Eurographics Symposium on Rendering (2022)
A. Ghosh and L.-Y. Wei (Editors)

A Real-Time Adaptive Ray Marching Method for Particle-Based
Fluid Surface Reconstruction

Tong Wu, Zhigiang Zhou, Anlan Wang, Yuning Gong and Yanci Zhang

National Key Laboratory of Fundamental Science on Synthetic Vision

Figure 1: A double dam break scenario.

Abstract

In the rendering of particle-based fluids, the surfaces reconstructed by ray marching techniques contain more details than screen
space filtering methods. However, the ray marching process is quite time-consuming because it needs a large number of steps
for each ray. In this paper, we introduce an adaptive ray marching method to construct high-quality fluid surfaces in real-time.
In order to reduce the number of ray marching steps, we propose a new data structure called binary density grid so that our
ray marching method is capable of adaptively adjusting the step length. We also classify the fluid particles into two categories,
i.e. high-density aggregations and low-density splashes. Based on this classification, two depth maps are generated to quickly
provide the accurate start and approximated stop points of ray marching. In addition to reduce the number of marching steps,
we also propose a method to adaptively determine the number of rays cast for different screen regions. And finally, in order to
improve the quality of reconstructed surfaces, we present a method to adaptively blending the normal vectors computed from
screen and object space. With the various adaptive optimizations mentioned above, our method can reconstruct high-quality

fluid surfaces in real time.
CCS Concepts

e Computing methodologies — Rendering; Massively parallel algorithms;

1. Introduction

Particle-based simulation methods like Smoothed Particle Hydro-
dynamics (SPH)[DG96] are widely adopted for video games and
other real-time graphics applications. Even though the performance
of CPU and GPU increases largely in recent years, reconstructing
and rendering high quality fluids surface in real-time is still very
challenging.

In real-time applications, fluid surfaces only need to be rendered

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/sr.20221157

from one viewpoint per frame. So it is not worthwhile to recon-
struct the entire mesh for fluids. This is the reason why screen space
methods are now the mainstream in the field of real-time fluid re-
construction. Screen space methods can be divided into two main
categories depending on the space where the computations are per-
formed: one[MSDO07; Grel0; vdLGS09; IKM16; TY 18] is to exe-
cute the computations in image space by smoothing the depth map
of particles with some filters, and the other[XZY17] is to cast a ray
per pixel to evaluate the iso-surface in object space. With respect

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/sr.20221157

72 Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction

(a) original algorithm[XZY17]

(b) our adaptive algorithm

Figure 2: A comparison between [XZY17] and our adaptive fluid reconstruction algorithm. The blue lines represent the final reconstructed
surfaces. In our method, low-density splash particles are drawn as yellow ellipsoids and high-density particles are drawn as green ellipsoids.

to the quality of reconstructed surfaces, the latter one can produce
more realistic and natural-looking details. But it needs more com-
putation overhead due to a large number of steps required in the ray
marching process.

In this paper, we present a novel method to improve the per-
formance and quality of the ray marching based algorithm. Three
adaptive mechanisms are designed to fulfill the target. First of all,
we generate a compact 3D density mask map and two depth maps.
Based on these three maps, our ray marching can use an adaptive
step length to quickly skip empty spaces between splashes and ag-
gregations quickly. Secondly, we divide the screen into multiple
equal sized tiles and use different resolutions to cast rays for differ-
ent tiles depending on their depth variances. And finally, we adap-
tively blend the normal vectors computed from screen and object
space to achieve a better reconstruction quality.

2. Related Work

In computer graphics, particle-based fluids simulation has be-
came a popular method to simulate complex and diverse fluid ef-
fects|AIA*12; MM 13; KS14; BK15]. However, there are relatively
few methods in high-quality fluid reconstruction, particularly in
real-time.

Iso-surfaces extraction. Traditionally, particle-based fluid was
represented as blobby spheres or metaballs. Then iso-surfaces
are extracted as polygonal meshes using marching cubes. Early
in 1982, the classic metaballs approach had been introduced by
Blinn[Bl1i82]. At the center of each particle, radial basis functions
are placed and accumulated to construct a scalar field where iso-
surfaces are then extracted. Zhu and Bridson[ZB05] improved this

algorithm and obtain smoother surfaces. They performed smooth-
ing pass over a dicrete grid that is constructed by sampling scalar
field functions. Adams et al.[APKGO7] tracked the particle-to-
surface distances over time to generate smooth surfaces. Yu and
Turk[YT13] used anisotropic kernels to stretch spheres into el-
lipsoids to produce flat surfaces and sharp features that are diffi-
cult to generate with spherical smooth kernels. Recently, Biedert
et al.[BSS*18] improved on Yu and Turk’s surface definition by
presenting a novel direct raytracing scheme.

Screen-space Filters. Although the approaches of iso-surfaces
extraction can generate accurate surfaces, they are computationally
too expensive to provide the most efficient alternatives for real-time
fluid reconstruction. Therefore, many screen-space filtering meth-
ods have been proposed to avoid polygonal mesh generation. In
these methods, particles are first drawn as spheres or ellipsoids to
create a depth map. And the filtering used to smooth this depth map
has been the focus of many researches. Binomial filtersfMSDO07]
and Gaussian filters can be implemented as separable filters, which
relieve the computational pressure of large filter sizes. The bilat-
eral Gaussian filter[Gre10] preserves the boundaries of the fluid and
avoids completely unrelated parts being filtered. And van der Laan
et al.[vdLGS09] also smoothed the depth map using curvature flow
to provide outstanding fluid surface quality. Reichl et al.[RCSW14]
proposed a total-variation-based image de-noising method to gen-
erate sharp fluid details. More recently, Truong and Yuksel[TY18]
considered the depth values in a narrow range. The depth values
outside of this range are carefully handled to provide smoother sur-
faces with well-preserved details near discontinuities.

Other screen-space approaches. The screen-space filtering ap-
proaches are capable of achieving real-time requirements, but still

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction 73

have many shortcomings in terms of quality. To achieve more com-
plex refractions, Imai et al.[IKM16] reconstructed the front- and
back-facing surfaces of the splashes and aggregations separately.
Xiao et al.[XZY17] only use the depth map as the entrance to the
rays that are cast towards the fluid. For each step of the ray, a neigh-
bor search is performed to evaluate whether the density iso-surface
has been reached. Our method is also based on the ray march-
ing to reconstruct the visible surface, but implements adaptive step
lengths to improve marching efficiency.

3. Algorithm Overview

In order to keep the details of tiny droplets and splashes and make
the fluid surfaces reconstructed more realistic, [XZY17] defines
fluid surfaces as iso-surfaces for some specific density value. And a
ray marching algorithm is executed to extract iso-surfaces by com-
puting the density of samples on the ray. But this method needs a
large amount of steps to find iso-surfaces which greatly hurts the
performance. As illustrated in Figure 2(a), Xiao et al. generate a
depth map from all fluid particles by rasterization, which provides
the starting points of ray marching. Once the ray marching be-
gins, it uses uniform step lengths to compute the fluid density from
surrounding particles until the density threshold is satisfied. This
mechanism may introduce many useless computations in empty
spaces (like ab and cd in Figure 2(a)).

In this paper, we propose an adaptive ray marching method to
reconstruct and render particle-based fluid surfaces. Actually three
adaptive methods are employed in our algorithm: the adaptive ray
marching step length provides the ability to reach the iso-surfaces
in fewer steps; the adaptive reconstruction resolution can reduce
the number of rays cast; and the adaptive normal blending weights
help us to obtain better smooth fluid surfaces with less computation
in all camera views.

The basic idea of our algorithm is illustrated in Figure 2(b).

e Adaptive ray marching step lengths: In order to allow the rays
to dynamically adjust step lengths in marching, a binary density
grid M is used to represent the rough distributions of fluid par-
ticles in the whole simulation domain. M divides the simulation
domain into two classes based on the density of particles. With
M, rays can avoid meaningless neighbor searches when pass-
ing through low-density areas (See Section 4.1). We also clas-
sify particles into splashes and aggregations according to their
anisotropic density. Based on this classification, two depth maps
D,;; and Dgge are generated from all particles and only high-
density surface particles respectively. D,;; defines the entrances
of all rays, while Dgge provides a rough approximation where
ray marching is supposed to stop. Based on Dygg, rays can skip
directly to aggregations when step counts exceed the threshold
(See Section 4.2).

e Adaptive ray casting resolution: The screen is divided into tiles
and the reconstruction resolution of each tile is evaluated based
on the particles’ information inside it, such as the variance of the
depth D,;;. Fewer rays will be cast in those tiles containing flat
surfaces, where the reconstruction result of pixels casting no ray
will be obtained by interpolation (See Section 4.3).

e Adaptively blending normal vectors: To obtain smooth nor-
mals at a small cost, we use screen space filtering to smooth D,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

and then reconstruct the normals N5"*¢" from it. However, D ;
is only the entrance to the rays and is likely to be far from the
final iso-surface. On the other hand, particles closer to the cam-
era will leave spherical artifacts that are difficult to remove with
filtering. To correct these two possible errors, we also estimate
another normal NOP/¢<! by searching for neighboring particles in
the object space and design two adaptive weights to blend these
two normals (See Section 4.4).

Our overall process is shown in algorithm 1:

Algorithm 1: Algorithm overview.

M < generateDensityMask();

Dygg < generateAggregationDepth();

D, < generateAllParticlesDepth();

Dygmoorn <= smoothDepth(Dgyp);

Nicreen <— generateNormals(Dgpoorh);

foreach rile t € tiles do

// Which pixels need to cast the ray
depends on each tile’s resolution.

foreach pixel x € pixelsCastingRays[t] do

P <+ getEntrance(D,[x]);

for i < 0 to maxStepCounts do

if i > maxSkipCounts and \hasSkipped then
P <+ getExit(Dagg[x]);
hasSkipped < true;

end

L <+ getStepLength(M[P]);

P+ P+L;

D < CalculateDensity(P);

if D > iso then
Nopject < getObjectNormal(P);
N < blendNormals(Nscreen[X], Nob ject);
Result[x] + (P, N);

end

end
Result[x] + (NULL, NULL);

end

end

4. Fluid Surfaces Reconstruction via Adaptive Ray Marching
4.1. Binary Density Grid

A time-consuming neighbor search is required to estimate the den-
sity at each step, which is the main cause of performance bottle-
necks. It is crucial to enable the ability to skip those low-density
areas to avoid meaningless neighbor searches.

In order to fulfill this target, we propose a new data structure
called binary density grid M. Instead of "gathering" neighbor par-
ticles at each step, we "splatting” densities carried by particles to
a uniform grid before marching. And at each cell of this uniform
grid M, we only record a boolean value indicating whether an iso-
surface might be extracted inside this cell as shown in Figure 3.
Based on this data structure, our ray marching is capable of skip-
ping the low-density regions very fast.

74 Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction

[]
@
ol o|o|loflo]o e
L 2 T
ol o|o|ofo| ol of o4
[) g
ol ofojo}o]ol.07o0fo ele®
ol oflo|ofoad0|0|lo0}o °
0 = . .__
o|lo|lo|0fo0o[0o| 0| O} O
- “‘1‘ o —
ol o4 0o|lojolojoflo|o]fo ®
Xa . '
S0 o|lofjo|o|lo|o]o
® ® ¢
L
o)
._IQ P o—© P e O O
® % (#9494 N -
T @ L J ®
° ° 4 @ o [
0 N

Figure 3: The figure is a 2d cross-section of our 3d grid. The num-
ber in each cell indicates whether it is possible to contain an iso-
surface, where 0 indicates that the cell’s density is too low to find
an iso-surface. With the assistance of the binary density grid, our
algorithm is capable of using adaptive step lengths to quickly skip
the empty spaces.

To further improve the efficiency of querying the grid when
marching, we compact multiple cells into one texel to generate a
compact 3D density mask map for M, which means only one texel-
fetching instruction can return multiple boolean values. Further-
more, if the returned texel value is 0, all the cells covered by this
texel can be quickly skipped.

Based on the above idea, in order to determine whether it is pos-
sible to extract a density iso-surface for each cell, the key issue is to
quickly estimate the maximum density pi* of the cell c. And then
the corresponding boolean value M. of cell ¢ in M can be defined
as:

1, ifp"™ >0
Me={ o UPe = (1)
0, otherwise,

where © is the iso-value defining fluid surfaces.

In our algorithm, p’** is defined as the maximum value of all

pp where p is a position located inside c. The density pp can be
computed from surrounding particles inside radius r:

pp=mY W(p—xj,r),)
J

where m is the particle mass, X; is the position of surrounding par-
ticle j. It can be seen from Equation 2, pp depends on two factors:
the number of surrounding particles and their relative positions to
D

Computing pi"** is not easy because it depends on too many vari-

ables. In our algorithm, we propose to use pr“* computed by Equa-

tion 3 as a conservative estimation for pp*:
pe ™ =mNW (0,r) 3)

where N, is a fixed value of cell ¢ to represent the number of sur-
rounding particles. Comparing with Equation 2, the ideas behind
Equation 3 are: 1. Use 0 as all the relative positions of surrounding
particles, which actually maximizes the value of W (); 2. Use a fixed
number N, to replace the varying number of surrounding particles
inside radius r.

Now the only undetermined factor in Equation 3 is N.. We set
the size of cells to r so that for any location p € c, its surrounding
particles involved in the computation of pp must locate in the 3 x
3 % 3 neighbor cells of c. Based on this, the easiest way to compute
N¢ is to access all the 3 x 3 x 3 cells and sum the particle count
in each cell together. But this mechanism is quite time consuming
because each cell needs to access its 26 neighbors.

In this paper, we propose a fast way to compute N.. The basic
idea is to convert the sum operation to convolution. Let’s take 2D
as an example to illustrate this conversion:

Ni—1y+1) Nayr1) Naviy+n) 111

Ne=Y X Nuy) = | N1y Ny Neepry) | %11
rY Ni—1y-1) Niey-1) Nayry-n] 111

@)

where N is an array which stores particle counts per cell. In fact,
P obtained using the above method is too conservative though
it is absolutely correct. We can replace the convolution kernel in
Equation 4 with an isotropic spatial separable convolution kernel
K:

b> ab b b
K= |abd® ab| = |a X[bab], 5)
b* ab b? b

which means Equation 4 can be calculated in two steps. Since par-
ticles in the center cell have a higher probability of being searched,
we set b < a < 1 to achieve higher marching efficiency.

4.2. Particles Classification

To reduce unnecessary computations in empty-space between the
camera and the fluid region, we generate the depth map D,;; of
all particles in advance as the entry point for each ray, just like
[XZY17]. However, the entrance represented by D,;; may be very
far from the final iso-surfaces when there are a lot of splash parti-
cles in the scene, which means unnecessary computations in a lot
of low-density regions are still unavoidable. In particular, when our
binary density grid is so conservative that most of these regions is
marked as 1.

In order to maintain a more stable performance, we also generate
approximate exits where the ray can quickly escape when the num-
ber of steps exceeds a threshold. The basic idea is to classify the
fluid particles into splash (low density) and aggregated (high den-
sity) particles according to their densities. Then a depth map Dggg
is generated from aggregated particles. Dqgg provides approximate
potential stop positions because the region where the aggregated
particles are located is more likely to have a higher density.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction 75

b b’
L] L]
00
’
a o o ’U:)ao c o ©
. . o ©
o > 9 0o © o o c o) © .0
© 0, © o ° ° © o o o ©
° ° o o °_ 0 o [} o °.°
P ° [©] [e o ° o o b <]
s %00 o o o o0 o o)

(a) Isotropic (b) Anisotropic

Figure 4: Comparison between density computed by isotropic (a)
and anisotropic kernel function (b). Particles in yellow and green
indicate splash and aggregated particles respectively.

Based on the above analysis, classifying the particles accurately
is the key for the algorithm to work. We first try to classify particles
simply according to their density. In SPH, the density p; of particle
i with mass m; at location x; can be computed as:

pPi :ijW (xi —xj,r), (6)
J

where Xx; is the position of neighbor particle j and W is the smooth-
ing kernel function:

W (xi—xj.r) = 5P ("Xi_x*’|‘> ,)

r- r

where s is a scaling factor, r is the smoothing radius, and P is a
symmetric decaying spline with finite support.

However, as illustrated in Figure 4, particle a on the fluid sur-
face has a great chance to be incorrectly tagged as splash particle
instead of an aggregated particle. Because Equation 7 actually is an
isotropic kernel function, from which the density value computed
might be too low.

In order to address the above issue, we analyzed the different
characteristics of particle a and splash particle b. The distribution
of aggregated particles located on the fluid surface is more consis-
tent (all along the fluid surface) than the disordered splash particles.
Therefore, we replace W with the anisotropic kernel function pro-
posed in [YT13], whose basic idea is that neighbor particles with
more consistent orientation should be given higher weights. The
anisotropic kernel function is expressed as:

W (xi —x;,G;) = s|[det (G;) | P ([|G;(xi —xj)[[); (8
G, = %RE*IRT. ®

where the linear transform matrix G of neighbor particle j, for
rotating and stretching X; — X, is constructed by applying the
weighted version of Principal Component Analysis[KC03] to x;.
R is the rotation matrix and X is the diagonal matrix obtained by
the singular value decomposition (SVD) of the covariance matrix.
We used Yu and Turk’s method to obtain modified matrix X to pre-
vent extreme deformations.

Since G is only used to calculate the determinant and L1 Norm,
Equation 9 can be further simplified:

G;= %f‘lRT. (10)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

200

(a) reconstruction result (b) original method

syuno)) dajg

(c) mask

(d) mask + skip

Figure 5: A comparison of step counts required for different algo-
rithm. (a) Reference image. (b) Step counts required by [XZY17].
(c) Step counts required by our method presented in Section 4.1.
(d) Step counts required by our method presented in Section 4.1
and Section 4.2.

As shown in the Figure 4, the anisotropic kernel function will
produce a larger density value for @', and thus the possibility to
incorrectly tag ' as splash particle is reduced.

4.3. Adaptive Ray Casting Resolution

In addition to reducing marching step counts of each ray, we also
tried to reduce the number of rays cast. Note an important fact
that it is not necessary to cast a ray for each pixel if it belongs
to some screen areas covered by flat fluid surfaces. We can execute
ray marching on low resolution for these regions so as to reduce
the number of rays cast, and then use interpolation to up-sampling
back to full resolution.

Based on the above idea, we divide the screen into equal-sized
tiles. Before ray marching, we calculate the variance of depths
Var(D,;;) for each tile to determine whether it is flat enough. We
use two variance thresholds €| and €, (€] < €,) to divide the flatness
into three levels. More specifically, if Var(D,;;) > €, then rays in
the tile are cast in full resolution, if €, < Var(D,y;) < €, then rays
in the tile are cast in half resolution, and Var(D,;) < €; means
quarter resolution.

4.4. Adaptively Blending Normals

For pixel(i, j), the ray marching method can help us attain more
precise position x;; by finding iso-surfaces. And the normal N;; on
X;; is also critical to the fluid reconstruction quality. To get the nor-
mal quickly, we first calculate normal NiSj”ee" from the depth map
Do that is generated by smoothing D, with Bilateral Gaussian
Filter.

And there are two issues that need to be addressed. Firstly, the
position p;; from depth map D,y; is just an entrance of the ray and

76 Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction

(@ (b)

(c) (@

Figure 6: A comparison between particle classification results gen-
erated by isotropic and anisotropic kernel function. (a) Classifica-
tion results by anisotropic function. (b) Surfaces reconstructed by
anisotropic function. (c) Classification results by isotropic function.
(d) Surfaces reconstructed by isotropic function.

maybe far from x;;, especially in those areas penetrated by the ray.
Secondly, screen space filtering can be affected by camera distance.
When particles are too close to the camera, noticeable spherical
artifacts will be difficult to be smoothed by a tolerable filter radius.

To solve the above two problems of screen space normals, we
also estimate the normal Ng.b" et

cles in object space.

by searching for neighbor parti-

Ngbjlfcl _ normalize (ZVW (Xl] —Xk7r)> 5 (1 1)
k

where x;, is the position of the neighbor particles centered at the iso-
surface position x;;. And Ngb’ " is only used to correct , S0
only a small search radius is needed without a large performance
overhead.

Screen

For the two problems, we design two corresponding adaptive
weights wy and w; to blend NI,SJ,Creen and Ngb ject,

wy ZAHXij—pij ; (12)

wy = eR; (13)
w:min(W1W2,1); (14)

Nij = wNOPel 4 (1= w)N™", (15)

where A and B are the factors to adjust these two weights respec-

Cam Break Cam Break Still Water
1024x1024 1920x1920 1920x1920
Full Resolution 8.98ms 19.80ms 17.47ms
Half Resolution 5.91ms 15.29ms 6.31ms
Quarter Resolution 4.11ms 10.78ms 5.38ms
Adaptive Resolutionn 5.10ms 13.42ms 4.55ms

Table 1: A performance comparison between different ray casting
resolutions.

tively. And R;; is the screen-space size of the particle in the pixel(i,

i), which can be derived from eye-space depth value zl(jEy *) with the
parameters of the camera:

hd , (16)

fi= tan(o/2)

2|(Eve)

Z’I

where h is the vertical resolution of the screen, d is particle’s size
in object space and o is the camera’s field of view angle. With our
adaptive normal blending weight, we can correct the position mis-
match and close particle spherical artifacts while obtaining smooth
surface reconstruction results at a small cost.

5. Experimental Results

Our adaptive reconstruction method is implemented on a PC with a
NVIDIA GeForce RTX 2070 GPU. The movements of particles are
generated by the algorithm presented in [MM13], whose overhead
is not included in the performance results in our experiments.

In order to prove that our adaptive mechanism has the ability to
skip large empty space, we compared our method with [XZY17].
Figure 5 illustrates marching step counts required by [XZY17] and
our method. It can be seen that [XZY17] (Figure 5(b)) needs more
steps than our methods (Figure 5(c) and 5(d)), especially in the
regions covered by splashes. The average number of steps are also
illustrated at the right-down corn of each image. And these data
suggest that our method can reduce the number of marching steps
by 50%.

To demonstrate the necessity of using anisotropic kernel function
to compute density in the process of classifying particles, we com-
pare the classification and reconstruction results of isotropic and
anisotropic kernel function in Figure 6. It can be seen from Fig-
ure 6(a) and 6(c), the anisotropic kernel function produces much
better classification results than isotropic function. If the outermost
particles of the fluid surfaces are not identified as aggregates, D,
will be generated by aggregated particles from below the surface.
It means a wrong skip position will be provided for ray march-
ing. Figure 6(b) and 6(d) illustrate the iso-surfaces extracted by
anisotropic and isotropic kernel function respectively. It can be seen
from Figure 6(d), the regions marked by red boxes present some er-
ror reconstruction results.

In addition to reducing the number of steps per ray, we also cast

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction 77

(a) Full Resolution (b) Half Resolution

(c) Quarter Resolution (d) Adaptive Resolution

Figure 7: A comparison between the reconstruction quality under different ray casting resolution.

(a) Narrow range Filter[TY 18]

(b) the method of Xiao et al.[XZY17]

(c) Our Method

Figure 8: Comparison between reconstruction quality.

fewer rays in the screen areas covered by flat fluid surfaces. Un-
like simply reducing the entire resolution (Figure 7(b) and 7(c)),
our adaptive method can achieve a better balance between perfor-
mance and quality. As illustrated in Table 1, the performance of our
method is similar to half resolution, but it achieves almost the same
reconstruction quality as full-resolution.

In order to test the reconstruction quality of our adaptive normal
blending method, we compare our algorithm with narrow range fil-
ter method[TY 18] and the method of Xiao et al.[XZY17]. As il-
lustrated in Figure 8, [TY 18] produces fairly smooth surfaces for
particles not close to the eye. But for the particles close to eye, the
surfaces reconstructed by [TY18] present bumpy artifacts because

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

these areas need a quite big smoothing kernel size which is unbear-
able for real-time application. [XZY17] can obtain more natural
droplet details. But it needs more computations to smooth the nor-
mal vectors in object space. Our method is capable of achieving
smooth fluid surfaces while keeping the overhead in an acceptable
level.

Finally, we present the rendering results of our method for dif-
ferent scenarios. Figure 9 shows an image sequence of a dam break
scenario with lots of splashes. It can be seen that our algorithm can
produce smooth fluid surfaces while preserving a lot of very de-
tailed splashes and sharp corners. The average reconstruction time
for this scene is about 16ms per frame for 912k particles. More sce-

78 Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction

(a) Melting chocolate (b) Waves with lots of splashes

(d) Crown-like splashes

(c) Spring

Figure 10: Our algorithm is applicable for different kinds of fluids.

Stanford Dragon Double Cam Break Surfing

Number of Particles 912k 636k 443k
Generate Density Mask 0.031 0.011 0.023
Draw high-density Particles 2.122 1.572 1.025
Draw low-density Particles 0.225 0.432 0.106
Smooth Depth Map 3.047 3.415 3.512
Genrate Screen Space Noraml 0.059 0.040 0.064
Evaluate Tiles 0.038 0.032 0.033
Ray marching 10.766 12.333 7.560
total 16.318 17.835 12.323

Table 2: Computation time (ms) for each pass in different scenes
for fluid surface reconstruction.

narios with step-by-step calculation times can be found in Table 2.
In order to prove that our algorithm is applicable for different kind
of fluids, Figure 10 demonstrates four different scenes rendered by
our algorithm, including the viscous chocolate pulling details (Fig-
ure 10(a)), waves with lots of splashes (Figure 10(b)), spring water
(Figure 10(c)) and crown-like splashes (Figure 10(d)).

6. Conclusions

In this paper, we present a set of adaptive mechanisms to recon-
struct hight-quality fluid surfaces in real-time. In order to reduce
the number of steps required for each ray, we propose to use adap-
tive step lengths computing from a binary density grid and offer
an approximate exit obtained by classifying out aggregated parti-
cles. We also try to reduce the number ray cast by employing an
adaptive resolution. In addition to addressing the performance is-
sue, an adaptive normal blending method is proposed to improve
the reconstruction quality.

In the future, we will also explore more potential approaches
about adaptive step lengths, such as adjusting the step lengths ac-
cording to the density of the previous step. On the other hand, our
binary density grid might be based on the view frustum and also
be used to estimate the refraction and absorption of the ray in the
fluid.

7. Acknowledgement

This work was supported by the National Key Project of China
(Project Number GJXM92579) and National Natural Science
Foundation of China (Project Number 61972271).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Tong Wu et al. / A Real-Time Adaptive Ray Marching Method for Particle-Based Fluid Surface Reconstruction

References

[AIA*12] AKINCI, NADIR, IHMSEN, MARKUS, AKINCI, GIZEM, et al.
“Versatile rigid-fluid coupling for incompressible SPH”. ACM Transac-
tions on Graphics (TOG) 31.4 (2012), 1-8 2.

[APKG07] ADAMS, BART, PAULY, MARK, KEISER, RICHARD, and
GUIBAS, LEONIDAS J. “Adaptively sampled particle fluids”. ACM SIG-
GRAPH 2007 papers. 2007, 48—es 2.

[BK15] BENDER, JAN and KOSCHIER, DAN. “Divergence-free smoothed
particle hydrodynamics”. Proceedings of the 14th ACM SIG-
GRAPH/Eurographics symposium on computer animation. 2015, 147—
1552.

[BIi82] BLINN, JAMES F. “A generalization of algebraic surface drawing”.
ACM transactions on graphics (TOG) 1.3 (1982), 235-256 2.

[BSS*18] BIEDERT, TIM, SOHNS, J-T, SCHRODER, SIMON, et al. “Di-
rect raytracing of particle-based fluid surfaces using anisotropic kernels”.
Proceedings of the Symposium on Parallel Graphics and Visualization.
2018, 1-12 2.

[DG96] DESBRUN, MATHIEU and GASCUEL, MARIE-PAULE.
“Smoothed particles: A new paradigm for animating highly de-
formable bodies”. Computer Animation and Simulation’96. Springer,
1996, 61-76 1.

[Grel0] GREEN, SIMON. “Screen space fluid rendering for games”. Pro-
ceedings for the Game Developers Conference. Moscone Center San
Francisco, CA. 2010 1, 2.

[IKM16] IMAIL, TAKUYA, KANAMORI, YOSHIHIRO, and MITANI, JUN.
“Real-time screen-space liquid rendering with complex refractions”.
Computer Animation and Virtual Worlds 27.3-4 (2016), 425-434 1, 3.

[KC03] KOREN, YEHUDA and CARMEL, LIRAN. “Visualization of la-
beled data using linear transformations”. I[EEE Symposium on Informa-
tion Visualization 2003 (IEEE Cat. No. 03TH8714). IEEE. 2003, 121-
128 5.

[KS14] KANG, NAHYUP and SAGONG, DONGHOON. “Incompressible
SPH using the divergence-free condition”. Computer graphics forum.
Vol. 33. 7. Wiley Online Library. 2014, 219-228 2.

[MM13] MACKLIN, MILES and MULLER, MATTHIAS. “Position Based
Fluids”. ACM Trans. Graph. 32.4 (July 2013). 1SSN: 0730-0301. DOI:
10.1145/2461912.2461984. URL: https://doi.org/10.
1145/2461912.2461984 2,6.

[MSDO7] MULLER, MATTHIAS, SCHIRM, SIMON, and DUTHALER,
STEPHAN. “Screen space meshes”. Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 2007, 9—
151, 2.

[RCSW14] REICHL, FLORIAN, CHAJDAS, MATTHAUS G, SCHNEIDER,
JENS, and WESTERMANN, RUDIGER. “Interactive Rendering of Giga-
Particle Fluid Simulations.” High Performance Graphics. Citeseer.
2014, 105-116 2.

[TY18] TRUONG, NGHIA and YUKSEL, CEM. “A narrow-range filter for
screen-space fluid rendering”. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1.1 (2018), 1-151, 2, 7.

[vdLGS09] Van der LAAN, WLADIMIR J, GREEN, SIMON, and SAINZ,
MIGUEL. “Screen space fluid rendering with curvature flow”. Proceed-
ings of the 2009 symposium on Interactive 3D graphics and games.
2009, 91-98 1, 2.

[XZY17] X1A0, XIANGYUN, ZHANG, SHUAI, and YANG, XUBO. “Real-
time high-quality surface rendering for large scale particle-based fluids”.
Proceedings of the 21st ACM siggraph symposium on interactive 3D
graphics and games. 2017, 1-8 1-7.

[YT13] Yu, JIHUN and TURK, GREG. “Reconstructing surfaces of
particle-based fluids using anisotropic kernels”. ACM Transactions on
Graphics (TOG) 32.1 (2013), 1-12 2, 5.

[ZB05] ZHU, YONGNING and BRIDSON, ROBERT. “Animating sand as a
fluid”. ACM Transactions on Graphics (TOG) 24.3 (2005), 965-972 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

79

https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2461912.2461984

