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Figure 1: Given posed RGB frames and scene geometry, our method jointly reconstructs lighting and material parameters of real indoor
scenes. Our method relies on differentiable rendering, a new texture space sampling scheme as well as carefully designed inductive priors
to achieve high quality reconstruction at 4K resolution. The optimized material and lighting parameters are readily used in any physically
based graphics pipeline, enabling full scene relighting, re-rendering and AR / VR applications.

Abstract
Modern geometric reconstruction techniques achieve impressive levels of accuracy in indoor environments. However, such
captured data typically keeps lighting and materials entangled. It is then impossible to manipulate the resulting scenes in pho-
torealistic settings, such as augmented / mixed reality and robotics simulation. Moreover, various imperfections in the captured
data, such as missing detailed geometry, camera misalignment, uneven coverage of observations, etc., pose challenges for scene
recovery. To address these challenges, we present a robust optimization pipeline based on differentiable rendering to recover
physically based materials and illumination, leveraging RGB and geometry captures. We introduce a novel texture-space sam-
pling technique and carefully chosen inductive priors to help guide reconstruction, avoiding low-quality or implausible local
minima. Our approach enables robust and high-resolution reconstruction of complex materials and illumination in captured
indoor scenes. This enables a variety of applications including novel view synthesis, scene editing, local & global relighting,
synthetic data augmentation, and other photorealistic manipulations.

CCS Concepts
• Computing methodologies → Reconstruction; Mixed / augmented reality; Virtual reality; Ray tracing;
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1. Introduction

Realistic reconstruction of real 3D environments is a major com-
ponent of virtual world building. It enables various simulations,
augmentations, as well as augmented and virtual reality (AR/VR)
applications, such as virtual object insertion, scene relighting, re-
rendering from novel views, and material editing. Computer vi-
sion techniques have mostly relied on simple lighting, material and
light transport models, that do not account for complex illumina-
tion, shadows, or view-dependent reflections (Figure 2). With the
recent popularity of inexpensive commodity RGB-D sensors and
even mobile LiDARs, incredible advances have been achieved for
3D geometry reconstruction [NIH∗11,IKH∗11,NZIS13,DNZ∗17].
For example, a complex room-scale scene geometry with high dy-
namic range (HDR) textures and semantic labeling can be fully re-
constructed in high quality [SWM∗19]. However, recovering ma-
terial or illumination properties requires a deeper understanding of
these captured scenes. Limited attention has been devoted to this
type of reconstruction, which is a key prerequisite for a seamless
photorealistic experience in the aforementioned applications.

Meanwhile, in the computer graphics community, path tracing,
a stochastic light transport simulation method has been success-
fully used to produce photorealistic imagery for movies, visual
effects, and games. Path tracing simulates the inter-reflection of
light within the scene using a stochastic Monte Carlo integra-
tion procedure that accounts for physically based emission and
material properties to produce a photorealistic image. Recently,
Li et al. [LADL18] demonstrated that this entire physically based
rendering process can be differentiated, enabling gradient-based
optimization of scene properties. Given one or multiple captured
RGB frames and an initial guess for scene parameters (including
3D geometry), this approach computes derivatives of an objective
function with respect to unknown scene parameters. The objec-
tive function can include the difference between the rendered im-
ages and the real camera observations. Leveraging these render-
ing derivatives, the material and lighting parameters are progres-
sively improved by combining the differentiable path tracing pro-
cess with an optimization technique such as stochastic gradient de-
scent (SGD).

Similar to other non-linear inverse optimizations, strong domain-
specific inductive bias and a carefully designed optimization rou-
tine are the key to achieving a robust and efficient convergence and
high-quality results. For synthetic scenes with perfect geometry and
segmentation, the method of Azinović et al. [ALKN19] provides
high-quality estimates of the scene’s materials and lighting. How-
ever, only a limited number of proof-of-concept results were shown
for real-life captures, with degraded quality. As pointed out by the
authors [ALKN19], imperfections in the input data can have signif-
icant impact on the quality of the recovered materials.

We propose a method with multiple novel priors to robustly han-
dle large real-world captures and address various imperfections in
the input data, such as missing reconstructed geometry, camera
misalignment and unevenly distributed camera views. In combi-
nation with our new texture-space optimization formulation, our
method robustly recovers physically based spatially varying mate-
rials and lighting in large captured indoor environments, such as the

Figure 2: Simplified solutions for scene reconstruction (left) typ-
ically model the world as emissive surfaces without correctly ac-
counting for light transport, and thus do not support important
applications such as virtual object insertion and relighting. Our
method (right) recovers emission and material parameters of real-
world scenes, which are readily used in photorealistic applications.

Replica dataset [SWM∗19]. Our key contribution is a robust joint
material and lighting reconstruction method that handles:

• imprecisely reconstructed or even missing geometry
• large number of unevenly distributed live-captured views, with

sensor noise, lens distortion, etc.
• estimation of rich materials (multi-lobe BRDF), including high-

resolution (4K) textures
• practical run time and memory resources relative to the scale of

the optimization problem

The output of our pipeline is a physically based scene representa-
tion using graphics industry-standard formats, suitable for photore-
alistic relighting and re-rendering.

2. Related work

Light estimation. Image-based lighting relies on a recovered
HDR environment map [Deb98], which represents the illumination
incident from every direction at a single point in the scene, to real-
istically relight virtual objects at that location. The recovered envi-
ronment map can be further approximated with certain basis func-
tions, such as spherical harmonics (SH) [RH01,MKC∗17] or spher-
ical Gaussians [LSR∗20], for efficient rendering. Convolutional
Neural Network-based approaches can also automatically estimate
an environment map from a single indoor image [GSY∗17]. Recent
methods [GSH∗19, LSR∗20] attempt to reconstruct local spatially-
varying lighting from a single image. Gardner et al. [GHGS∗19]
utilize a deep encoder network to recover parametric lighting in the
scene. In our method, lighting is represented locally as emission
from surfaces that are physically present in the scene, e.g. neon
lights on the ceiling. The position and radiance of those emitters
are determined automatically through our optimization process.

Material recovery. Chen et al. [CZS∗19] and Kang et al.
[KCW∗18] cast reflectance capture into a form that admits a so-
lution via deep networks. Encoder-decoder architectures are used
for appearance capture and rendering of human faces [LSSS18],
image-based relighting from sparse samples [XSHR18], and ap-
pearance maps [MLTFR19]. Deschaintre et al. [DAD∗18] use a
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differentiable re-rendering loss and procedurally generated ma-
terials to train a deep network recovering SVBRDF parameters.
Gao et al. [GLD∗19] optimize directly in the latent space learnt by
an auto-encoder, which acts as a regularizer. For more details, we
refer to the recent survey on deep appearance modeling [Don19].
To the best of our knowledge, none of the existing methods handle
non-Lambertian materials, spatially-varying local illumination and
global light transport all at once.

Material and shape recovery. Schmitt et al. [SDR∗20] rely on
a hand-held RGB-D scanner with active illumination to the recon-
struct geometry and SVBRDF of a single object. They use differen-
tiable material clustering to improve estimation of specular compo-
nents. Several recent works [SC20,BJK∗20,LXR∗18] use deep cas-
caded architectures trained on synthetic datasets to recover shape
and microfacet SVBRDF of a single object from one or two hand-
held pictures. Li et al. [LXR∗18] additionally account for global
illumination with dedicated neural blocks. In contrast, our method
scales to large indoor scenes with significant interreflection.

Joint estimation of material and lighting. Barron et al. [BM14]
recover geometry, reflectance, and illumination from a single im-
age of an arbitrary object by enforcing hand-crafted priors on
each component. Li et al. [LSR∗20] similarly recover depth,
SVBRDF and local illumination from a single viewpoint us-
ing a deep network trained on realistic synthetic interior scenes.
Karsch et al. [KHFH11, KSH∗14] render synthetic object into real
photos. Zhang et al. [ZCC16a] achieve plausible results at recov-
ering the reflectance of walls, floor, and ceiling of indoor scenes
along with lighting using inverse rendering.

Azinović et al. [ALKN19] is a step towards the general use of
differentiable rendering for reconstruction, though it remains far
from achieving this goal for real captures with imperfect input data.
Our method builds on this approach, while supporting complex
spatially-varying materials that are reconstructed from real cap-
tured data.

Intrinsic decomposition. Image-space methods [BTHR78,
BM14, DAD∗18, MMZ∗18, LGZ∗20] employ sophisticated data-
driven approaches, by learning the distributions of material and
illumination. However, these methods do not have a notion of
3D geometry, and cannot handle occlusion, interreflection, and
physically based factors such as the squared distance falloff of
light intensity. They also require a significant amount of training
data, and are prone to errors outside of the training data set.

Deferred neural rendering. Deferred neural rendering [TZN19]
achieves novel view synthesis, scene editing, animation synthesis,
or free viewpoint relighting [GCD∗20] by optimizing a neural tex-
ture jointly with a neural renderer. The high-dimensional neural
texture, mapped to a simple 3D proxy surface, is sampled as in
the standard graphics pipeline to produce features that are decoded
into an image by the neural renderer. In contrast, our method pro-
duces standard physically based textures that are readily used in
traditional renderers.

Stratified sampling. Stratified sampling [Coo86] is a well-known
techniques used in Monte Carlo rendering to reduce variance over
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Figure 3: Our reconstruction technique based on differentiable
rendering recovers complex spatially varying materials and light
sources from posed handheld RGB frames. A novel texture-space
sampling scheme robustly handles uneven coverage and imperfec-
tions in real-world data.

purely uniform sampling. In the context of non-line-of-sight geom-
etry reconstruction, Tsai et al. [TSG19] sample over the surface of
the recovered shape, in order to improve rendering efficiency (fewer
missed rays) as well as to produce more coherent ray bundles. In the
same spirit, our texture space sampling technique improves conver-
gence by sampling uniformly in the space of optimization variables
rather than generating rays in camera space.

Differentiable rendering. Blanz and Vetter used differentiable
rendering for face reconstruction [BV99]. Inverse radiosity
(e.g., [YDMH99,ZCC16b]) achieves impressive results for solving
near-field illumination and Lambertian materials for indoor scenes.
Gkioulekas et al. [GZB∗13, GLZ16a] and Che et al. [CLZ∗18]
solve for scattering parameters using a differentiable volumetric
path tracer. Kasper et al. [KKSH17] developed a differentiable path
tracer, but focused on distant illumination. Loper and Black [LB14]
and Kato [KUH18] developed fast differentiable rasterizers, but do
not support global illumination. Physically based differentiable ren-
dering [LADL18, NDVZJ19, LHJ19] made it possible to compute
derivatives of an entire physically based light transport simulation,
including global illumination, with respect to the unknown param-
eters of the rendered scene. We use the Mitsuba 2 [NDVZJ19] dif-
ferentiable path tracer in our optimization pipeline.

3. Method

Our method uses an analysis-by-synthesis approach: at each step,
images of the scene with current parameters are obtained using dif-
ferentiable rendering and compared to the observed reference. The
difference is then minimized using gradient-based optimization.
Figure 3 shows the high-level pipeline discussed in the remainder
of this section.

Unlike prior work based on rasterization, the rendering step of
our method builds on a differentiable path tracer and physically
based appearance and illumination models. The resulting images
account for global illumination, which is a prerequisite for high-
fidelity parameter reconstruction, as illustrated in Figure 4. Many
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(a) Reference (b) Optimized without 
global illumination

(c) Optimized with 
path tracing
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Figure 4: Real-world light transport features global illumina-
tion (GI) between objects. Reconstructing the marble table texture
in this synthetic scene (a) poses severe challenges for classic tech-
niques. The reflection of the apples cannot be explained without
GI (b), and this discrepancy between reality and reconstruction can
only be explained via incorrect color bleeding. A differentiable path
tracer (c) can disentangle the effects caused by individual objects.
In both cases, unobserved texture regions remained at their initial-
ization value (gray).

open-ended steps are necessary to convert this high-level idea into
a practical and robust algorithm for inverse rendering, and the main
contribution of our approach lies in those specific design decisions
that we now explain in more detail.

3.1. Input data

The input to our method is a reconstruction of the scene geometry
and a set of RGB photographs with camera intrinsics and extrinsics
(“posed frames”). We further use an approximate segmentation of
the scene’s surfaces, which can either be computed automatically
or provided as input (see supplemental document). Our method re-
constructs suitable material and lighting parameters, but does not
modify the input geometry — joint material and geometry recon-
struction is in principle possible thanks to recent advances in dif-
ferentiable rendering [LADL18], but is out of scope of this work.

We use the recent Replica dataset [SWM∗19] in our examples,
which consists of multiple indoor scenes acquired using a handheld
device. The resulting data was processed using standard methods
producing camera extrinsics and intrinsics, a triangular mesh of the
scene, and an approximate instance segmentation. Our method is
not specific to the Replica dataset. That said, physically-based ma-
terial and lighting reconstruction requires sufficient dynamic range
of observations, e.g., to provide some direct observations of light
sources and highlights without overexposure. The Replica dataset
provides this via alternating exposures of the RGB frames (multi-
plexed HDR).

Regardless of the source, real-world data invariably contains
noise and imperfections such as imprecise camera poses, surface

normals, missing fine geometry, and inexact segmentation, produc-
ing systematic discrepancies between renderings and the observa-
tions. It is imperative that the method handles such flaws gracefully.

In our pre-processing step, we discard frames with severe under-
and over-exposure and motion blur, which are easily detected from
the difference in camera pose between adjacent frames. We also
linearize and white-balance the images, and remove lens distortion.
Scene geometry is represented with a standard triangle mesh with
UV texture parameterization. The original Replica data lacks UV
coordinates, so we generate them automatically using Blender’s
standard “Smart UV Project” operator [Com19].

3.2. Inductive bias & physically based assumptions

The inverse problem targeted by our method is highly ambiguous:
each surface location within the scene can in principle affect the
color of any other position via indirect reflections. Because light
emitted by a light source can interact with multiple materials before
arriving at the camera, any given observation can be explained in
multiple ways. For example, objects seen via specular reflection
can be misattributed as emission or diffuse reflectance (Figure 4).

Therefore, a naive application of image-based differentiable ren-
dering systematically overfits with poor local minima. We intro-
duce several inductive biases that promote plausible and consistent
results to address these issues.

Emitters. We model light sources as area lights (emissive sur-
faces) with a cosine-based directional profile, which are standard in
physically based rendering. However, emission is difficult to disen-
tangle from reflection. For example, a highlight observed on a sur-
face can be misinterpreted as a light source. In our experiments, un-
restricted optimization always converges to implausible solutions
with spatially varying emission on all scene surfaces (Figure 5).

Therefore, we initially restrict spatial variation of emission to a
single intensity value per object, based on the instance segmenta-
tion. Once light sources have been identified by the optimization,
we enable spatially-varying emission over those regions.

Material model. In physically based rendering, the bidirectional
reflectance distribution function (BRDF) models the surface mate-
rial and defines how much radiance is reflected from an incident
direction to an outgoing direction. A large variety of general and
specialized BRDF models have been proposed throughout decades
of research [GGG∗16].

Since we do not assume access to a classification of materials
over the scene, we choose a single material model that can cover
the majority of appearance, while keeping the number of parame-
ters to a minimum. Spatial variations are handled by texturing the
model’s parameters. The Disney BRDF [BS12] is a widely adopted
material model used in movies and games that captures a versatile
set of appearance with intuitive controls. It exposes ten high-level
parameters such as base RGB color, metalicness, roughness, and
clearcoat. In unstructured optimization, however, different param-
eter configurations often lead to similar appearance. To reduce this
ambiguity, we restrict optimization to only handle opaque surfaces
with diffuse albedo, roughness, and specular parameters.
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(a) Reference (b) Optimized
(re-rendering)

(c) Optimized
(emission only)

Figure 5: Unconstrained joint optimization of material and emis-
sion reproduces the reference (a) with high fidelity, as shown in
(b). However, the solution found by the optimizer is absurd, since
it turns the entire scene into an emissive surface (c). Since no light
sources are visible in that frame, a correct reconstruction would
have (c) be entirely black.

(a) Reference (b) Optimized

(c) Roughness

(d) Specular

Figure 6: Unconstrained optimization of material parameters
leads to implausible results, such as materials being highly glossy
only where highlights were observed.

A second important ambiguity is due to the fact that we can
judge about a surface’s roughness at a point only when we observe
an actual highlight at that point. Therefore, the optimizer is able
to infer surface specularity and roughness only where the specular
highlights are observed (Figure 6). However, we cannot expect our
captured data to observe highlights at every point they could oc-
cur. Therefore, we assume the roughness and specularity to remain
constant within a class of the surface segmentation and optimize a
single roughness & specularity value per object. This is a common
case in real world and also reduces the number of parameters to
optimize, speeding up convergence.

Initialization. Proper initialization is important to guide optimiza-
tion toward a good minimum. We start with neutral constant values
for the emission (0), roughness (0.5) and specular (0.5) parameters.
To initialize the spatially-varying diffuse color, we build a median
texture by iterating over all available reference pictures and pro-
jecting them in texture space. We employ an online median estima-
tor [FS07] to avoid memory concerns when given tens of thousands
of views. We preferred the median to the mean filter to suppress
view-dependent effects such as specular reflection.

3.3. Texture-space sampling for variance reduction

A direct application of differentiable rendering is to render the cur-
rent reconstructed scene from a given view, and minimize the dis-

tance to all pixels in the observed image at the same view. However,
the target unknowns (material and illumination parameters) lie in
the space of scene surfaces (texture space). Therefore, optimizing
over all pixels within a frame(s) lead to uneven convergence, since
the unknowns (e.g. albedo texture values) are observed unevenly
within a single view, as well as over the video sequence (visualized
in Figure 7). Additionally, view-dependent effects such as glossy
highlights require multiple observation angles to disambiguate the
roles of diffuse and specular components.

Texture-space sampling Instead, we propose to form the train-
ing batches by sampling the unknowns uniformly directly in tex-
ture space. This is more efficient than sampling a random subset
of views, as it allows to reduce the noise in gradients by proceed-
ing with batches of observations that are directly relevant to the
selected unknowns.

Texture-space sampling is realized as follows (pseudocode is
given in the supplemental document). At the start of each iteration,
we select a subset of the unknown variables by sampling uniformly
at random over texture space. The number of sampled points is ef-
fectively a batch size, which can be adjusted based on the avail-
able GPU memory. Using a precomputed inverse UV mapping, we
lookup the corresponding 3D positions on the scene surfaces. Next,
we connect the sampled mesh positions to a set of reference view
positions. Connections that are occluded by geometry, or simply
fall outside of the cameras’ frusta, are discarded. For this batch
of visible 3D positions, we fetch the corresponding pixel values
from the reference RGB frames. Finally, we estimate the current
radiance values for the batch with differentiable path tracing. Af-
ter computing the per-pixel loss (averaged over all rays), gradients
are obtained by backpropagating through the rendering algorithm.
Finally, scene parameters are updated with an optimizer step.

Jacobian factors Transformations applied to the samples–
mapping from UV space to scene surfaces and finally to cam-
era rays–imply a change of probability density. In standard Monte
Carlo rendering, that change should be accounted for when com-
puting the sampling weight by multiplying it with the Jacobian de-
terminant of each transformation [VG95,PJH16]. These factors in-
clude a term accounting for the UV mapping’s distortion, as well
as a geometry term cos(θ)

d2 , with θ the incident angle to the sampled
surface and d the distance to the camera. Intuitively, the geome-
try term corrects for the fact that sampling that same surface point
from the camera’s directional distribution becomes less likely as
the distance increases, or the observation angle more grazing.

However, the explicit goal of our sampling technique is to assign
equal weight to all optimization variables. Note that in the con-
text of an optimization, we are free to define the objective function
as needed to improve convergence and reconstruction quality. To
this end, we omit the Jacobian terms above, implicitly introducing
a factor α j cancelling them out in our per-ray objective function
(Equation 1).

This is in contrast with the method of Tsai et al. [TSG19], where
reconstructed surface points are sampled directly and all Jacobian
terms are included. In their non-line-of-sight reconstruction appli-
cation, observation distances are roughly constant, while ours vary
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Figure 7: Unstructured capture of real-life scenes from handheld
video results in uneven density of observations, which in turn leads
to uneven convergence with naive inverse rendering. We visual-
ize the relative number of observations for each location of the
OFFICE-2 scene [SWM∗19].

(a) Image-space (b) Texture-space (c) Texture-space
(re-weighted)

Figure 8: We illustrate the gradients produced by different sam-
pling techniques. We visualize albedo gradient magnitude in tex-
ture space directly at a given iteration. Standard image-based dif-
ferentiable rendering (a) leads to nonzero gradients only within the
frusta of cameras selected for this iteration. Our texture-space sam-
pling scheme (b) selects texels uniformly at random and connects
them to camera positions, resulting in even coverage within an it-
eration. Finally, we implicitly reweight the objective function by
omitting Jacobian factors (c) in order to obtain gradients of compa-
rable magnitude regardless of observation distance or angle. Note
that some locations are not mapped to any scene surface and thus
have zero gradients.

greatly from viewpoint to viewpoint. Omitting Jacobian factors also
helps us avoid exploding gradients when d approaches zero. Fi-
nally, we obtain gradients of comparable magnitude spread evenly
over texture space, as illustrated in Figure 8.

3.4. Optimization details

Coarse-to-fine optimization. Due to the ambiguities described in
Section 3.2, starting the optimization with all unknowns of a large
scene at their highest resolution leads to low-quality local optima.
“Coarse-to-fine” schemes have been shown to help greatly in simi-
lar cases [GLZ16b, NDVZJ19, NDSRJ20].

In that spirit, we gradually introduce optimization variables:
first emission, then roughness & specular coefficients, and finally
spatially-varying albedo. In spirit of texture MIP pyramids, the

albedo is first optimized as a 1024× 1024 RGB texture, and then
refined in two stages to reach the final 4096×4096 resolution. Af-
ter the first stage, emitters contributing a small fraction of the total
scene radiance are rounded to zero.

Any subset of steps can be repeated as needed by restarting the
optimization from the previous step’s results. In our experiments
we found this to be unnecessary, since a single run through this
sequence yields good convergence.

Loss function. We use a pixel-wise mean squared loss. The loss
operates in linear color space, i.e., without gamma compression.
Under-exposed (resp. over-exposed) values are handled with a one-
sided difference that only penalizes values above (resp. below) the
clipping threshold vmin (resp. vmax). The optimization formulation
is therefore:

min
θ

1
n

n

∑
j=1

α j w j
(
Î j− I j

)2
, (1)

w j = 1Î j≥vmin∪I j≥vmin
·1Î j≤vmax∪I j≤vmax

,

where θ comprises all unknown scene parameters, Î j is the esti-
mated radiance along ray j, I j is the reference observed pixel value
corresponding to the ray, 1 is the indicator function, w j encodes
the one-sided difference, and α j is the implicit reweighting term
described in Section 3.3.

Optimizer. We use the Adam optimizer [KB14] with learning
rates 1 for emission, 0.005 for roughness & specular, and 0.1 for
diffuse albedo. Other parameters are set to their recommended de-
faults.

We found two additional modifications to be important. First, re-
call that in addition to the noisy stochastic gradient descent, each
path-traced sample is itself a noisy Monte Carlo estimate. The path-
traced sample values often include extremely high-valued outliers
caused by improbable light paths. Therefore, we regularize this sig-
nal by clamping gradients to ±10−8 (before Adam rescaling) to
prevent these outliers from contaminating the optimized textures.

Another important observation is that at each iteration, only a
subset of the scene is observed and can receive meaningful gra-
dients. Moreover, the moment estimates maintained by Adam in-
evitably include Monte Carlo stochastic estimation noise from pre-
vious iterations’ gradients. As a result, at each step of the optimizer,
noisy momentum is applied repeatedly to all variables, even those
not observed in the current batch. As long as no new observations
are made for a given variable, the noise pattern in its momentum
remains fixed, impeding convergence. To alleviate this issue, we
restrict the application of momentum within the optimizer, as well
as updates to the moments, to variables which receive nonzero gra-
dients at that iteration.

Discarding indirect gradients. Using differentiable path tracing
to compute global illumination, we found gradients for indirectly-
observed parameters to be extremely noisy due to the low sampling
probability of long light paths. Understandably, an observation of
a wall tells us relatively little about the opposite wall, even though
some indirect light has likely come from there. When the available
data allows, it is preferable to rely on direct observations, in order
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to minimize variance. Therefore, we exclude indirect light bounces
from the gradient computation. This results in memory and com-
putational savings as well as faster convergence due to the reduced
noise in gradients. Note that we still compute the correct path traced
solution, so global illumination is fully accounted for: the net effect
is simply to restrict gradient-based updates to regions that are di-
rectly observed in a given iteration, while disentangling indirect
effects.

Averaging of iterates. Optimization eventually wanders around
the true solution due to Monte Carlo noise in the rendered images.
We apply Polyak-Ruppert averaging [PJ92,Rup88] by maintaining
a running average of the parameter values over the last 10% of the
optimization.

4. Results

We now evaluate our method on challenging real-world scenes and
against previous work. Additional results, including animated se-
quences, validation on synthetic data, a comparison to the method
of Li et al. [LSR∗20], and a study of sensitivity to the input data
quality are available in the supplementary material.

4.1. Reconstruction of real captured scenes

We apply our reconstruction pipeline to the Replica
dataset [SWM∗19], which includes reconstructed geometry,
an approximate instance segmentation, and posed reference
images captured with a handheld rig. While we have used the
provided instance segmentation for convenience, we show in the
supplemental document that a naively-generated segmentation
performs comparably well (see supplemental Section 4). This
input has imperfections, including imperfect camera registration
and missing detailed geometry, which make robust reconstruction
challenging.

In order to compare against captured ground truth, we re-
render the scene from known viewpoints after our reconstruction
is finished. Our re-rendered images match the captured frames
closely, including fine textured details and view-dependent effects,
as shown in Figure 9. The reconstructed scenes do not overfit to the
training views, as shown in the out-of-distribution re-renderings,
animated results and comparisons given in the supplemental video.

4.2. Comparison to prior work

We compare to the state-of-the-art method of Azi-
nović et al. [ALKN19] for joint materials and lighting estimation
in Figure 10. We modify the authors’ implementation to support
Replica’s multiplexed HDR captured images. Spatially-varying
parameters are supported in their method by subdividing the ge-
ometry and assigning one material per triangle. The optimization
is run with the settings recommended in the paper for 6 million
iterations, on the same input data as ours.

Their method only accounts for the first two bounces of light
transport and must thus produce an overly bright base color to fit
the reference, which is especially apparent in shadowed regions,
where most light comes from indirect reflection. Roughness and

specular, as well as other BRDF parameters (not shown) are opti-
mized freely, which leads to implausible high-frequency variations
across surfaces. Finally, a significant amount of Monte Carlo noise
is present in the optimized spatially-varying parameters.

In contrast, our robust pipeline allows us to simulate full global
illumination with a large number of light bounces (we use 8 in prac-
tice as the contribution from further bounces is minimal). Com-
bined with our texture-space sampling method and inductive bi-
ases, our method produces plausible and noise-free results with
more precisely reconstructed albedo, material parameters, and illu-
mination. Finally, shadows are effectively removed from the albedo
texture, and view-dependent effects such as specular highlights are
correctly attributed to material parameters.

4.3. Ablation study

In order to evaluate the impact of each of our method’s component
and design decision, we have conducted a detailed ablation study.
We reconstruct emission and material parameters of the OFFICE-0
scene using 9 variants of our method, progressively adding the fea-
tures described in Section 3. We run each variant for 130 minutes
and compute the pixel-wise Mean Squared Relative Error (MSRE)
with respect to a fixed set 30 reference images chosen at ran-
dom (Figure 11, left). Each feature improves the re-rendering loss
and / or helps achieve more plausible results. For visual inspection,
a crop of the optimized diffuse albedo texture of each variant is
shown in Figure 11 (right).

The baseline (a) uses image-based optimization, the most direct
and ad hoc application of differentiable rendering. Variant (b) uses
our novel texture-space sampling method, described in Section 3.3.
Variants (c) and (d) add our parametrizations of emitters and ma-
terials respectively (Section 3.2). The inductive bias on materials
does not decrease error in this experiment, but does ensure more
plausible results. Understandably, unconstrained optimization may
achieve good error by overfitting, but produce implausible mate-
rial parameters (see Figures 5 and 6). Variant (e) initializes the dif-
fuse albedo parameter with the median of all observations. Variant
(f) clamps gradients to prevent Monte Carlo noise from contami-
nating the textured parameters (Section 3.4), while variant (g) ad-
ditionally prevents the Adam state updates and momentum to be
applied to variables that were not observed in the current iteration.
Variant (h) applies Polyak-Ruppert averaging [PJ92, Rup88]. Fi-
nally, variant (i) uses a coarse-to-fine scheme, progressively intro-
ducing degrees of freedom to the optimization (Section 3.4).

4.4. Implementation

Our implementation is based on the Mitsuba 2 differentiable ren-
derer [NDVZJ19], but our method could be implemented in any
framework providing the relevant derivatives. Each optimization
runs for 12 hours on average on a single NVIDIA Titan RTX GPU
with our research implementation. Orders of magnitude improve-
ments in training speed are possible with an optimized implemen-
tation [NDSRJ20].
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Figure 9: Re-rendering scenes from the Replica dataset [SWM∗19] using the materials and emission parameters recovered by our method
matches the reference images closely, including view-dependent effects and high-frequency detail.
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Figure 10: Given the same inputs, previous work based on differentiable path tracing [ALKN19] outputs textures contaminated by Monte
Carlo rendering noise and exhibits several of the issues outlined in Section 3, including uneven convergence and implausible high-frequency
changes in roughness & specular material parameters.

4.5. Applications

Scenes reconstructed with our method generalize well to out-of-
distribution views and can be rendered from any previously un-
observed viewpoint (Figure 13). We additionally visualize our
method’s outputs: a set of textures representing the scene’s emis-
sion and physically based material parameters (diffuse albedo,
roughness, and specular). They are well disentangled and noise-

free despite significant Monte Carlo noise present during optimiza-
tion and dataset imperfections. In this format, the scene is ready
for use in standard rendering pipelines for photorealistic applica-
tions such as scene editing, novel view synthesis, and relighting.
Figure 12 (left) demonstrates embedding four virtual objects in the
scene, which is a common task for mixed reality applications. With-
out any additional processing or manual work, the inserted objects
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Figure 11: Ablation study: we progressively add features to a naive inverse rendering baseline (a) up to our full method (i). The method of
Azinović et al. [ALKN19] is included for comparison. The rightmost features result in mostly qualitative improvements, that are visualized
with crops of the optimized albedo texture. Our full method (i) recovers the most details while avoiding noise in the texture entirely.

Figure 12: Using our recovered emission and materials, adding
virtual objects to the OFFICE-0 scene (left) automatically results in
correct shadows, reflections and indirect illumination. Scenes can
additionally be relit with arbitrary light sources and rendered from
any viewpoint (right).

blend in and interact correctly with their surrounding (e.g., see re-
flections, shadows, matched lighting).

Figure 12 (right) shows a complete re-lighting of the scene: ex-
isting illumination was removed and a brightly colored light source
was added near the floor. The scene reacts correctly to the new
illumination, and there are no visible residuals of the original il-
lumination the scene was captured in (such as baked shadows or
highlights). Note that this would not be possible without correctly
disentangling materials and lighting, as shown in Figure 2.

We believe these and many other possible applications enable
more seamless integration of real and virtual worlds in scenarios
like virtual and augmented reality, robotics simulation, and dataset
augmentation. Please refer to the supplemental video for an ani-
mated version of these results.

4.6. Limitations

The main limitation of our method is its requirement of the in-
put reconstructed geometry. In our current scene parametrization,
rendered images may only explain observations where geometry is
present. For example, if a highly emissive or specular object is en-
tirely missing from the geometry, its contribution will most likely
be outprojected and attributed to the background objects by the op-
timizer. This behavior can be seen in ROOM-0 (Figure 13). Auto-

matically detecting and adding missing emitters would be a valu-
able improvement in future work.

Our method does not currently handle reconstruction of trans-
parent objects, even if they have correct reconstructed geometry
(which is a challenge in itself). An example is shown in Figure 14:
the back of the chair is incorrectly assigned the color of the ta-
ble that should have been seen through it. Differentiable rendering
is generally well suited to support advanced effects such as trans-
parency and refractions, as the corresponding light transport is well
understood. However, we have limited our light transport simula-
tion to the most common and important effects in order to reduce
the underlying optimization complexity and improve robustness of
the method in common scenarios.

Finally, current automatic differentiation-based differentiable
renderers, such as Mitsuba 2, can consume significant amounts
of GPU memory when accounting for global illumination. Ongo-
ing research on efficient and scalable differentiable rendering [ND-
SRJ20, VSJ21] directly benefits our method by removing this bot-
tleneck.

5. Conclusion and future work

We presented a robust method for material and lighting reconstruc-
tion in large captured environments based on differentiable render-
ing. In order to gracefully handle the unavoidable capture & inputs
imperfections, uneven coverage of the reference images, as well
as correctly disentangling spatially-varying material and illumina-
tion parameters, we introduced a novel texture-space optimization
scheme and carefully chosen inductive biases, which guide the re-
construction toward high-quality minima. We believe our method
provides an important stepping stone towards full scene under-
standing, which opens up new opportunities for scenarios where
realism is important, such as augmented and mixed reality, robotics
and sensory simulation, and synthetic augmentation of datasets.

Differentiable rendering is a powerful paradigm, allowing our
method to be naturally extended in future work to reconstruct a
wider range of appearance (e.g., transparent and refractive sur-
faces), as well as illumination from outdoor scenes (e.g., using an
environment map). Finally, the imperfections of geometric recon-
struction and reference images (such as camera pose, motion blur,
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Figure 13: Scenes obtained with our method can be re-rendered from any viewpoint. The base color texture includes fine detail (4096×4096
resolution) and all recovered parameters are physically based and correctly disentangled.

(a) Reference (b) Optimized

Figure 14: Since the reflectance model used by our method does
not support transparency, the color of the table seen through the
back of the chair is incorrectly attributed to the chair itself.

sensor noise, etc) could be integrated to the differentiable simula-
tion and minimized to further improve reconstruction.
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