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Figure 1: Given a set of images captured in front of a scene using a handheld camera, Neural 4D Light Field (NeuLF) uses an implicit
neural representation to learn the mapping from rays to color values. With the learned model, novel views can be synthesized by predicting
the color of each ray. Moreover, with our framework, auto-refocus effect can be inherently generated.

Abstract

In this paper, we present an efficient and robust deep learning solution for novel view synthesis of complex scenes. In our
approach, a 3D scene is represented as a light field, i.e., a set of rays, each of which has a corresponding color when reaching
the image plane. For efficient novel view rendering, we adopt a two-plane parameterization of the light field, where each ray is
characterized by a 4D parameter. We then formulate the light field as a function that indexes rays to corresponding color values.
We train a deep fully connected network to optimize this implicit function and memorize the 3D scene. Then, the scene-specific
model is used to synthesize novel views. Different from previous light field approaches which require dense view sampling to
reliably render novel views, our method can render novel views by sampling rays and querying the color for each ray from
the network directly, thus enabling high-quality light field rendering with a sparser set of training images. Per-ray depth can
be optionally predicted by the network, thus enabling applications such as auto refocus. Our novel view synthesis results are
comparable to the state-of-the-arts, and even superior in some challenging scenes with refraction and reflection. We achieve
this while maintaining an interactive frame rate and a small memory footprint.
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1. Introduction

Novel view synthesis has long been studied by the computer vi-
sion and computer graphics community. It has many applica-
tions in multimedia, AR/VR, gaming, etc. Traditional computer vi-
sion approaches such as multi-view stereo (MVS) and structure-
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from-motion (SfM) aim to build a geometric representation of
the scene first. An alternative approach is image-based rendering
[LH96,GGSC96,BBM™*01], where no underlying geometric model
or only a simple proxy is needed. These methods can achieve pho-
torealistic rendering. However, a typical light field setup prefers a
dense sampling of views around a scene, which limits practical use
of such methods.

Thanks to the recent advancement of neural rendering [TFT*20],

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://doi.org/10.2312/sr.20221156

60 Zhong Li & Liangchen Song & Celong Liu & Junsong Yuan & Yi Xu / NeuLF: Efficient Novel View Synthesis with Neural 4D Light Field

photorealistic rendering with only a sparse set of inputs can be
achieved. One approach is to use an explicit geometric represen-
tation of a scene reconstructed using a traditional computer vision
pipeline and learning-based rendering. Object-specific or category-
specific meshes or multi-plane images (MPI) [ZTF* 18] can be used
as the representation. However, these explicit representations do
not allow a network to learn the optimal representation of the scene.
To achieve this, volume-based representations can be used [?]. But
they typically require a large amount of memory space, especially
for complex scenes.

Memory-efficient implicit representations have gained interests
from the research community. For example, surface-based implicit
representations can achieve state-of-the-art results and can pro-
vide a high-quality reconstruction of the scene geometry [KJJ*21].
However, surface-based representations face challenges when deal-
ing with complex lighting and geometry, such as transparency,
translucency, and thin geometric structures. More recently, volume-
based implicit representation achieves remarkable rendering results
(e.g., NeRF [MST*20]) and inspires follow-up research. One draw-
back of NeRF, nevertheless, is the time complexity of rendering.
NeREF, in its original form, needs to query the network multiple
times per ray and accumulate color and density along the query
ray, which prohibits real-time applications. Although there have
been many efforts to accelerate NeRF, they typically require depth
proxy to train or rely on additional storage to achieve faster render-
ing [HSM*21, YLT*21,RPLG21].

We propose an efficient novel view synthesis framework, which
we call Neural 4D Light Field (NeuLF). We define a scene as an im-
plicit function that maps 4D light field rays to corresponding color
values directly. This function can be implemented as a Multilayer
Perceptron (MLP) and can be composed using only a sparse set
of calibrated images placed in front of the scene. This formula-
tion allows the color of a camera ray to be learned directly by the
network and does not require a time-consuming ray-marcher dur-
ing rendering as in NeRF. Thus, NeuLF achieves hundreds times
speedup over NeRF during inference, while producing similar or
even better rendering quality. Our light field setup limits the novel
viewpoints to be on the same side of the cameras, e.g., front views
only. Despite these constraints, we argue that for many applica-
tions such as teleconferencing, these are reasonable trade-offs to
gain much faster inference speed with high-quality rendering and a
small memory footprint.

Comparison with NeRF: Although our work is inspired by
NeRF [MST*20], there are some key distinctions. NeRF represents
the continuous scene function as a 5D radiance field. Such a rep-
resentation bring redundancy, i.e., color along a ray is constant in
free space. By restricting the novel viewpoints to be outside of the
convex hull of the object, the 5D radiance field can be reduced to
a light field in a lower dimension, e.g. 4D. Table 1 summarizes the
differences between NeRF and NeuLF.

Moreover, NeuLF can also optionally estimate per ray depth by
enforcing multi-view and depth consistency. Leveraging the depth
information, applications such as auto refocus can be enabled. We
show state-of-the-art novel view synthesis results on benchmark
datasets and our own captured data (Fig. 1). The comparisons with

Table 1: The comparisons between our proposed NeulF and
NeRF [MST*20].

NeRF NeuLF
Input 5D 4D
Output radiance, density color
Viewpoint range 360° front views
Rendering method raymarching direct evalution
Rendering speed slow fast
Memory consumption small small
High-quality rendering yes yes

existing approaches also validate the efficiency and effectiveness of
our proposed method. In summary, our contributions are:

e We proposed a fast and memory-efficient novel view synthesis
pipeline, which solves the mapping from 4D rays to colors di-
rectly.

e Compared with the state-of-the-arts, our method is better than
NeRF [MST*20] and NeX [WPYS21] when the scene contains
challenging refraction and reflection effects. In addition, our
method only needs 25% of the original input on those challenge
scenes to achieve a similar or even better quality.

e Application wise, the framework we proposed can optionally es-
timate depth per ray; thus enabling applications such as 3D re-
construction and auto refocus.

2. Related Work

Our work builds upon previous work in traditional image-based
rendering and implicit-function-based neural scene representation.
In the following sections, we will review these fields and beyond in
detail.

Image-based Rendering: For novel view synthesis, image-
based rendering has been studied as an alternative to geomet-
ric methods. In the seminal work of light field rendering [LH96,
GGSC96], a 5D radiance field is reduced to a 4D light field con-
sidering the radiance along a ray remains constant in free space
[SRF*21,FV21,SESM22, AHZ*22]. The ray set in a light field can
be parameterized in different ways, among which two-plane param-
eterization is the most common one. Rendering novel views from
the light field involves extracting corresponding 2D slices from the
4D light field. To achieve better view interpolation, approximate
geometry can be used [GGSC96,BBM*01, WAA*00,ZLY *17]. Vi-
sual effects of variable focus and variable depth-of-field can also be
achieved using light field [IMGOO].

With the advancement of deep learning, a few learning-based
methods have been proposed to improve the traditional light field.
For example, LFGAN [CRL20] can learn texture and geometry in-
formation from light field data sets and in turn predict a small light
field from one RGB image. Meng et al. [MWLL20] enables high-
quality reconstruction of a light field by learning the geometric fea-
tures hierarchically using a residual network. [WLFC21] integrates
an anti-aliasing module in a network to reduce the artifacts in the
reconstructed light field. Our method learns an implicit function
of the light field and achieves high-quality reconstruction with a
sparse input.
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Figure 2: An overview of the Neural 4D Light Field (NeuLF). For a set of sampled rays from training images, their 4D coordinates and the
corresponding color values can be obtained. The input for NeuLF is the 4D coordinate of a ray (query) and the output is its RGB color and
scene depth. By optimizing the differences between the predicted colors and ground-truth colors, NeuLF can faithfully learn the mapping
between a 4D coordinate that characterizes the ray and its color. We also build a depth branch to let the network learn the per ray scene

depth by self-supervised losses Lmp and L.

Neural Scene Representation: Neural rendering is an emerging
field. One of the most important applications of neural rendering is
novel view synthesis. A comprehensive survey of the topic can be
found in [TFT*20].

An explicit geometric model can be used as the representation
of a scene. [RK20] creates a proxy geometry of the scene us-
ing SfM and MVS. Then, a recurrent encoder-decoder network
is used to synthesize new views from nearby views. To improve
blending on imperfect meshes from MVS, [HPP*18] uses pre-
dicted weights from a network to perform blending. A high-quality
parameterized mesh of the human body [ZFT*21] and category-
specific mesh reconstruction [KTEM18] can also be used as the
proxy. Recently, Multi-plane Image (MPI) [ZTF*18] has gained
popularity. [ZTF*18] learns to predict MPIs from stereo images.
The range of novel views is later improved by [STB*19]. [FBD*19]
uses learned gradient descent to generate an MPI from a set of
sparse inputs. [MSOC™19] uses an MPI representation for turning
each sampled view into a local light field. NeX [WPYS21] repre-
sents each pixel of an MPI with a linear combination of basis func-
tions and achieves state-of-the-art rendering results in real-time.
MPI representation might typically lead to stack-of-cards artifacts.
Both NeX and NeuLF compute ray-plane intersections. However,
NeX is a volumetric rendering method that integrates at multiple
intersections on the planes, which are used to store information of
the scene. NeuLF is a light field representation that uses the coor-
dinates of ray-plane intersections as an input to mapping a color
value. [STH*19] trains a network to reconstruct both the geometry
and appearance of a scene on a 3D grid. For dynamic scenes, Neural
Volumes (NV) [?] uses an encoder-decoder network to convert in-
put images into a 3D volume representation. [LSS*21] extends NV
using a mixture of volumetric primitives to achieve better and faster
rendering. While volume-based representations allow for learning
the 3D structure, they require large memory space, especially for
large scenes.

Implicit-function-based approaches provide memory-efficient
alternatives to explicit representations, while still allowing learning
the 3D structure of the scene. Implicit representations can be cat-
egorized as implicit surface-based and implicit volume-based ap-
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proaches. SRN [SZW19] maps 3D coordinates to a local feature
embedding at these coordinates. Then, a trained ray-marcher and
a pixel generator are used to render novel views. IDR [YKM*20]
uses an implicit Signed Distance Function (SDF) to model an ob-
ject on 3D surface reconstruction. Neural Lumigraph [KJJ*21] pro-
vides even better rendering quality by utilizing a sinusoidal repre-
sentation network (SIREN) to model the SDF.

Our work is inspired by NeRF [MST*20], which uses a network
to map continuous 5D coordinates (location and view direction)
to volume density and view-dependent radiance. Recent works
have extended NeRF to support novel illumination conditions
[SDZ*21], rendering from unstructured image collections from the
internet [MBRS*21], large-scale unbounded scenes [ZRSK20], un-
known camera parameters [WWX*21], anti-aliasing [BMT*21],
deformable models [PSB*21], dynamic scenes [?], etc. A lot of ef-
fort has been put into speeding up rendering with NeRF. DONeRF
[NSP*21] places samples around scene surfaces by predicting sam-
ple locations along each ray. However, transparent objects will pose
issues and it requires ground-truth depth for training. FastNeRF
[GKJ*21] achieves 200fps by factoring NeRF into a position-
dependent network and a view-dependent network. This allows
efficient caching of network outputs during rendering. [YLT*21]
trains a NeRF-SH network, which maps coordinates to spherical
harmonic coefficients and pre-samples the NeRF-SH into a sparse
voxel-based octree structure. These pre-sampling approaches sac-
rifice additional memory storage for speedups. NSVF [LGL*20]
represents a scene using a set of NeRF-like implicit fields defined
on voxels and uses a sparse octree to achieve 10x speedup over
NeRF during rendering. KiloNeRF [RPLG21] decomposes a scene
into a grid of voxels and uses a smaller NeRF for each voxel. Stor-
age costs will increase when more networks are used. Using Au-
tolnt [LMW?21], calculations of any definite integral can be done
in two network evaluations; this achieves 10x acceleration, but ren-
dering quality is decreased. Compared with these approaches, our
method achieves hundreds times speedup over NeRF by represent-
ing the scene with an implicit 4D light field without any additional
pre-sampling or storage overhead.

Recently LEN [SRF*21] propose to use a network to direct
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regress the mapping from the 6D Pliicker coordinates to colors.
It leverages meta-learning to enables view synthesis using a sin-
gle image observation in ShapeNet dataset [CFG*15]. In contrast,
we use 4D representation and conduct extensive experiments on
real-world scenes. A concurrent work [FV21] transforms 4D light
field representation by leveraging Gegenbauer polynomials basis,
and learns the mapping from this basis function to color. However,
it requires dense narrow baseline input with planar camera arrange-
ment. LENR [SESM22] introduces a two-stage transformer-based
model that maps the 4D representation ray to color. They produce
reference view features along the epipolar lines, then align features
cross views to produce the ray color. They achieve the state-of-
the-art results on the various datasets. However, their transformer-
based two-stage network is computationally expensive in its current
form.

3. Our Method

In Fig. 2, we illustrate the pipeline of our system. In the following
sections, we will first briefly discuss the light field, followed by our
NeuLF representation and the proposed loss functions. We will also
discuss our training strategies.

3.1. 4D Light Field Representation

All possible light rays in a space can be described by a 5D plenop-
tic function. Since radiance along a ray is constant if viewed from
outside of the convex hull of the scene, this 5D function can be
reduced to a 4D light field [LH96, GGSC96]. The most common
parameterization is a two-plane model shown in Fig. 3. Each ray
from the camera to the scene will intersect with the two planes.
Thus, we can represent each ray using the coordinates of the in-
tersections, (u,v) and (s,t), or simply a 4D coordinate (u,v,s,t).
Using this representation, all rays from the object to one side of the
two planes can be uniquely determined by a 4D coordinate.

Based on this representation, rendering a novel view can be done
by querying all the rays from the center of projection to every pixel
on the camera’s image plane. We denote them as {R{,R»,....,Rn},
where N is the total number of pixels. Then, for the i-th ray R;,
we can obtain its 4D coordinate (;,v;,s;,#;) by computing its inter-
sections with the two planes. If a function f maps the continuous
4D coordinates to color values, we can obtain the color of R; by

(s1,t1)

.
(52,t2)

u

Figure 3: The 4D light field representation. Each ray is character-
ized by 4 parameters (u,v) and (s,t), which uniquely locate the ray.

evaluating the function f(u;,v;,s;,t;). In the next section, we will
introduce Neural 4D Light Field (NeuLF) for reconstructing this
mapping function f.

3.2. Neural 4D Light Field Reconstruction

We formulate the mapping function f. as a Multilayer Perceptron
(MLP). The input of this MLP is a 4D coordinate and the output is
RGB color. As shown in Fig. 2, the goal of the network is to learn
the mapping function from training data.

Training Data: for a given scene, the training data come
from a set of captured images {I;,b,...,Iyr}, where M is the to-
tal number of images. Assuming the camera pose for each im-
age is known or obtainable, for each image [(k = 1,...,M),
we can traverse its pixels and generate all corresponding rays
{RY. RS, ...7R5‘Vk }, where N is the total number of pixels in the k-th
image. Based on the 4D light field representation, all 4D coordi-

k k k .k ko k  k k
nates {(ul,vl ,sl,tl) sy (uNk,ka,st,tNk) } J(k=1,..,M), can
be obtained. On the other hand, the color for each pixel is known
from the input images. To this end, we have constructed a col-

lection of sample mappings from 4D coordinates to color values

(uf»‘,vfﬂsﬁt{‘) — K (k=1..M,i = 1...Ny), where ¢} is the color

of the i-th pixel on the k-th image. By feeding this training data to
the MLP network, the parameters ® can be learned by minimizing
the following photometric loss L:

M N

=YY D
k=1i=1

Kk k ok ok k
ft'(”iy"i:sivti|®>_ci 5

In Fig. 2, we demonstrate an example of capturing images to
train our neural 4D light field representation with a set of unstruc-
tured front-faced camera views. In this example, the cameras are
placed on one side of the two light slabs.

Rendering: Given a viewpoint V), we can render a novel view
R (V) by evaluating the learned mapping function f. With the cam-
era pose and the desired rendering resolution {WV,H V}, we sam-
ple all rays {RY ,RY , ...,R%v }, where Ny, = WY x HY is the num-
ber of pixels to be rendered. We can further calculate the 4D coor-
dinates { (u}},v}}7s2),t,y) } for each ray RY, (i = 1...Ny)). We then
formulate the rendering process R as Ny, evaluations of the map-
ping function fe:

R(V) = {fc (u,-‘ﬂv}’,s}’,t)ﬂ@) = 1,...,NV}. @)

3.3. Scene Depth Estimation

To simulate variable focus and variable depth-of-field using light
field, previous work [IMGOO] dynamically reparameterizes the
light field by manually moving the focal surface as a plane. To opti-
mally and automatically select a focal plane given a pixel location,
we aim to solve the scene geometry under Lambertian scene as-
sumption.

© 2022 The Author(s)
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Figure 4: Given the 4D query ray (u v s i ) (red line) and its
predicted depth Zl , We compute its corresponding rays (green line)
to its nearest camera views Cj, which are used for self-supervision.

We let the same MLP predict per-ray depth as shown in Fig. 2.
As in Fig. 4, for a 4D query ray (u vk sk t; ) from the camera
Cy., the predicted scene depth is Z¥ = fd(uk vk sk, 15| @) where f;
is the network that maps from 4D coordinates to depth. We com-
pute ray-surface intersection (Xlk 7Yik,Zlk). Then, we self-supervise
Zlk by applying multi-view consistency cues. To achieve this, we
trace the rays from (X vk Zk) back to Cy’s K-nearest data cameras

[AR A Ay )
{C;},(j =1,...,K) (K=5 in our experiments). Those rays intersect
uv-st planes and can be parameterized as: {u;

ki ki ki ki
1 l ’ l ’ l }

Ray-plane intersection is differentiable. We thus propose two
loss functions Lp and £, to minimize the multi-view photometric
error and depth differences respectively as follows:

fe(dbsfdle)—ckzh| o

M N
Lup =Y Z’
k=1i=1
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a2 . . .
“— is the normalized weights with the Eu-

Lo

clidean distance betwegn the camera i and its neighbor camera j
as dj. CK(Z5) and D (Z¥) are the color and depth summed over
weighted nearest data cameras. Training with both £, and £; will
encourage the MLP to learn the depth representation of the scene.

where o(i, j) =

With ray-based depth, we can enable efficient auto-refocus effect
by adopting a dynamic parameterization of the light field [IMGO00].
More specifically, we simulate the depth-of-field effect by combin-
ing rays within an given aperture size. Fig. 5 shows the case of two
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Figure 5: Auto-refocus illustration. Reconstruct two rays ry and
ry by combining ray’s within their aperture A. When focal plane
correspond to ry’s depth Py, the r1 will appears in focus, while r
will not.

rays r1 and r,. The two rays intersect camera image plane at pixels
p1 and po, intersect the scene geometry at P; and P, and intersect
a given focal plane F> at P and Pj. To reconstruct the final color of
the pixels p; and p;, we collect a cone of sample rays originated
from P; and Pﬁ on the focal plane F, within an aperture A. We then
query the network f to obtain the ray colors. These ray colors are
weighted-averaged to produce the final pixel color. In this case, P
is on the surface of the object, while Pé is not. Thus, the image
pixel p; appears in focus, while pixel p; is blurred since it com-
bines colors from a small area around the actual surface point P,.

To auto-refocus at pixel location p,, we extract its depth by query
the depth network, and set a new focal plane F] at pixel p,’s depth.
Rendering the NeuLF with this new focal plane will make pixel p,
in focus while blurring pixel p1.The results are shown in Fig. 6.

Predicted Depth Focus near Focns far
w "

Figure 6: Depth estimation results and refocus effects. We show a
novel view and its corresponding depth estimation. In addition, we
show two auto-refocus results with focus set on the red “x” (near)
and on the green “x” (far) given by a user click.

lynthesls View
f :




64 Zhong Li & Liangchen Song & Celong Liu & Junsong Yuan & Yi Xu / NeuLF: Efficient Novel View Synthesis with Neural 4D Light Field

4. Experimental Results

We first discuss the implementation details of NeuLF. Then we per-
form quantitative and qualitative evaluations against state-of-the-art
methods for novel view synthesis.

4.1. Implementation Details

We train the MLP on the following overall loss function:

L= Lp+AsLamp+ALa, )

where the weighting coefficients are A; = 0.5 and A = 0.1. These
parameters are fine-tuned by mixing the manual tuning and grid
search tuning. This set of parameters works best for most of the
scenes we tested. For scenes with strong view-dependent effects
such as specularities, Lambertian assumption is no longer valid.
Therefore, we disable the multi-view photometric error and depth
difference terms in the loss for such scenes. Grid search can be
used to automatically find optimal parameters for a specific scene
but will lead to a longer training time.

To extract camera rays from input photos, we calibrate the cam-
era poses and intrinsic parameters using a structure-from-motion
tool from COLMAP [SF16]. During training, we randomly select
a batch of camera rays from the training set at each iteration. By
passing them to the MLP to predict the color of each ray, we calcu-
late the loss and back-propagate the error.

The input 4D coordinate (u,v,s,7) (normalized to [—1,1]) is
passed through 20 fully-connected ReLU layers, each with 256
channels. Our structure includes a skip connection that concate-
nates the input 4D coordinate to every 4 layers start with the fifth
layer. An additional layer outputs 256-dimensional feature vector.
This feature vector is split into the color branch and depth branch.
Each branch is followed with an additional fully-connected ReLU
layer with 128 channels, and outputs 3 channel RGB radiance with
sigmoid activation and 1 channel scene depth with sigmoid activa-
tion, respectively. For model training, we set the ray batch size in
each iteration to 8,192. We train the MLP for 1,500 epochs using
the Adam optimizer [KB14]. The initial learning rate is 5 X 107*
and decays by 0.995 every epoch. To train the NeuLF on a scene
with 30 input images with a resolution of 567 x 1008, it takes 5
hours using 1 Nvidia RTX 3090 card. For testing on the same sit-
uation, rendering an image costs about 70ms while NeRF takes 51
seconds.

4.2. Comparison with State-of-the-Art Methods

In this section, we demonstrate qualitative results of novel view
synthesis and compare them with current top-performing ap-
proaches: NeRF [MST*20] and NeX [WPYS21] as well as the
baseline light field rendering method [LH96]. We evaluate the mod-
els on the shinny dataset [WPYS21]. In this dataset, each scene
is captured by a handheld smartphone in a forward-facing manner
with a resolution 567 x 1008 or 756 x 1008. This is a challeng-
ing dataset that contains complex scene geometry and various chal-
lenging view-dependent effects. (e.g.,, refraction through the test
tubes filled with liquid and magnifier, rainbow effect emitted by a

CD disk, and sharp specular highlights from silverware and thick
glasses.)

We hold out % of each scene as the test set and use the rest of
them as the training set. The qualitative results are shown in Fig. 7.
The leftmost column shows our results on the test view of three
challenging scenes (Lab, CD, and Tools). We have zoomed in on
parts of the image areas for comparison with other methods. Our
method is superior when a scene contains detailed refraction and
reflection. In the Lab scene, the metal frames behind the tubes are
faithfully recovered by our methods. In the CD scene, our result
produce more sharp and vivid detail on the rainbow, and less noise
on the liquid bottle than NeX and NeRF. In the Tools scene, al-
though our result is not as sharp as the ground truth, it contains
more overall details than NeX and NeRF and is able to recover
metallic reflection with less noise than others. Our method essen-
tially relies on ray interpolation rather than volumetric rendering
like NeRF/NeX. We believe the traditional ray interpolation han-
dles refraction and reflection better than volumetric representation.

The baseline Light Field rendering (last column) exhibits good
results when rays are sufficiently sampled (magnifier). However,
it exhibits aliasing and misalignment artifacts in the low sampling
area (metallic, tube).

We report three metrics: PSNR (Peak Signal-to-Noise Ratio,
higher is better), SSIM (Structural Similarity Index Measure,
higher is better), and LPIPS (learned perceptual Image Patch Sim-
ilarity, lower is better) to evaluate our test results. In Tab 2, we
report the three metrics for the 8 scenes in the shinny dataset. We
use the NeX and NeRF scores originally reported in the NeX pa-
per. For each scene, we calculate the scores by averaging across
the views in the test split. Our method produces the highest score
across all three metrics on CD and Lab scenes which contain chal-
lenging refraction and reflection. For the rest scenes, while NeX
has the highest score by producing high-frequency details in the
richly-textured area, we generate comparable scores as NeRF. Note
that our rendering speed is hundreds times faster than NeRF.

4.3. Ablation Study

To demonstrate the effectiveness of our proposed multi-view and
depth regularization terms(MVDL), we use two mostly Lamber-
tian scenes the columns and the tribe, which contain complex local
details, for ablation studies. We demonstrate how the multi-view
and depth loss Ly and L affect the quality of synthesized views.
We also compare the model trained with and without our proposed
regularization terms. As shown in Tab. 8 and Fig. 3, our model with
multi-view and depth regularization improves the results both qual-
itatively and quantitatively in both scenes, of which more details
can be reconstructed. For Lambertian scenes, the network trained
with multi-view and depth consistency constraints takes the scene
geometry into account. Hence the results in unseen views are more
reasonable and detail preserved.

4.4. Study on Number of Inputs

To understand how the number of input views affect the novel view
synthesis result, we train our model on fewer images. As shown in
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Figure 7: Qualitative Results on test views from shinny dataset. Our method captures more details on the reflection and refraction areas of

the scenes.

Table 2: Average scores across test views for each scene in the shinny dataset.

PSNR? SSIM? LPIPS|

Baseline NeX NeRF Ours | Baseline NeX NeRF Ours | Baseline NeX NeRF Ours
Lab 21.69 3043 29.60 31.95| 0.693 0.949 0936 0.951| 0.261 0.146 0.182 0.097
CD 20.70 31.43 30.14 32.11| 0.551 0.958 0937 0.964 | 0.294 0.129 0.206 0.123
Giants 16.20 26.00 24.86 24.95| 0.265 0.898 0.844 0.839| 0.274 0.147 0.270 0.299
Tools 16.19 28.16 27.54 26.73| 0.575 0.953 0.938 0.896| 0.250 0.151 0.204 0.167
Food 14.57 23.68 23.32 22.61| 0297 0.832 0.796 0.776 | 0.341 0.203 0.308 0.322
Pasta 12.50 22.07 21.23 20.64| 0.216 0.844 0.789 0.715| 0.271 0.211 0.311 0.283
Seasoning | 17.31 28.60 27.79 27.12| 0.412 0928 0.898 0.881| 0.279 0.168 0.276 0.263
Crest 1591 21.23 20.30 20.11| 0.209 0.757 0.670 0.653| 0.304 0.162 0.315 0.410

Fig 9, we use 75%, 50%, and 25% of the original data for the exper-
iment. Although the input images are dramatically decreased, our
method still generates high-quality results, which retain the rain-
bow and background reflections, and the refraction details through
the test tube. In Tab 4, note that even with less input images for
CD and Lab scenes, our results are still comparable with or even

© 2022 The Author(s)
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better than NeRF and NeX with full number of inputs in the above
challenging scenes.

4.5. Applications

As applications of NeuLF, we show results of depth estimation and
automatic refocusing.
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NeuLF w/o reg

NeuLF with reg

Figure 8: Ablation study. We show results of NeuLF trained with
and without multi-view and depth regularization on two Lamber-
tian scenes. The last column shows the close-up comparison of the
two scenes.

Table 3: A quantitative comparison of NeuLF trained with and
without MVDL. The scores are computed cross test views of Tribe
and Column scene.

PSNRT SSIMT LPIPS]
w/o MVDL w MVDL | w/o MVDL w MVDL | w/o MVDL w/ MVDL
Tribe 25.62 26.93 0.788 0.830 0.232 0.219
column|  28.58 29.20 0.838 0.847 0.227 0.211

Table 4: Impacts from the number of inputs. We input different num-
bers of images to evaluate the performance of our model.

method #Images PSNR 1 SSIM 1 LPIPS |
CD 75% Ours 230 31.81 0959  0.126
CD 50% Ours 153 3141 0953  0.145
CD 25% Ours 77 30.16 0948  0.170
CD 100% | NeRF 307 30.14 0937  0.206
CD 100% | NeX 307 3143 0958  0.129
Lab 75% Ours 227 31.87 0949  0.097
Lab 50% Ours 151 31.74 0948  0.104
Lab 25% Ours 76 3061 0939 0.116
Lab 100% | NeRF 303 29.60 0936  0.182
Lab 100% | NeX 303 3043 0949  0.146

In Fig 10, we show an example of the depth estimation and re-
focusing effect on our own captured scene Tribe. Note the detailed
depth of the house and statue are successfully recovered. We can
observe blurred depth around object boundary. Since our depth es-
timation is based on multi-view consistency, inaccuracy in camera
pose estimation breaks the color consistency assumption around
depth discontinuities and leads to depth errors.

With free-viewpoint scene depth, we can automatically select a
focal plane given an image pixel location. We show two synthe-
sized novel views rendered from our own captured scene. Then, we
show the auto-refocus result given two locations on the image, one
focuses on the near object (red “x”), and another on the far object

W\

Figure 9: Study on number of inputs. As shown in the figure, we
input 75%, 50%, and 25% of the original images on the CD and
Lab scenes.

(green “x”). This is enabled by the dynamic 4D light field represen-
tation [IMGOO].

Test view 2

Test view 1
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Figure 10: Depth estimation and auto-refocus result. We show the
results of two novel views (first row) and the depth estimation (sec-
ond row). In the third row we refocus on the near object, and in the
fourth row we refocus on the far object.

4.6. Failure Cases

Our method is based on a 4D 2PP (two-plane parameterization)
light field representation. Since each 3D world position corre-
sponds to multiple discontinued 4D coordinates, NeuLF represen-
tation is difficult to learn. Therefore, we observe that our model
cannot fully recover the high-frequency details in the scene as
shown in Fig. 11. The seaweed texture (first row) and object’s

© 2022 The Author(s)
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hollow-out structure (second row) are over-smoothed. In addition,
different exposure and lighting change cross the frames can lead to
flickering artifacts in the results. Recent works show that using a
high-dimensional embedding [TSM*20], or using periodic activa-
tion functions(position encoding) [SMB*20] can help recover fine
details. However, we found that the above methods will cause over
fitting on the training views and lead to works results on test views
using NeuLF. Learning how to recover the fine details of the 2PP
light field representation can be an interesting direction in the fu-
ture.

T close-up view

Ours close-up view

Figure 11: Our failure cases. We show synthesized novel views and
groundtruth. On the close-up views, we can see that our results lack
fine details compared with ground truth.

5. Conclusion

We propose a novel view synthesis framework called Neural 4D
Light Field (NeuLF). Unlike NeRF, we represent a continuous
scene using a 4D light field and train an MLP network to learn this
mapping from input posed images. By limiting novel view synthe-
sis to include only front views, NeuLF can achieve a comparable
quality level as NeRF, but is hundreds times faster. speedup. More-
over, because the speedup is enabled by modeling the color of light
rays, NeuLF does not need additional storage for acceleration. To
optionally output per-ray depth, we propose two loss terms: multi-
view consistency loss and depth loss. This enables synthetic auto-
refocus effect. We demonstrate state-of-the-art novel view synthe-
sis results, especially for scenes with reflection and refraction. We
also demonstrate the effectiveness of our method with much fewer
input images compared with NeRF and NeX.

6. Limitations and Future Work

There are several limitations to our approach. First, the novel view-
points are limited to be on the one side of the two light slabs. In the
future, we would like to extend the method to use more flexible 4D
parameterizations such as multiple two planes, two cylindrical sur-
faces, or two spherical surfaces. By assuming the color is constant
along aray in free space, NeuLF cannot model rays that are blocked
by the scene itself; therefore, novel viewpoints are always outside
of the convex hull of the scene. This is an inherited limitation from
light field.

Instead of using a 4D parameterization, lower-dimensional pa-
rameterization for specific applications can also be used. For ex-
ample, in the work of concentric mosaic [SH99], by constraining
camera motion to planar concentric circles, all input image rays are

© 2022 The Author(s)
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indexed in three parameters. By adopting this parameterization, a
more compact representation of the scene can be achieved, which
potentially runs even faster than a 4D parameterization.

Free-viewpoint video can be a straightforward extension of
NeuLF from static scenes to dynamic ones. In the future, we would
like to explore the possibility of including time in the formulation
following [LSS™19].

Although our simplified NeuLF model can significantly improve
the rendering speed compared with NeRF, it also has the limitations
when it comes to 3D scene structure recovery. In the future, we
would like to extend our work to reconstruct the surface from the
reconstructed light field by using existing approaches such as Shape
from Light Field (SfLF) techniques [HYP17].
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