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Figure 1: A living room scene containing a learned radiance field-based complex luminaire. From left to right: Reference path-traced
scene with explicitly-modeled complex luminaire (32768 samples per pixel, 7.2h); the same scene rendered with 64 samples per pixel in 1.3
minutes; and our method with 32 samples per pixel, 52.1 seconds. We leverage learned volumetric radiance fields to obtain high quality
representations of complex luminaires.

Abstract
We propose an efficient method for rendering complex luminaires using a high quality octree-based representation of the lumi-
naire emission. Complex luminaires are a particularly challenging problem in rendering, due to their caustic light paths inside
the luminaire. We reduce the geometric complexity of luminaires by using a simple proxy geometry, and encode the visually-
complex emitted light field by using a neural radiance field. We tackle the multiple challenges of using NeRFs for representing
luminaires, including their high dynamic range, high-frequency content and null-emission areas, by proposing a specialized loss
function. For rendering, we distill our luminaires’ NeRF into a plenoctree, which we can be easily integrated into traditional
rendering systems. Our approach allows for speed-ups of up to 2 orders of magnitude in scenes containing complex luminaires
introducing minimal error.

CCS Concepts
• Computer graphics → Neural Rendering; • Machine Learning → Neural Radiance Fields;

1. Introduction

Complex luminaires are ubiquitous in real-world scenes, from iso-
lated light bulbs with tiny coils embedded in dielectric bulbs, to
complex chandeliers made by thousands of small glass pieces that
scatter the light of the (potentially many) emitters enclosed. While
a common approach is to reduce the complexity of light sources
to simple distant or area lights that can be compactly evaluated
and sampled [BNJ15; GUK*17; Pet21], in many scenarios includ-
ing architectural visualization such simplifications result into a sig-
nificant loss in realism. However, as the light source increases in
complexity these approaches become unfeasible: the complex light
paths connecting the potentially multiple individual light sources

in the luminaire, and the surfaces being illuminated by simply ran-
dom chance is unlikely in the best of cases. Thus, computing the
illumination from a complex luminaire would require many thou-
sands of samples to converge, even using complex Markov-Chain
Monte Carlo methods [JM12].

Precomputing the radiance field of the luminaires is an effec-
tive approach for avoiding the sampling of difficult paths in run
time [VDWG15; ZBX*21]. It allows to encode all light paths ex-
iting the luminaire as a five-dimensional proxy function, which is
fast to access during rendering: to determine the illumination at a
point, it is only needed to integrate over the proxy function. Un-
fortunately, accurately precomputing a luminaire requires a very
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dense storage of the five-dimensional function modeling the emis-
sion of luminaires, which might become unfeasible due to mem-
ory constraints, or to combine the precomputed proxy with the real
complex geometry of the scene.

In this work we tackle this problem by leveraging the potential of
recent advances on volumetric representations of appearance, and
in particular on the compact and efficient representation of radiance
fields (RFs) [MST*20; TTM*21]. Radiance Fields, including neu-
ral radiance fields (NeRF), have emerged as a suitable represen-
tation of very complex three-dimensional scenes by encoding the
scene as a lightweight volumetric function. The key characteristic
of this volumetric function, in contrast to previous voxelization-
based representations of appearance [Ney98; LN17], is that this
function is learned from a (relatively) sparse set of views. RFs allow
to compactly encode highly-complex spatio-directional representa-
tions of 3D scenes, which can be efficiently rendered by standard
ray-marching through the volumetric proxy.

Unfortunately, off-the-shelf RFs are not adequate for our partic-
ular task, and modeling a luminaire using a RF, and integrating it
into a Monte Carlo rendering engine, introduces several challenges,
including: 1) Luminaires have high dynamic range (HDR), as op-
posed to the usual low dynamic range (LDR) targeted by NeRFs,
and 2) exhibit high angular frequency; and 3) they require handling
both opaque and transparent elements for integration in synthetic
scenes. We solve these challenges using a training loss designed
for handling HDR content, and a combination of a linear volumet-
ric representation of the RF inspired in correlated media [VJK21;
JAG18].

We integrate our RF-based luminaire in a physically-based ren-
dering using an efficient octree-based representation of the radiance
field, demonstrating speed-ups of up to two orders of magnitude,
compared with traditional path tracing and volumetric path tracing
methods with little error.

2. Related Work

Volumetric representations of appearance Volumetric ap-
proaches have been successfully used to approximate the appear-
ance of complex geometries in a wide array of different appli-
cations, from trees [LN17; Ney98], cloth and hair [ACG*17;
KSZ*16; SKZ11; ZJMB11], or particulate media (sugar, salt,
etc) [MPH*15; MWM07; MPG*16]. These works rely on com-
puting (potentially heterogeneous) bulk scattering parameters by
using anisotropic radiative transfer [JAM*10; HDCD15]. Zhao et
al. [ZWDR16] proposed a method for downsampling this type
of volumetric appearances by optimizing their directional scat-
tering. Recently, Vicini et al. [VJK21] improved the accuracy
of volumetric representations of surface-based scenes by using
a non-exponential correlated volumetric representation [JAG18;
BRM*18], allowing to represent a larger range of media (corre-
lated or otherwise) with a higher level of detail. All these works
assume scattering media with no emission. Our work builds upon
these ideas, using a volumetric representation for approximating
the appearance of complex luminaries.

Light and Radiance Fields Light fields [WMJ*17] are vector
functions that encode the radiance carried by a particular ray de-

fined in a four-dimensional space, and are a compact form of
rendering complex scenes based on images. Recently, with the
widespread of deep learning methods, a number of works have been
proposed to encode these light fields in compact neural-based rep-
resentations [LSS*19; SZW19; MSO*19].

Radiance fields (RF) [MST*20] encode the ray-to-radiance map-
ping by using a volumetric approach, in which each point of the
volume space encodes its directional radiance. In rendering time,
a volume rendering-based approach is used, by ray marching the
volumetric representation of the scene and gathering the radiance
at each point in the ray. This directional radiance is learned by
using a set of images of the scene. In order to efficiently encode
the RF, Mildenhall et al. [MST*20] proposed to use a neural net-
work (a neural radiance field, or NeRF). Since its inception, NeRFs
have received an outstanding attention; we refer to recent surveys
on neural rendering for an overview of methods building upon and
generalizing NeRF [TTM*21]. Unfortunately, NeRFs require eval-
uating a neural network for each ray marching step, which might
be expensive. Yu et al. [YLT*21] proposed to distill the NeRF into
a primal-space octree encoding the directional radiance in spheri-
cal harmonics. This allowed them to prune non-contributing empty
regions, and perform very fast rendering of surface-based radiance
fields. We extend this approach to encode the radiance field of com-
plex luminaires.

Complex Luminaries The most common approach for effi-
ciently rendering complex luminaries is to approximate the lu-
minaire by a simpler proxy geometry, and encode its complex-
ity by precomputing the near-field outgoing emission from the
proxy. Early works [Ash95; Nga87] tabulated the complex five-
dimensional emission function. Heidrich et al. [HKSS98] pro-
posed to encode the emission using light fields, following an ap-
proach similar to image-based rendering techniques Rayset-based
approaches [AR98; MMP08; Mus11] follow a similar idea, but
removing the structure of the outgoing emission, by capturing
the spatio-directional distribution of radiance at the proxy. Lu et
al. [LPG14] proposed a method for importance sampling light field-
based representations of luminaires. All these works focus on mod-
eling the emission of light sources in the scenes, but cannot repre-
sent their appearance unless a very high resolution is used to repre-
sent the emission.

More recently, Velázquez-Armendáriz et al. [VDWG15] pro-
posed a hybrid representation of the luminaire, representing its il-
lumination as a set of directional point light sources which can be
used for lighting the scene, while its appearance is rendered by us-
ing the full geometry of the luminaire and a precomputed volume
emission. In contrast, our approach seamlessly models both illumi-
nation and appearance.

Finally, the closest method to ours was proposed by Zhu et
al. [ZBX*21], that leverage neural rendering techniques for en-
coding the appearance and illumination from complex luminaires.
They use two multilayer perceptrons (MLPs) to learn the full light
field of the luminaire approximated as a simple proxy, as well as
its transparency for integration in the synthetic scene. While the
results are of high-quality, they require several thousands of input
images for training, the results are slightly oversmoothed, and the
evaluation is expensive, requiring a dedicated GPU for evaluating
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the MLPs. Our work is similar in spirit, but instead leverages re-
cent learned volumetric radiance fields for encoding the luminaire,
resulting in fast and high-quality rendering of luminaires. It implic-
itly encodes transparency for matting, requires less training data,
and does not need to evaluate a neural network in rendering time.

3. Problem Statement

Our goal is to evaluate a complex luminaire as efficiently as possi-
ble within any given scene, so that it can be used for both modeling
its appearance (e.g. as seen from the camera) and its illumination,
making it easy to integrate in any Monte Carlo-based rendering en-
gine.

We start by following previous works on luminaire model-
ing [HKSS98; ZBX*21]: These works partially (or totally) remove
the geometric complexity and precompute the light transport within
the luminaire.

We first make the assumption that it will always be rendered
from the outside; this is a reasonable assumption for most appli-
cations, even for close-up shots, as long as we don’t place the cam-
era inside the actual luminaire (i.e. inside the dielectric bulbs). This
allows us to simplify the geometry of the luminaire as a simple
proxy geometry bounding the luminaire. Then, the appearance of
the luminaire can be encoded in a per-ray basis as a 5D function Lo
modeling the outgoing radiance exiting the proxy at position xl in
direction ωo as

Lo : R3 ×R2 → R; (xl ,ωo) 7→ Lo(xl ,ωo). (1)

In order to model Lo(xl ,ωo) we need to account for two terms: The
emitted field of the luminaire Le(xl ,ωo), that encodes all light paths
starting at the luminaire and outgoing in (xl ,ωo), and the light from
the scene that might pass through the luminaire (due to empty space
within the proxy), which is crucial for integrating the luminaire in
the scene. Therefore, we model Lo(xl ,ωo) as

Lo(xl ,ωo) = Le(xl ,ωo)+α(xl ,ωo)Li(xl −ωo · t1,ωo), (2)

with α(xl ,ωo) the transparency along a ray with origin at xl and
direction −ωo. Li(x,ω) is the incoming radiance at the proxy in
point x from direction ω, and t1 is the intersection distance of the
ray with origin at xl and direction −ωo with the proxy geometry.
This approach is illustrated in Figure 2 (1).

Thus, the key problem is how to model the emission and trans-
parency functions Le and α respectively, such that a) they can be
efficiently evaluated in rendering time, b) they are compact from
a storage perspective, c) preserve their spatio-directional high fre-
quency, and d) can deal with the potentially large dynamic range of
the luminaires. Zhu et al. [ZBX*21] proposed to use two special-
ized image-based neural rendering systems for each of these terms,
at the cost of requiring a large training set.

However, we observe that modern volumetric-based radiance
fields (RF) excel at learning such 5D mapping (ray to radiance),
even in very complex scenes with a relatively small training set.
Moreover, since RF are based on volume rendering, they implicitly
encode the transparency term α(xl ,ωo). Therefore it is natural to
pose our problem by using a neural representation of the luminaire
radiance field.

Challenges Unfortunately, directly applying a state-of-the-art RF
to model synthetic complex luminaires for rendering does not pro-
vide good results, and there are several challenges that need to be
addressed:

• High Dynamic Range. Learned radiance fields have mainly fo-
cused on capturing LDR scenes. However, in a physically-based
rendering engine, we need to account for high-dynamic-range
radiance. Extending these methods to work on HDR is challeng-
ing, since the areas with the highest radiance will dominate the
gradient and thus the training.

• Null Emission. Since we are modeling isolated objects that will
be integrated into synthetic scenes, we need to account for zero-
radiance light rays. In contrast, in natural scenes these absolute-
black areas are uncommon. In a general machine learning con-
text, dark pixels generate very small gradients during training,
which makes them a difficult training target as the error is domi-
nated by the more radiant parts.

• Matting. In order to blend our luminaire with the rest of the
scene, we will need to let through the proxy those rays that actu-
ally hit the convex geometry but not the underlying light source.
This requires us to incorporate not only the emission from a ray,
but also the amount of light that passes through the proxy of the
luminaire (i.e. the transparency). A highly accurate transparency
(or opacity) model is necessary for a good integration of the lu-
minaire within the scene, which sometimes NeRF struggles with.

We address these issues by introducing a loss function targeting
the particularities of luminaires’ radiance fields. In the following,
we detail our model.

4. Our Model

As discussed earlier, our approach leverages recent works on
learned volumetric radiance fields for modeling the appearance and
illumination of luminaires. These are learned from a sparse set of
HDR training views around the luminaire. These radiance fields are
then encoded into an efficient octree-based structure, that allows us
to efficiently query our luminaires during render time. In the fol-
lowing, we detail the different elements of our model.

4.1. Physical Model

Volumetric radiance fields [MSO*19] represent the scene’s spatio-
directional radiance (light) field as the volume density and direc-
tional emitted radiance at any point in space, by using traditional
volume rendering techniques. For each outgoing point and direc-
tion x and ω, we define a ray r(t) = x−ω t, and compute the emitted
field of the luminaire Le(r) := Le(x,ω) as

Le(r) =
∫ t1

0
T(r, t)σ(r(t)) Φ(r(t),ω) dt, (3)

with t1 farthest intersection distance with the proxy geometry, σ(x)
and Φ(x,ω) are the density and emission at point x towards direc-
tion ω, and T(r, t) is the transmittance.

While transmittance is in general modeled using the classic ex-
ponential Beer-Lambert law, Vicini et al. [VJK21] showed that non-
exponential light transport [JAG18; BRM*18] is a better-suited
model for radiance fields, specially when encoding surfaces due
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Geometric Proxy

a) b) c)

Figure 2: Overview: a) We approximate the appearance of a complex luminaire by using a proxy geometry and encoding the emitted field
Le(x,ω) as a five-dimensional function in the proxy surface, plus a transparency function α(x,ω) for integrating the luminaire. Previous
approaches [ZBX*21] directly learn the emitted field and transparency function, requiring thousands of training images to converge. b) We
exploit recent advances in neural radiance fields (NeRFs) to first encode the emitted field using a multi-layer perceptron (MLP) using a
volumetric rendering approach [MST*20], using a custom loss function for its training specifically tailored to accurately model the emitted
field of complex luminaires. (c) To avoid neural queries on render time, we project the angular domain of the NeRF on spherical harmonics,
and the spatial domain in an octree, following Yu et al.[YLT*21]. This allows us to significantly limit the spatial queries, leading to a very
efficient volumetric representation which is easy to integrate in any render engine.

to their implicit correlation. Therefore, we opt for Vicini’s linear
transmittance, defined as

T(r, t) = max
(

0,1−
∫ t

0
σ(r(s)) ds

)
. (4)

Finally, we model the transparency α(r) := α(x,ω) as

α(r) = 1−T (r, t1). (5)

We numerically approximate Equations (3) and (4) by determin-
istically ray-marching the ray inside the proxy geometry, following
the standard procedure in NeRF and other RF-related papers. This
operation is fully differentiable, which is well-suited for learning
the scene from a set of views.

4.2. Encoding the Radiance Field

As shown in Equation (3), we model the RF as a heteroge-
neous medium defined by its density σ(x) and directional emis-
sion Φ(x,ω). The vast body of works on learned-RF representa-
tions use a neural network for jointly modeling σ(x) and Φ(x,ω)
(NeRFs); unfortunately, querying a NN might be expensive, and
introduces additional complexity in terms of integration with a ren-
dering engine. Instead, we follow the approach by Yu and col-
leagues [YLT*21], and project the trained NeRF into a voxelized
octree representation of the radiance field (a plenoctree), which is
compact, CPU friendly, and easy to integrate in any rendering en-
gine.

We first train a NeRF that captures the full dynamic range of the
light source. The transition from the common LDR to HDR intro-
duces several practical problems in terms of encoding and training.
We solve that by using a training loss that introduces a regularizer
that copes with the potentially large radiance magnitudes in HDR.
In addition, given the importance of a good transparency term α(r),
we directly supervise the opacity during training.

Then, after training, we project the density σ(x) and emission

Φ(x) in a plenoctree. To ease such projection, instead of learn-
ing the whole 5-D spatio-directional function, the neural network
learns the spherical harmonics (SH) expansion of Φ(x,ω) defined
by the SH coefficients Φ̄

m
l (x), with l and m the SH level and band

of the coefficient respectively.

In the following, we describe our neural network architecture,
loss function and training details of our NeRF-based luminaires.
Then, we discuss the projection to a plenoctree, and how we inte-
grate it into a path tracer.

Network architecture The network takes as input the position and
direction, which are augmented using Fourier-based positional en-
coding [MST*20], and outputs the density σ(x) and the (lmax +1)2

SH coefficients of the directional emission (̄Φ)m
l (x) for each color

channel, with lmax the number of SH levels. Following previous
work [YLT*21], we use a fully-connected 8-layered 256-neurons-
wide multilayer perceptron, with an extra output layer of 128 neu-
rons returning 3(lmax + 1)2 coefficients of the SH expansion of
Φ(x,ω) (Figure 3). We use ReLU as the activation function be-
tween the inner layers.

In order to get the final emitted color Φ(x,ω), we also apply a
non-linear activation function over the SH-projection, as

Φ(x,ω) = S

(
lmax

∑
l=0

l

∑
m=−l

Φ̄
m
l (x)Y m

l (ω)

)
, (6)

with Y m
l (ω) the SH basis projected in direction ω, and S(·) an

extended-range sigmoid (a sigmoid multiplied by the maximum
scene radiance). This allows us to compute losses in a bounded
[0,1] range. This proved much more stable than using unbounded
activation functions.

4.3. Loss function

Following the original work of NeRFs [MST*20], we use two dif-
ferent models for supervising the learning of both the density and
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Figure 3: Our architecture. Following previous works on NeRF,
we use a densely connected 8-layered 256-neurons-wide multilayer
perceptron (MLP), with an extra output layer of 128 neurons. We
use ReLU as the activation function between the inner layers and
a extended-range sigmoid for the final transformation from SH to
RGB values.

emission, by comparing against the training HDR image. In ad-
dition, we incorporate a term for actively supervising the trans-
parency α(r). Therefore, our loss function is

L=
1
|R| ∑

r∈R

[
Lc(r)+L f (r)+Lα(r)

]
, (7)

where R is the set of |R| sampled rays, Lc(r) and L f (r) are the
HDR color loss for the coarse and fine models, respectively, and
Lα(r) is the transparency loss.

HDR color loss Using standard mean squared error (MSE) in
high-dynamic range data results in severe problems in areas with
low radiance, since MSE is dominated by errors in brighter re-
gions (e.g. directly visible light emitters). In order to achieve an
even learning across the whole dynamic range, we regularize the
MSE by the square of the approximate luminance of the pixel, in
the spirit of Lehtinen and colleagues [LMH*18]. In essence, Lehti-
nen et al. proposed to use a mapping similar to Reinhard’s global
tonemapping operator [RSSF02]†. However, unlike their approach,
we also need to multiply the estimated pixel luminance by the max-
imum radiance of the luminaire Lmax to compensate the fact that we
are estimating color in the [0,1] range. We found that keeping the
sigmoid activation function for color and extending its range to the
maximum radiance of the luminaire enabled a more stable learning
of the emission than using exponential functions to unbound the
output, which by definition struggle with producing values close to
the absolute 0. This results in an HDR color error loss for the coarse
model (the loss for the fine model is analogous) defined as

Lc(r) =

∥∥∥∥∥ L̂c
e(r)−Le(r)

λ L̂c
e(r)+ ε

∥∥∥∥∥
2

2

, (8)

with L̂c
e(r) the color prediction by the coarse network, Le(r) the

emission ground truth, and ε is a regularizing empirical term (we

† Reinhard’s global tonemapping has the form M(y) = log(λ y+ε)
Lmax

and

derivative M′(y) = λ

(λ y+ε)−1 .

found that ε = 0.01 works well for all our tested luminaires).
In practice, we found that any decaying function can be used
as a regularizer to the MSE loss, balancing the supervision of
low and high radiance areas. For example, we also had success
with exponentially-decaying regularizing functions, but these intro-
duced an additional hyperparameter (the decay of the exponential
function) that required manual tuning for each luminaire.

Transparency loss While the color metric above removes most
problems with HDR content, we found that for scenes with iso-
lated objects (i.e. no backgrounds) with HDR radiance, the training
convergence would sometimes depend on supervising the trans-
parency. Most importantly, achieving perfect predictions of the
transparency of each ray is necessary for a successful integration of
the model within a traditional rendering engine later on, enabling
perfect blending of the luminaires with the rest of the scene. We
therefore introduce a direct supervision of alpha masks through a
MSE loss, as

Lα(r) =
∥∥∥α̂

f (r)−α(r)
∥∥∥2

2
, (9)

with α̂
f (r) the transparency estimated by the fine network. Note

that we only need to supervise opacity in the fine model, as it is the
one that will define the final opacity of a ray. Since all our data is
synthetic we have ground truth alpha masks available for supervi-
sion.

4.4. Training Details

We used JAX [BFH*18] and its machine learning API, FLAX
[HLO*20] for training. We trained our models with a batch size of
1024 rays, each of them sampled at Nc = 64 positions in the coarse
model, and N f = 128 additional coordinates in the fine one. We
set lmax = 2 levels of spherical harmonics. We use a 100 images
as our training set, and a further 100 images for testing. All three
components of the loss (coarse color supervision, fine color super-
vision, and alpha supervision) were given the same weight. We used
Adam [KB14] combined with an exponentially decaying learning
rate, starting at lr = 5×10−4 and decaying to lr = 5×10−6 by the
end of training. Our models were trained for 700k-1.1M iterations,
which took between 1 and 2 days on an Nvidia RTX 2080Ti.

5. Implementation details

We integrate our RF-based complex luminaires in Mitsuba [Jak10],
as a new Emitter plugin attached to the proxy geometry (a sphere
or a box) returning the emission Le(r) (Equation (3)). We also im-
plement a null-like BSDF that returns the transparency α(r) (Equa-
tion (5)). Both the Emitter and the null BSDF raymarch through the
volumetric representation of the radiance field, querying the density
σ(x) and directional emission Φ(x,ω).

As discussed above, we do not query the trained neural network.
Instead, we project the density and emission values into a plenoc-
tree [YLT*21], i.e. an octree-based voxelized representation of the
radiance field. This results into massive savings in terms of perfor-
mance, as well as a much simpler integration in Mitsuba. Querying
the octree is much cheaper than querying a neural network, and we
only need to query the few intersected voxels by each ray until a
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surface is hit (opacity saturates), massively reducing the number
of samples placed over empty space which significantly impact the
performance of NeRFs, in which a set number of samples for each
ray is used.

Creating the plenoctree We extract the octree from the neural vol-
ume by densely sampling the density σ(x) and the SH coefficients
of the emission Φ̄m

l (x). We first place a single sample in the cen-
ter of each voxel to obtain their directionally-invariant density, and
then prune voxels whose density is below an empirically set thresh-
old (0.01). This allows us to prune empty space and most NeRF
artifacts. Then, for each dense voxel, we throw an additional 256
positional samples uniformly placed within the volume defined by
the voxel and average them to avoid aliasing at discontinuities. The
maximum depth of the octree directly controls the quality of the
extracted representation, with higher depths enabling finer detail,
while also requiring more storage space. An octree using a maxi-
mum depth of 10 (fine quality), containing the representation of a
single luminaire, has a memory footprint of around 1.7GBs.

Sampling In our current implementation we uniformly sample the
proxy geometry, which is admittedly suboptimal and does not lever-
ages the precomputed data of the luminaires radiance field. Impor-
tance sampling according to the RF would provide a significant
variance reduction, although it remains an avenue of future work.

6. Evaluation and Results

6.1. Datasets

We generate our datasets in Mitsuba using a volumetric path tracer.
Each luminaire is rendered using an orthographic camera placed
at a 100 pseudo-random directions, generated using a 2D Halton
sequence on the sphere around the luminaire. Each view is rendered
with a resolution of 8002, making a total of 64M rays per luminaire.

We render five different luminaires with varying geometric com-
plexity, number of emitters, and dynamic ranges (with maximum
radiance ranging from 4.5 in STAR to 40 in CLUSTER). We in-
tended to create a datasets of luminaires with a size and variety
similar to Zhu et al.’s [ZBX*21], with some luminaires showing
caustic paths (e.g. the light bulbs in both DALLAS and CLUSTER),
as well as diffuse appearance due to multiple scattering. The ren-
dering time of each dataset depends on its complexity, but they took
between 12 and 36h each using 32 threads in a workstation with a
dual Intel Xeon Gold processor. Unless stated otherwise, our re-
sults are generated using an order-2 SH expansion (lmax = 2, 9 SH
coefficients), with a maximum octree depth of 10 levels (spatial
resolution of 10243).

6.2. Evaluation

Here we analyze the reconstruction error introduced by our RF ap-
proximation of the luminaires, as well as the impact of our design
choices on the final error. In all cases, we report the average PSNR
and SSIM for all test views.

Figure 4 shows example reconstructions for all our datasets, with
the average reconstruction errors listed in Table 1. We refer to the
supplemental video for animations of the luminaires, to assess tem-
poral stability of our reconstructions.

PSNR SSIM
DALLAS 31.5072 0.9374
PORTICA 28.6694 0.8594
CLUSTER 27.7260 0.8872
NEOCLASSICAL 26.8784 0.8829
STAR 27.8027 0.9119

Table 1: Reconstruction error. PSNR and SSIM error metrics for
all datasets used in our work, averaged over all test views of the
luminaires.

Loss ablation study We analyze the effect of the different terms
of our loss function (HDR regularizer, transparency supervision)
in Figure 5, for the NEOCLASSICAL luminaire. We compare them
against the baseline NeRF loss, which uses MSE. Our custom loss
enables stable, high quality learning of the full dynamic range, and
a correct volume density representation. Table 2 includes the nu-
merical error for this experiment. While we found that for some
luminaires the transparency supervision results in a slightly worse
emission reconstruction, the improvement on transparency is sig-
nificant. Note that a good transparency estimation is crucial for
high-quality integration of the luminaire in synthetic scenes.

PSNR Le SSIM Le RMSE α

MSE 19.8547 0.6987 0.3617
MSE+reg 28.1237 0.9062 0.1853
MSE+reg+α loss 26.8784 0.8829 0.0358

Table 2: Loss ablation study. Error metrics demonstrating the ef-
fect of each term in our metric for the NEOCLASSICAL dataset.
Note that the opacity loss (α loss) slightly introduces error on the
reconstruction of the luminaire emission Le, but dramatically im-
proves the reconstruction of the transparency α.

Performance vs Quality In Table 3 we compare the performance
of increasing the level of spherical harmonics when modeling the
directional emission Φ(x,ω). The effect of increasing from lmax =
2 to lmax = 4 is marginal in error, but significantly increases ren-
dering time, memory and storage requirements. Training directly
our model using a band-limited SH-based angular representation
of Φ(x,ω), allows us to preserve high-frequencies on the ray do-
main (e.g. occlusions), despite the local Φ(x,ω) is low frequency.

In order to further increase performance, we discard the integra-
tion of samples that have a density value below a certain threshold
σmin, and consider a ray saturated when transparency reaches an-
other threshold αmax. This allows us to reduce the computational
overhead of multiplying spherical harmonic weights by the sam-
pled tree value for every intersected voxel, and avoids unnecessarily
querying the octree more times than those really needed to obtain
an accurate color value. We have empirically set the values of these
heuristics to σmin = 0.1 and αmax = 0.9 respectively. Our method
introduces an average overhead of 20% per sample over explicitly
handling the luminaires.

Transmittance model We compare the impact of using a linear

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

54



Condor & Jarabo / A Learned Radiance-Field Representation for Complex Luminaires

Figure 4: Reconstruction examples. Example test views of the reconstruction of our dataset using our models. From left to right: DALLAS,
NEOCLASSICAL, PORTICA, CLUSTER, and STAR. Average reconstruction errors for all datasets can be found in Table 1.

Figure 5: Loss ablation study. We analyze the effect of our metric
on the NEOCLASSICAL luminaire, in the reconstruction of both the
emission Le (top) and transparency α (bottom). From left to right:
LDR MSE, MSE+regularization, MSE+regularization+opacity
loss. The error metrics can be found in Table 2.

SH levels PSNR SSIM
lmax = 2 (9 coeff.) 27.7260 0.8872
lmax = 3 (16 coeff.) 27.6958 0.8860
lmax = 4 (25 coeff.) 27.7367 0.8859

Table 3: Effect of number of SH levels. PSNR and SSIM error
metrics as a function of the maximum SH levels used to model the
directional emission Φ(x,ω) in the CLUSTER dataset.

transmission model vs the classic exponential transmittance (Table
4). The linear model slightly outperforms the exponential one on
every tested dataset, both in quality and rendering time. The faster
decay of the linear transmittance reduces the number of queries to
the octree, resulting in rendering times 5% faster.

6.3. Results

Here we show the results of integrating our RF-based volumetric
representation of complex luminaires in Mitsuba. We compare our
method against using the explicit light source as geometry, using
path tracing (PT) or volumetric path tracing (VPT) in scenes that
require the modelling of participating media (some of the tinted

PORTICA DALLAS

PSNR SSIM PSNR SSIM
Exponential 28.43737 0.8566 31.4002 0.9371
Linear 28.6694 0.8594 31.5072 0.9374

Table 4: Transmittance model comparison. Comparison between
the classic exponential transmittance and the linear model used for
our luminaires. We consistently found the linear model outperforms
the exponential one in the context of modelling luminaires.

glasses are modelled as dielectric pieces with homogeneous medi-
ums inside them). All our renders have been computed in a work-
station with a dual Intel Xeon Gold processor (18x2 hyper-threaded
cores), using 32 threads. Reference images are rendered with VPT
or PT on the explicit luminaires representation, using 32768 sam-
ples per pixel. Figures 6 shows results of our volumetric complex
luminaires integrated in synthetic scenes; our method allows high-
quality approximation of complex luminaires with a small over-
head. In Figures 1 and 7 we compare our method against explicitly
modeling and rendering the luminaires using path tracing (PT or
VPT). Our method shows less variance and higher quality at equal
time, while for equal RMSE, our method outperforms explicit PT
by almost two orders of magnitude (Table 5), with minimal visual
differences with respect to the reference.

7. Discussion & Limitations

Comparison with Zhu et al. [ZBX*21] While it is difficult to
compare between different systems, our model offers similar qual-
ity and speedups as neural complex luminaries, with a significantly
smaller training dataset. Table 6 compares the reconstruction er-
ror of Zhu et al.’s method with ours in the DALLAS dataset with
the same high-resolution 100 training images. We obtain a ×3 im-
provement in terms of PSNR. Zhu et al.’s method in general re-
quires three to four orders of magnitude more training data for
achieving comparable PSNR. Rendering-wise, our model is easy
to integrate in any CPU-based rendering pipeline, without the need
of complex neural inference methods over a GPU, and introduces a
comparable penalty cost as Zhu et al’s when run on a GPU. Finally,
our model is two orders of magnitude heavier in terms of mem-
ory storage, although Zhu’s requires a significant amount of GPU
memory for running.
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spp RMSE Time Speedup
PORTICA Living Room PT 4096 7.1211 84 min ×96.2

Ours 32 6.8146 52.4 s
DALLAS Bedroom PT 1024 7.9824 24.6 min ×17.57

Ours 32 7.9228 1.4 min
CLUSTER Living Room 2 VPT 1024 7.5267 19 min ×95.8

Ours 4 7.4239 11.9 s
NEOCLASSICAL Bedroom PT 1024 7.2304 14.1 min ×38.11

Ours 16 7.3782 22.2 s
STAR Living Room 2 VPT 512 2.6439 7.8 min ×8.83

Ours 32 2.7113 53 s

Table 5: Equal-Quality Results. We compare our method against traditional path tracing or volumetric path tracing, depending on the
luminaire. At equal RMSE, our method shows significant speedups, of up to two orders of magnitude, depending on the rendering complexity
of the modelled luminaire. Corresponding renders of this table can be found in Figure 7

Figure 6: Converged results. We render some of our scenes with more samples (4096) using our method to showcase their quality. Notice
how variance is smaller in these scenes than in the reference renders used for equal error measurements, at a fraction of the rendering time.

Figure 7: Equal-time and equal-quality comparison. From left to right: reference render; our method (see Table 5 for samples per pixel and
rendering time), equal-time explicit renders; and equal-quality (RMSE) explicit rendering. See Table 5 for error and rendering times. Notice
how our approach is significantly faster than explicit PT or VPT while introducing minimal error in the scene.
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PSNR SSIM Render Time (s)
[ZBX*21] 10.96 0.611 0.93
Ours 31.50 0.937 0.11

Table 6: Comparison with Zhu et al. [ZBX*21]. Peak signal to
noise ratio (PSNR) and structural similarity (SSIM) of Zhu et
al.’s neural luminaires [ZBX*21] and our method for the DALLAS

dataset (100 images, 800 × 800). We also report rendering time
on an unoptimized standalone GPU rendering implementation for
both methods.

Comparison with Velazquez et al. [VDWG15] As opposed to the
method by Velazquez et al., our method is able to both handle emis-
sion and appearance seamlessly, making it easier to integrate in a
render engine, while providing high-quality render and illumina-
tion of the luminaires.

Limitations – Precomputation cost Precomputation times are
rather long (2-3 days including both data generation and training),
which is an issue of most complex luminaire rendering methods.
While part of such cost comes from rendering the dataset, our train-
ing is still lengthy, and includes both training a NeRF and project-
ing it to an octree, following Plenoctrees [YLT*21]. A faster ap-
proach is to train directly the SH-based octree [FTC*22], which
requires a total variation regularization to avoid aliasing at discon-
tinuities, as well as fine per-scene parameter tuning for best perfor-
mance.

Limitations – Sampling Currently, our sampling routine is a sub-
optimal naïve surface-based sampling strategy. Investigating novel
sampling techniques that take advantage of implicit learned repre-
sentations of the luminaires is a promising avenue for future work.

Limitations – Illumination from other luminaires Our method
only captures the light transport from paths inside the luminaire,
and ignore inter-reflections from the rest of the scene (i.e. assumes
emitting-only luminaires). Accounting for paths outside the lumi-
naire would require adding an additional term encoding the light
transport response of the luminaire as a function of the incident
light field.

Conclusions In this work we have introduced a volumetric repre-
sentation for complex luminaires that is both fast and capable of
achieving high levels of quality. We have extended neural radiance
fields to fit the particular needs of modelling complex luminaires
(a high dynamic range, accurate transparency, and capable of mod-
elling null emission, among others). Then, we have successfully
exploited our volumetric representation within traditional render-
ing pipelines, showing significant speedups, and using significantly
less input data and computational resources than previous methods.
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