearly identical to the
1080 Ti as expected, the shading time was less than half at around
4ms, with the entire frame time around 18ms. In this GPU, shading
would represent only around 25% at most of the frame time. We
are still investigating the reason for the performance difference.
It could be due to a newer, more efficient architecture for com-
pute shading, or perhaps some missed optimizations in the Nvidia
Driver. On this GPU architecture, it seems unlikely that any for-
ward rendering of our scene could be significantly faster than our
current approach.

There are a few more considerations worth discussing that would
further benefit decoupled shading. One is that due to intrinsic tem-
poral and shader anti-aliasing, our renderer does not require tem-

poral anti-aliasing. The second observation is that a detailed anal-
ysis revealed that there is likely a large performance gain simul-
taneously rendering foliage with shading. This is because foliage
is opaque and using alpha to coverage, it may render before any-
thing which needs shading. Since the foliage uses little compute
resources and mostly uses rasterization resources, on an architec-
ture which allows asynchronous compute it should be possible to
co-execute direct rendered opaque objects while shading is occur-
ring. This could yield a performance increase of 2-4ms.

Overall, our analysis indicates that performance should be with-
ing 10% of other rendering architectures, and if other mentioned
factors are considered it may be able to outperform other rendering
architectures in some cases.

4.2. Quality Feature Improvements

We have already noted that decoupled shading is competitive with
other rendering architectures, but performance is only one factor to
consider when building a rendering system.

Regardless of performance advantages, decoupled shading has
intrinsic quality improvements. One of the biggest problems with
shading techniques is shading aliasing and shading instability to in-
terpolation of non-linear data. A common example of this is shim-
mering results when a high frequency normal map is used with
a low roughness factor. This results in high frequency highlights
which shimmer frame to frame as the micro variations in the sam-
ples can cause widely different shading results.

There are many techniques designed to help mitigate this prob-
lem such as LEAN Mapping [OB10], but there exists no general-
ized solution to this problem for forward or deferred, nor can there
be since real world materials are often too complex to fully solve
these issues. Part of our design requirements was shading robust-
ness, where any shader will have some degree of anti-aliasing re-
gardless of the attention spent to anti-alias it.

While decoupled shading still aliases, the samples used per

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

141



D. Baker & M. Jarzynski / Decoupled Shading

frame are invariant. This is distinct even from architectures such as
Reyes where triangles are generated relative to the current frame.
The advantage of this is that while decoupled shading may be in-
correct, it is incorrect in the same way each frame thereby removing
one class of rendering artifacts.

Another feature decoupled shading brings is the aforementioned
concept of material layers. Simply put, shadels can have precise
access to their complete neighborhood, as well as precise access to
previous temporal samples. Additionally, similar to forward render-
ing, decoupled shading has no real limit to the number of different
material and material instances which can be used.

Finally, it is a trivial matter in decoupled shading to adjust the
sampling rate for specific objects, areas of objects, materials, etc.
Shading sampling and super sampling is controlled by a single
number in the shader. Foveated rendering can be implemented with
a handful of shader code. Performance can also be easily adjusted
by varying total shading samples across the scene independent of
resolution.

5. Further Work

Decoupled Shading can integrate with ray tracing hardware in a
variety of ways. To ray trace inside a material, the scene is also up-
dated and maintained in one or more bounding volume hierarchies
(BVH), as is typical for real time ray tracing. At this point, any
shadel can request a ray trace in the same manner as a pixel shader
could, allowing full integration with ray tracing.

Ray tracing can be integrated more deeply into a decoupled shad-
ing system. If various surface properties are collected into different
layers, traced rays can look up their values into the populated shadel
remap and storage buffer, marking the shadels in the remap buffer
so that they become available in future frames.

Additionally, decoupled shading allows for additional interesting
modes of operation. Rather than trace rays directly in the material,
the ray origin and direction can be stored into one or more layers.
This layer is dispatched to ray tracing hardware which populates
another layer with the results of the ray trace shader.

By dispatching large clusters of rays at once, the decoupled shad-
ing engine can sort and group the rays for a much faster trace
through the scene, avoiding costly shading during the hit shaders.

6. Conclusion

The described process produces scenes which render quickly and
efficiently on modern hardware, despite the fact that the hardware
tested was not designed for this type of rendering. This rendering
architecture can replace many forward rendering architectures for
a production title at scale, with approximately the same perfor-
mance characteristics, and is competitive in overall performance
with other rendering techniques. Our current title has over 5,000
assets, ranging from characters, to terrain, to buildings compatible
with this decoupled shading architecture.

In addition, this rendering architecture can co-exist with forward
rendering, and is generally a superset. Many of our materials now
rely on some of these additional features, especially materials with

multi-pass layers, such as when normals are generated from com-
posited heights and human skin.

The primary hardware features which make this feasible for effi-
cient rendering are decent speed interlocked bitwise atomics, good
L1 caches, and good write-combiners. On newer GPU architectures
such as RDNA 2 the rendering is particularly efficient, with shading
accounting for only 25% of a typical frame time.

The estimated cost over a forward renderer of similar complexity
is around 10%, with the hope that further optimizations will make
the performance nearly the same or better. The primary overhead
for decoupled shading is twofold. First is we require an additional
prepass on the geometry of the scene, and the second is that there
is some amount of fixed overhead aggregating the results of this
prepass to dynamically dispatch GPU work.

The Nitrous 2.0 rendering system provides the first, comprehen-
sive, and complete decoupled rendering solution. Decoupled shad-
ing is practical and efficient on modern GPUs. Decoupled shading
can be used with many rendering techniques including, ray tracing,
point rendering, triangle rasterization, tile rendering, MSAA, alpha
blending, and many other GPU features. Additionally, decoupled
shading has intrinsic quality and flexibility benefits that cannot be
matched by forward or deferred rendering architectures [Bak16].
Finally, we believe with additional GPU modifications, decoupled
shading could exceed forward and deferred rendering in almost all
work loads

7. Acknowledgements

Ara: History Untold is published by Xbox Game Studios.

References
[AA05] AKENINE-MÖLLER, TOMAS and AILA, TIMO. “Conservative

and Tiled Rasterization Using a Modified Triangle Set-Up”. J. Graph-
ics Tools 10 (Jan. 2005), 1–8. DOI: 10.1080/2151237X.2005.
10129198 4.

[AHTA14] ANDERSSON, M., HASSELGREN, J., TOTH, R., and
AKENINE-MÖLLER, T. “Adaptive Texture Space Shading for Stochastic
Rendering”. Comput. Graph. Forum 33.2 (May 2014), 341–350. ISSN:
0167-7055. DOI: 10.1111/cgf.12303 3.

[Bak16] BAKER, DAN. “Object Space Lighting”. Mar. 2016. URL:
https://www.gdcvault.com/play/1023511/Advanced-
Graphics-Techniques-Tutorial-Day 2, 3, 10.

[BFM10] BURNS, CHRISTOPHER, FATAHALIAN, KAYVON, and MARK,
WILLIAM. “A Lazy Object-Space Shading Architecture With Decoupled
Sampling”. Jan. 2010, 19–28 2.

[BH13] BURNS, CHRISTOPHER A. and HUNT, WARREN A. “The Visibil-
ity Buffer: A Cache-Friendly Approach to Deferred Shading”. Journal of
Computer Graphics Techniques (JCGT) 2.2 (Aug. 2013), 55–69. ISSN:
2331-7418. URL: http://jcgt.org/published/0002/02/
04/ 3.

[CCC87] COOK, ROBERT L., CARPENTER, LOREN, and CATMULL, ED-
WIN. “The Reyes Image Rendering Architecture”. SIGGRAPH Comput.
Graph. 21.4 (Aug. 1987), 95–102. ISSN: 0097-8930. DOI: 10.1145/
37402.37414 2.

[CTH*14] CLARBERG, PETRIK, TOTH, ROBERT, HASSELGREN, JON, et
al. “AMFS: Adaptive Multi-Frequency Shading for Future Graphics Pro-
cessors”. ACM Trans. Graph. 33.4 (July 2014). ISSN: 0730-0301. DOI:
10.1145/2601097.2601214 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

142

https://doi.org/10.1080/2151237X.2005.10129198
https://doi.org/10.1080/2151237X.2005.10129198
https://doi.org/10.1111/cgf.12303
https://www.gdcvault.com/play/1023511/Advanced-Graphics-Techniques-Tutorial-Day
https://www.gdcvault.com/play/1023511/Advanced-Graphics-Techniques-Tutorial-Day
http://jcgt.org/published/0002/02/04/
http://jcgt.org/published/0002/02/04/
https://doi.org/10.1145/37402.37414
https://doi.org/10.1145/37402.37414
https://doi.org/10.1145/2601097.2601214


D. Baker & M. Jarzynski / Decoupled Shading

[DWS*88] DEERING, MICHAEL, WINNER, STEPHANIE, SCHEDIWY,
BIC, et al. “The Triangle Processor and Normal Vector Shader: A VLSI
System for High Performance Graphics”. SIGGRAPH Comput. Graph.
22.4 (June 1988), 21–30. ISSN: 0097-8930. DOI: 10.1145/378456.
378468 2.

[FHL*18] FASCIONE, LUCA, HANIKA, JOHANNES, LEONE, MARK, et
al. “Manuka: A Batch-Shading Architecture for Spectral Path Tracing in
Movie Production”. ACM Trans. Graph. 37.3 (Aug. 2018). ISSN: 0730-
0301. DOI: 10.1145/3182161. URL: https://doi.org/10.
1145/3182161 2.

[HAO05] HASSELGREN, JON, AKENINE-MÖLLER, TOMAS, and OHLS-
SON, L. “Conservative Rasterization”. GPU Gems 2. Ed. by PHARR,
MATT. 2005, 677–690. URL: https : / / developer . nvidia .
com/gpugems/GPUGems2/gpugems2_chapter42.html 4.

[HY16] HILLESLAND, K. E. and YANG, J. C. “Texel Shading”. Pro-
ceedings of the 37th Annual Conference of the European Association
for Computer Graphics: Short Papers. EG ’16. Lisbon, Portugal: Euro-
graphics Association, 2016, 73–76 3, 4.

[LD12] LIKTOR, GÁBOR and DACHSBACHER, CARSTEN. “Decoupled
Deferred Shading for Hardware Rasterization”. Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D
’12. Costa Mesa, California: Association for Computing Machinery,
2012, 143–150. ISBN: 9781450311946. DOI: 10.1145/2159616.
2159640 2.

[MVD*18] MUELLER, JOERG H., VOGLREITER, PHILIP, DOKTER,
MARK, et al. “Shading Atlas Streaming”. ACM Trans. Graph. 37.6 (Dec.
2018). ISSN: 0730-0301. DOI: 10.1145/3272127.3275087. URL:
https://doi.org/10.1145/3272127.3275087 3.

[OB10] OLANO, MARC and BAKER, DAN. “LEAN Mapping”. Proceed-
ings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games. I3D ’10. Washington, D.C.: Association for Computing
Machinery, 2010, 181–188. ISBN: 9781605589398. DOI: 10.1145/
1730804.1730834 9.

[RLC*11] RAGAN-KELLEY, JONATHAN, LEHTINEN, JAAKKO, CHEN,
JIAWEN, et al. “Decoupled Sampling for Graphics Pipelines”. ACM
Trans. Graph. 30.3 (May 2011). ISSN: 0730-0301. DOI: 10.1145/
1966394.1966396 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

143

https://doi.org/10.1145/378456.378468
https://doi.org/10.1145/378456.378468
https://doi.org/10.1145/3182161
https://doi.org/10.1145/3182161
https://doi.org/10.1145/3182161
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396



