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Figure 1: We introduce a new technique for multi-scale appearance modeling of granular materials with complex and spatially varying
grain distributions and optical properties. This scene is modeled after the planet Saturn with its iconic ring depicted using 100 billion grains.
Our technique allows this very large virtual scene to be fully described with 3.4 GB of data (including all precomputed information for
efficient multi-scale rendering).

Abstract
Many real-world materials such as sand, snow, salt, and rice are comprised of large collections of grains. Previously, multi-
scale rendering of granular materials requires precomputing light transport per grain and has difficulty in handling materials
with continuously varying grain properties. Further, existing methods usually describe granular materials by explicitly storing
individual grains, which becomes hugely data-intensive to describe large objects, or replicating small blocks of grains, which
lacks the flexibility to describe materials with grains distributed in nonuniform manners.
We introduce a new method to render granular materials with continuously varying grain optical properties efficiently. This
is achieved using a novel symbolic and differentiable simulation of light transport during precomputation. Additionally, we
introduce a new representation to depict large-scale granular materials with complex grain distributions. After constructing a
template tile as preprocessing, we adapt it at render time to generate large quantities of grains with user-specified distributions.
We demonstrate the effectiveness of our techniques using a few examples with a variety of grain properties and distributions.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

Materials comprised of discrete grains, usually terms as granular
materials, are ubiquitous in the real world. A pile of sand, for in-
stance, contains hundreds of thousands of mineral grains; a snow-

man is comprised of numerous ice flakes; A granular material’s
macro-scale appearance is mostly determined by the shape, optical
properties, and spatial distributions of the constituent grains.

Traditionally, granular materials are usually described using only
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statistical properties such as spatial densities of the grains. Al-
though these compact representations have produced plausible ap-
pearance when viewed at distances where individual primitives are
unresolvable, they lack the details needed for producing realistic
closeup appearances. Further, these models are incapable of cap-
turing visually important phenomena due to the discrete nature of
grains such as specular highlights on individual grains).

Recently, several techniques have been developed to efficiently
model and render granular materials [MPH∗15,MPG∗16]. By pro-
viding explicit expressions of individual grains, these methods have
led to renderings of granular materials with remarkable fidelity and
details. To achieve efficient rendering at both the macro and the
micro scales, these methods precompute light transport for each
type of grain with fixed shapes and optical properties. Although
this works adequately for materials containing instances of a small
number of example grains, the required precomputation becomes
impractical for materials with smoothly changing grain properties.
Further, to model large-scale granular materials, existing methods
replicate a small 3D tile of grains [MPH∗15]. This tiling-based ap-
proach works well for materials that are largely homogeneous but
lacks the generality to capture more complex grain distributions.

We introduce a new technique to efficiently model the appear-
ance of granular materials at multiple scales. Compared to previous
methods, our technique is more general and supports granular ma-
terials with: (i) continuously varying grain optical properties; and
(ii) large quantities of grains distributed in complex and nonuni-
form ways. This improved generality can enable the rendering of
complex granular materials with richly diverse appearances (see
Figures 1, 9–12).

The main contributions of this paper include:

• A symbolic and differentiable Monte Carlo process that allows a
single precomputation to be reused for grains with varying opti-
cal properties;
• A new method to importance sample the precomputed light

transport information at render time;
• A new tile-based representation capable of describing large-scale

granular materials with non-uniform grain distributions.

We validate the accuracy of our method by comparing rendered
results generated using explicit path tracing as well as previous
methods. We further demonstrate the effectiveness of our approach
using a few examples.

2. Related Work

Micro-appearance models. A material’s fine-grained details can
greatly impact how the material appears at much greater scales.
Consequently, several material models, usually referred to as
micro-appearance models, have been developed (e.g., [ZJMB11,
DWMG15]). These models explicitly express materials’ micro-
geometries and offer remarkable fidelity and details. Our model
broadly belongs to this category as it offers grain-level details.

Procedural material models. A few previous methods utilize spe-
cialized procedures to generate micro-geometries for complex ma-
terials such as cloth [SZK15,ZLB16] and wood [LDHM16]. Some

of these techniques (e.g., [LZB17]) allow the micro-geometries to
be realized at render time. Unfortunately, all these techniques are
material-specific, and none of them applies to granular materials,
the main focus of this paper.

Discrete stochastic microfacet models. Jakob et al. [JHY∗14] in-
troduced a technique that leverages recursive stochastic processes
to describe normal variations of a surface’s micro-geometry. The
key idea is to recursively subdivide collections of microfacets, al-
lowing individual facets to be resolved on the fly in an efficient and
consistent way. How we handle large-scale models shares a simi-
lar flavor as this technique: instead of storing individual grains, we
resolve them on the fly.

Granular material rendering. Efficient rendering of granular
materials such as sand, salt, and snow has been studied by a few
prior works. Moon et al. [MWM07] introduced a precomputation-
based method to render granular materials. By precomputing light
transport in groups of grains, a shell tracing algorithm can then use
the precomputed information to speed up the rendering process dra-
matically. Although this technique lacks the flexibility for handling
large-scale heterogeneous materials, it had motivated future works
on this topic and was adopted by some of them (e.g, [MPG∗16]).

Recently, a few techniques have been proposed to model
and render granular materials at multiple physical scales.
Meng et al. [MPH∗15] introduced a framework to model and render
granular materials with densely packed grains. At the finest scale,
individual grains are explicitly expressed as a translucent object
with provided surface geometry as well as interfacial and volumet-
ric scattering profiles. At the macro scale, a granular material is
treated as a homogeneous medium and can be rendered using vol-
umetric path tracing (VPT) and diffusion approximation (DA). By
switching between these representations at render time, this frame-
work enables multi-scale rendering of granular materials with a
good balance between performance and accuracy.

Müller et al. [MPG∗16] later adapted this framework to render
granular materials with heterogeneity. At the micro scale, this work
introduces a new representation that approximates individual grains
as simple spheres with light scattering properties (i.e., grain scatter-
ing distribution functions or GSDFs) precomputed from their origi-
nal representations. Additionally, shell tracing was used (instead of
DA) at the macro scale for better physical accuracy.

The development of both techniques has brought the visual fi-
delity of rendered granular materials to a new level. Unfortunately,
two fundamental limitations remain. First, both methods require
precomputing light transport information per grain (or grain type),
which scales poorly to materials with richly diverse or continuous
changing grain properties. Second, they have difficulties in model-
ing large-scale materials with complex nonuniform grain distribu-
tions.

Our technique addresses these limitations by significantly gener-
alizing the multi-scale framework. Our method can handle grains
with continuous changing properties with minimal precomputa-
tion. Additionally, our approach is capable of efficiently describ-
ing large-scale granular materials with massive numbers of grains
distributed in complex ways. Thanks to these generalizations, our
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technique enables the rendering of large-scale granular materials
with high heterogeneity, leading to visual effects that cannot be
produced with the existing methods.

Symbolic and differentiable rendering. Our work is also closely
related to previous Monte Carlo methods that are symbolic or dif-
ferentiable. Hašan and Ramamoorthi [HR13] developed a tech-
nique that enables interactive editing of single-scattering albedo
by precomputing pixel intensities as polynomials of albedo. Our
method also uses polynomials of grin albedo but in a very differ-
ent context involving importance sampling of polynomial-valued
functions.

Several prior work differentiated Monte Carlo light transport for
solving inverse rendering problems [GZB∗13, KSZ∗15, GLZ16,
ZWDR16, LADL18]. These methods are not symbolic, and the
estimated gradients are generally used to drive stochastic gradi-
ent descent (SGD) optimizations. Our method estimates derivatives
of polynomial coefficients with respect to grain optical densities,
which is quite different from all these previous methods.

Aggregate scattering. Previously, Blumer et al. [BNH∗16] intro-
duced an approach to precompute and store aggregate scattering
operators (AGOs) that describe the overall scattering behavior of
virtual assets. Our technique shares a similar flavor but differs in
two major ways. First, our technique allows a single precomputa-
tion to be reused for grains with varying optical properties. Second,
our method is specialized to granular materials and utilizes a multi-
scale framework that is quite different from the AGOs.

Non-exponential media. Our method is also conceptually related
to prior works studying how light scatters within participating me-
dia comprised of micro-scale particles distributed in correlated
manners [BRM∗18, JAG18, GCH∗19]. These techniques consider
only the statistical properties of the particle distributions, and the
particles are normally assumed to be much smaller than individual
grains.

3. Multi-Scale Appearance Modeling of Grains with
Continuously Varying Properties

We aim to model the appearance of heterogeneous granular mate-
rials in which the constituent grains vary in optical properties and
are distributed spatially in nonuniform ways.

To this end, we leverage multi-scale techniques introduced by
prior works [MPH∗15, MPG∗16], which we breifly review in 3.1,
and introduce a novel technique to render grains with continuously
varying optical properties (i.e., optical density and albedo) while
offering a good balance between accuracy and performance (§3.2–
§3.4).

Additionally, to model large-scale scenes with massive numbers
of grains, we present in §4 a new tile-based method to avoid ex-
plicitly storing individual grains. At the core of this method is a
template tile that can be realized on the fly to form individual tiles
with varying grain counts and radii.

Figure 2: The mean-free path λ
M of a granular material’s

medium approximation captures the expected distance light needs
to travel after leaving a grain for hitting and exiting a next one.

3.1. Preliminaries

We now briefly review the key concepts, introduced by [MPH∗15,
MPG∗16], for multi-scale renderingof granular materials upon
which our technique is built. The basic idea is to use a series of ap-
proximated representations of the original model so that one with
proper amount of details can be used on the fly to offer a good
balance between performance and accuracy.

3.1.1. Grain-Based Modeling

To accelerate light transport simulations at the grain level, a spe-
cial type of BSSRDF termed as the grain scattering distribution
function (GSDF) has been introduced by Müller et al. [MPG∗16].
Specifically, a GSDF fg(xi,ωi,xo,ωo) describes the amount of
light leaving the bounding sphere of a grain at xo with direction
ωo when entering from xi with direction ωi. To reduce the GSDF’s
dimensionality and improve its practical usefulness, the grains are
typically assumed to be oriented randomly, allowing the omission
of xo and the azimuthal component of ωo, yielding

fg(xi,ωi,xo,ωo)≈ α
0
g(βo)δ(ωi +ωo)+α

+
g (βo) pg(xi,ωi,βo),

(1)
where βo denotes the angle between ωo and the surface normal
(of the bounding sphere) at xo. Additionally, α

0
g, α

+
g capture the

probabilities for a light ray with incident angle βo to miss the actual
grain and to leave after interacting with it, respectively. Note that α

0
g

and α
+
g can sum to less than one due to light being absorbed by the

grain. When a light ray misses, its direction remains unchanged,
which is captured by the Dirac delta function δ in Eq. (1). When
the ray hits the grain, a 5D function pg is used to capture the joint
distribution of xi and ωi given βo. This function can be further
approximated in separate form as

pg(xi,ωi,βo)≈ pxg (xi,βo) pωg (ωi,βo). (2)

After the GSDF fg is obtained for each grain, it can then be used
to accelerate the rendering by avoiding the simulation of individual
subsurface scatterings within the grains.

3.1.2. Medium-Based Modeling

When the grain-level details are unnecessary or invisible, granu-
lar materials can be approximated as continuous participating me-
dia whose optical properties are depicted with (potentially spatially
varying) optical density σ

M and scaled phase function f̂ M given
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by the normalized phase function f M multiplied by the single-
scattering albedo aM (i.e., f̂ M = aM f M).

Meng et al. [MPH∗15] have demonstrated that σ
M and f̂ M can

be determined based on the grains’ optical properties and spatial
distributions as follows. The optical density σ

M is given by the re-
ciprocal of the mean-free path λ

M:

σ
M = 1/λ

M, (3)

where

λ
M = λ

β +α
s
λ

s, (4)

with λ
β indicating the expected distance for a ray to travel before

hitting a next bounding sphere; α
s denoting the fraction of rays that

hits the grain and eventually leaving its bounding sphere (among all
rays hitting the bounding sphere); and λ

s being the mean offset of
a ray when it interacts with a grain in its bounding sphere. Figure 2
summarizes the definitions of these quantities.

In Eq. (4), λ
β is in turn given by

λ
β =

(
λ

b +λ
δ
) 1−β

β
+λ

b, (5)

where λ
b is the expected distance to the next bounding sphere; λ

δ

is the mean distance traveled by the ray when it misses the grain;
and β is the conditional probability for the ray to hit the grain given
it hits the bounding sphere. In Eq. (5), the parameters λ

b, λ
β are

obtained via

λ
b =

4r(3)

3r(2)
1− f

f
, λ

δ =
1
N

N

∑
n=1

λ̂
δ
n, (6)

where f is the packing rate [Dul12] that captures the fraction of
volume filled by the grains, N is the number of grains, and r(2),
r(3) respectively indicate the average square and cubic radii of all
grains. Additionally, λ̂

δ
n denotes the expected ray offset when it

misses the n-th grain (but hits its bounding sphere).

The remaining terms α
s and λ

s in Eq. (4) capture how light in-
teracts with the grains (via reflection, refraction, and subsurface
scattering) and are respectively given by

α
s =

1
N

N

∑
n=1

α̂
s
n(σn,an), λ

s =
1
N

N

∑
n=1

λ̂
s
n(σn,an), (7)

where α̂
s
n and λ̂

s
n are the effective albedo given by Eq. (9) and the

mean ray offset (when it intersects with the actual grain) of the n-th
grain, respectively.

Besides σ
M, the scaled phase function f̂ M is given by

f̂ M(ωi ·ωo) =
1
N

N

∑
n=1

f̂n(ωi ·ωo |σn,an), (8)

where f̂n is the effective scaled phase function of the n-th grain
which also determines the grain’s effective albedo:

α̂
s
n(σn,an) = 2π

∫ 1

−1
f̂n(x |σn,an)dx. (9)

To allow medium-level heterogeneity (i.e., spatially varying σ
M

and f̂ M), we store the material properties using 3D grids and eval-
uating Eqs. (3–8) in a per-voxel fashion.

The rest of this section (§3.2–§3.4) provides a detailed descrip-
tion of our multi-scale modeling technique.

3.2. Grain-Based Modeling

We model the shapes of individual grains with polygonal meshes
and the materials as homogeneous participating media (with op-
tional refractive boundaries). The brute-force way to render a gran-
ular material at the grain level is to use explicit path tracing (EPT).

Unfortunately, EPT is highly inefficient due to high model com-
plexity as well as the need to simulate multiple scattering inside
grains. To address this problem, we leverage GSDFs (§3.1.1) to
efficiently model light-grain interactions without simulating indi-
vidual scattering events.

To evaluate the the grain GSDFs (1), one needs to obtain α
0
g

that depends solely on the shape of a grain as well as α
+
g , pxg , and

pωg that depend also on the grain’s optical properties. To estimate
these parameters, a Monte Carlo process analogous to volumetric
path tracing was previously utilized in a per-grain (or per-grain-
type) basis. Unfortunately, this becomes impractical when the grain
optical properties are richly diverse or vary continuously.

To address this problem and allow precomputed GSDFs to be
efficiently evaluated at render time with varying grain optical prop-
erties, we represent GSDFs as functions of not only incident and
outgoing locations and directions but also grain albedo and optical
density. Precisely, we express the GSDF values as polynomials of
grain albedos and interpolate between varying densities using first-
order approximation.

We now provide more details on how our GSDFs are precom-
puted (§3.2.1) and used at render time (§3.2.2).

3.2.1. GSDF Precomputation

We introduce a symbolic and differentiated Monte Carlo process
(Algorithm 1) to precompute our GSDFs. Specifically, for each
type of grain (with fixed shape and boundary BSDF), we express
α
+
g (βo |σ,a), pxg (xi,βo |σ,a), and pωg (ωi,βo |σ,a) in Eq. (1) as

functions of the grain’s optical density σ and single-scattering
albedo a, yielding:

fg(xi,ωi,xo,ωo |σ,a)≈ α
0
g(βo)δ(ωi +ωo) +

α
+
g (βo |σ,a) pxg (xi,βo |σ,a) pωg (ωi,βo |σ,a). (10)

We now describe how α
+
g , pxg , and pωg in Eq. (10) are repre-

sented and precomputed. Due to their similarities, we will focus
on α

+
g . Recall that α

+
g (βo |σ,a) captures the fraction of light with

incident angle βo to leave the grain after interacting with it. We
describe α

+
g as a polynomial of grain albedo a of degree-K with

coefficients cα
0 , . . . , cα

K :

α
+
g (βo |σ,a) =

K

∑
k=0

cα
k (βo,σ)ak =

cα
0 (βo,σ)

...
cα

K(βo,σ)


︸ ︷︷ ︸

=: cα(βo,σ)

·

 1
...

aK


︸ ︷︷ ︸
=: a

, (11)

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

28



Cheng Zhang & Shuang Zhao / Multi-Scale Appearance Modeling of Granular Materials with Continuously Varying Grain Properties

Algorithm 1 Estimating α
+
g using symbolic and differentiated PT

1: function ESTIMATEALPHAG+(βo, σ)
2: cα←{0}K+1, ∂cα←{0}K+1

3: Randomly rotate the grain
4: Initialize a ray (r,ω) with incident angle βo
5: if the ray intersects the actual grain then
6: T ← 1 . Path throughput
7: k← 0 . Number of scatterings
8: `← 0 . Distance traveled inside the grain
9: while ray (r,ω) intersects the grain at r′ do

10: if line segment (r,r′) lies inside the grain then
11: t←− log(rand())/σ

12: `← `+min(t, ‖r′−r‖)
13: else
14: t←∞
15: end if
16: if t < ‖r′−r‖ then . Volumetric scattering
17: k← k+1
18: r′← r+ tω
19: Draw a direction ω′ based on the grain’s

phase function
20: else . Interfacial scattering
21: Draw a direction ω′ based on the grain’s BSDF

and scale T accordingly
22: end if
23: r← r′, ω← ω′

24: end while
25: cα[k]← T
26: ∂cα[k]← (k/σ− `)T . Diff. throughput w.r.t. σ

27: end if
28: return cα, ∂cα

29: end function

where the coefficients cα
k are functions of βo and σ, and the “·”

symbol indicates vector inner product. Note that, when σ and a are
both high, K needs to be large to avoid noticeable energy loss. We
will discuss how this can be handled in §3.4.

Given βo, with the grain optical density σ fixed, we estimate the
coefficient vector cα ∈ RK+1 in Eq. (11) using a modified path
tracing technique that is symbolic with respect to grain albedo a.
In other words, this process returns (the coefficients of) a polyno-
mial of a. A similar process was used previously by Hašan and
Ramamoorthi [HR13].

Unlike conventional path tracing where the path throughput
is scaled by the single-scattering albedo a whenever light scat-
ters within the grain, our symbolic path tracer does not scale the
throughput at these scattering events. Instead, it records the total
number of scatterings on each light transport path. When the light
eventually leaves the grain after k scatterings, the path tracer returns
a vector with its k-th component setting to the final path through-
put T and all the others to zero. Lastly, cα(βo,σ) equals the ex-
pected value of the symbolic path tracing output. Please see Algo-
rithm 1 for a summary of this process.

In Eq. (11), the grain optical density σ is assumed to be fixed.
To allow this parameter to vary continuously at render time without

excessive precomputation, we leverage a first-order approximation:

α
+
g (βo |σ,a)≈ α

+
g (βo |σ0,a)+(σ−σ0)∂α

+
g (βo |σ0,a), (12)

where

∂α
+
g (βo |σ0,a) :=

∂α
+
g

∂σ
(βo |σ0,a) =


∂cα

0
∂σ

(βo,σ0)
...

∂cα

K−1
∂σ

(βo,σ0)


︸ ︷︷ ︸

=: ∂cα(βo,σ0)

·a, (13)

is the partial derivative of Eq. (11) with respect to σ evaluated at
some fixed expansion point σ0.

To estimate ∂cα in Eq. (13), we slightly extend our symbolic path
tracing algorithm (Line 26 of Algorithm 1). Please refer to §1 in the
supplemental document for detailed derivations. Lastly, combining
Eqs. (11–13) yields

α
+
g (βo |σ,a)≈

[
cα(βo,σ0)+(σ−σ0)∂cα(βo,σ0)

]
·a. (14)

The other two terms pxg and pωg in Eq. (10), which are generally
represented as tabulated (i.e., piecewise constant) functions of xi
and ωi, can be estimated similarly via

px
g (βo |σ,a)≈

[
Cx(βo,σ0)+(σ−σ0)∂Cx(βo,σ0)

]
a, (15)

pω
g (βo |σ,a)≈

[
Cω(βo,σ0)+(σ−σ0)∂Cω(βo,σ0)

]
a, (16)

where Cx, ∂Cx, Cω , ∂Cω ∈Rm×(K+1) are coefficient matrices
and their derivatives that can be estimated using similar processes
analogous to Algorithm 1.

In practice, for each βo, we precompute cα, ∂cα, Cx, ∂Cx, Cω

and ∂Cω at a set of predetermined expansion points {σ1,σ2, . . .}.
Further, we pick m= 1802 for pxg and 360×180 for pωg . The choice
of K will be discussed in §3.4. At render time, given any grain
optical density σ, we apply Dutch Taylor expansion [Kra03] using
the two nearest expansion densities. This is achieve by evaluating
Eqs. (14–16) on them, and linearly interpolating the results (see
Figure 3 for an example).

Other optical parameters. Our symbolic and differentiable trac-
ing method described in Algorithm 1 can be easily extended to sup-
port other optical properties such as boundary BSDF and single-
scattering phase function as long as they are parameterized in a
way that can be symbolically differentiated.

3.2.2. GSDF Sampling at Render Time

To efficiently use our precomputed GSDFs specified by Eqs. (10,
14–16) at render time, we need to importance sample them.

Consider the joint sampling of xi and ωi given xo and ωo. Pro-
vided arbitrary grain density σ and single-scattering albedo a, we
first calculate α

+
g (βo |σ,a) via Eq. (14) in O(K) time. Then, we

draw a random number ξ ∼ U [0,1) that in turn leads to one of
three possible outcomes: (i) the ray (xo,−ωo) misses the actual
grain and keeps going forward (when ξ < α

0
g); (ii) the ray inter-

acts with the grain (when α
0
g ≤ ξ < α

0
g +α

+
g (βo |σ,a)) without be-

ing absorbed; and (iii) the ray gets absorbed by the grain (when
ξ≥ α

0
g +α

+
g (βo |σ,a)).
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Figure 3: Render-time GSDF evaluation. Given the grain opti-
cal density σ and albedo a, we evaluate the GSDF functions α

+
g ,

px
g , and pω

g at the render time by computing first-order approxi-
mations (14–16) using two precomputed expansion values closest
to σ and linearly interpolate the results. This examples shows the
evaluation of α

+
g for one fixed βo where each curve illustrate a co-

efficient vector cα or ∂cα. In (a) and (c), we show precomputed cα

or ∂cα at two expansion locations of σ. In (b), at σ = 3.35, we com-
pare our first-order approximation of cα (in blue), the reference (in
green), and a simple linear interpolation obtained using only the
precomputed cα from (a) and (c). Our result matches the reference
perfectly.

In the second case, to obtain xi and ωi, we need to further sample
the GSDF functions pxg and pωg , respectively. This generally boils
down to sampling discrete distributions determined by their tabu-
lated counterparts px

g , p
ω
g ∈ Rm given by Eqs. (15, 16). Unfortu-

nately, fully computing these vectors for every sampling operation
is costly as it involves expensive matrix-vector multiplications. We
instead leverage a new strategy to efficiently sample pxg and pωg .

We now focus on sampling pxg , and pωg can be handled in a sim-
ilar fashion. Let Px

g be an m× (K +1)-matrix given by

Px
g (βo |σ,a) :=Qx

g (βo |σ)


1

a
. . .

aK

 ,

where Qx
g (βo |σ) :=Cx(βo,σ0)+(σ−σ0)∂Cx(βo,σ0).

(17)

According to Eqs . (15, 17), it is easy to verify that the j-th
component of px

g ∈ Rm equals the sum of all elements in the j-
th row of Px

g ∈ Rm×(K+1). Thus, sampling j with a probability
mass proportional to px

g can be achieved by drawing an element
( j,k) ∈ {0, . . . ,m− 1}× {0, . . . ,K} from Px

g (with a probability
proportional to the element values) and returning the row index j.

We leverage a matrix row-column sampling schemeto impor-
tance sample Px

g efficiently. Specifically, we first draw a column
k with a probability proportional to sum(Px

g [:,k]), the sum of all
elements in the k-th column of Px

g which in turn equals

sum(Px
g [:,k]) =

[
sum(Cx[:,k])+ (σ−σ0)sum(∂Cx[:,k])

]
ak.
(18)

To compute Eq. (18) efficiently, we precompute and store the col-
umn sums of coefficient matrices Cx and ∂Cx. This allows the
sampling of k to be accomplished in O(K) time.

After k is drawn, we sample a row j with a probability propor-

tional to Qx
g [ j,k] in O(m) time. Lastly, xi is drawn uniformly from

S j, the j-th subdomain of S2 (provided by the tabulation of pxg ).
The full sampling process runs in O(K +m) time and is summa-
rized in Algorithm 2 in the supplemental document.

3.3. Medium-Based Modeling

As stated in §3.1.2, granular materials can be modeled as continu-
ous participating media at physical scales where individual grains
cannot be resolved. We follow the formulation introduced in §3.2
by expressing the medium-level parameters σ

M and f̂ M as polyno-
mials of grain albedo a evaluated at expansion densities {σ}.

Precomputing and sampling medium parameters. Obtaining
the medium scattering properties σ

M, aM, and f M of a voxel via
Eqs. (3–8) requires the grain-level mean ray offsets λ̂

δ and λ̂
s as

well as the scaled phase function f̂ and effective albedo α̂
s. Except

λ̂
δ which only relies on a grain’s shape, all the other parameters

depend on the grain’s optical properties σ and a.

To allow efficient precomputation and rendering, we leverage
the same formulation used for GSDFs (§3.2.1) by representing the
mean ray offset λ̂

s and scaled phase function f̂ as

λ̂
s(σ,a)≈

[
cλ̂

s
(σ0)+(σ−σ0)∂cλ̂

s
(σ0)

]
·a, (19)

f̂ (x |σ,a)≈
[
C f̂ (x,σ0)+(σ−σ0)∂C f̂ (x,σ0)

]
a. (20)

In Eqs. (19, 20), the coefficient vectors cλ̂
s
,∂cλ̂

s
∈RK and matrices

C f̂ ,∂C f̂ ∈Rm×K can be estimated using an adapted version of our
symbolic and differentiated path tracing (Algorithm 1).

In practice, for each type of grain (with fixed shape and surface
BSDF), we precompute λ̂

δ (that is independent of grain scattering
properties) as well as cλ̂

s
, ∂cλ̂

s
, C f̂ , and ∂C f̂ at a set of predeter-

mined σ values Σ := {σ1,σ2, . . .}.

At render time, when using VPT, we sample free-flight distances
using delta tracking [WMHL65] which only requires per-point
evaluations of σ

M using Eqs. (3–7, 19). When sampling medium
scattering and absorption using the scaled phase function f̂ M, we
first pick a grain n uniformly at random and then sample its effec-
tive scaled phase function f̂n using a matrix row-column sampling
scheme similar to §3.2.2.

Multi-scale rendering. We have described three methods to ren-
der a granular material. Explicit path tracing (EPT) can be used to
render the material with each grain fully described. This method
offers the best fidelity but is also the most expensive. Proxy path
tracing (PPT) uses GSDFs to speed up the rendering of individual
grains at the cost of losing grain-level details. This approach is par-
ticularly useful in handling highly scattering grains. Lastly, volume
path tracing (VPT) renders the material as a continuous medium
and is best suited for large-scale problems where individual grains
are invisible.

We switch between these methods on the fly using heuristics
similar to those introduced by prior works [MPH∗15, MPG∗16].
Specifically, we switch from EPT to PPT after light interacting with
the grain at least once. When deciding whether to switch to VPT,

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

30



Cheng Zhang & Shuang Zhao / Multi-Scale Appearance Modeling of Granular Materials with Continuously Varying Grain Properties

we consider distances between current scattering locations (of a set
of simultaneously traced light transport paths) to the surface of the
medium as well as the variance of these locations. Notice that these
heuristics are entirely orthogonal to our technique and can be re-
placed with more sophisticated ones if needed.

Beyond VPT. When storing the precomputed medium scattering
(i.e., radiative transfer) parameters in a voxelized fashion, the gran-
ular material, as a standard heterogeneous participating medium,
can then be rendered using existing techniques such as precom-
puted shell transport [MWM07, MPG∗16] and diffusion meth-
ods [AWB11, MPH∗15]) that are more efficient than volume path
tracing (VPT). Notice that storing full medium-level models as 3D
volumes is usually practical (as opposed to realizing all grains) be-
cause individual voxels generally contain large quantities of grains.
As the use of shell transport/diffusion methods is orthogonal to our
technique, we use VPT to render our models at the coarsest level.

3.4. Supporting Highly Scattering Grains

In §3.2 and §3.3, for fixed grain density σ, we used degree-K
polynomials of the grain albedo a to symbolically express the
GSDF functions α

+
g , pxg , pωg , the radiative transfer parameters λ̂

s,
f̂ , and their derivatives. To support highly-scattering grains (i.e.,
those with high optical density σ and single-scattering albedo a),
high-order polynomials are needed to avoid noticeable energy loss.
Unfortunately, this yields not only larger data footprints but also
slower rendering due to more expensive polynomial evaluations.

To address this problem, we extend our polynomials in a way
that, instead of simply neglecting all coefficients beyond some fixed
degree K, we approximate them analytically so that the resulting
polynomials effectively have infinite degrees.

Extended polynomials. According to our experiments, the poly-
nomial coefficients {ck} for all the GSDF and radiative transfer pa-
rameters decrease in a roughly exponential fashion when k is large.
In other words, there exists some τ > 0 such that, for all k > K,

ck ≈ cK eτ(K−k). (21)

Figure 4-a illustrates such an example. Then, by storing
c0,c1, . . . ,cK and τ, we effectively obtain a polynomial that has in-
finite degree and can be evaluated efficiently via

∞
∑

k=K+1
ck ak = cK

∞
∑
n=1

(
e−τa

)n
=

e−τa
1− e−τa

. (22)

To acquire τ, we precompute the polynomial coefficients {ck}
up to some degree K′� K and solve a least square problem in the
logarithmic space. This gives

τ =
∑

K′−K
n=1 (n∆cn)

2

∑
K′−K
n=1 n2

, where ∆cn := log(cK)− log(cK+n). (23)

Please see §2 in the supplemental document for the derivation.

Recall that, to obtain the coefficient ck(σ) for arbitrary grain den-
sity σ at render time, we used first-order approximations (14–16,
19, 20) for k ≤ K. Although this can be done for the extended co-
efficients (i.e., ck with k > K) as well, which is discussed in §2
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Figure 4: The exponential falloff of polynomial coefficients. In
(a), we illustrate a GSDF function α

+
g (βo) where each row of the

image illustrates a coefficient vector cα with a fixed βo. At σ = 10,
extended polynomials with degree 20 can accurately capture the
long tails of all the coefficient vectors, as shown in (b) and (c).

in the supplemental document, we found it unnecessary. This is
because, when k is large, ∂ck is generally so small that simple lin-
ear interpolations of ck works adequately. That is, we can express
ck(σ) by linearly interpolating ck(σ0) and ck(σ1), the values of ck
precomputed at the neighboring expansion points σ0 and σ1 (with
σ0 ≤ σ≤ σ1). Precisely, for all k > K,

ck(σ)≈ σ1−σ

σ1−σ0
ck(σ0)+

σ−σ0
σ1−σ0

ck(σ1)

= σ1−σ

σ1−σ0
cK(σ0)eτ(σ0)(K−k)+ σ−σ0

σ1−σ0
cK(σ1)eτ(σ1)(K−k).

(24)

Energy conservation. To ensure that our GSDFs and medium
scattering parameters represented using extended polynomials con-
serve energy, we simply clamp the corresponding albedo values
(α0

g +α
+
g ) and α̂

s to one. In practice, this clamping occurs very
rarely thanks to the accurate approximation provided by Eq. (21).

Sampling extended polynomials. In §3.2, we introduced a matrix
row-column sampling scheme to efficiently sample the polynomial-
valued GSDF pxg , pωg and scaled phase function f̂ M. That is, to
sample a discrete distribution with m outcomes each with a proba-
bility given by a degree-K polynomial, we construct an m× (K +
1)-matrix P using the polynomial weights. Then, we first draw a
column of P , and then draw a row from that column.

To support our extended polynomials, we add a new column to
the matrix P that captures the polynomial coefficients described
analytically via Eq. (21). Given the grain optical properties σ and a,
elements in this additional column can be calculated using Eqs. (22,
24). During the sampling process at render time, we can first com-
pute the elements in the added column, obtain their sum, and
apply the row-column sampling scheme to the new matrix with
(m+1) columns. In this way, the entire sampling process still takes
O(m+K) time.

To further improve the sampling performance, we approximate
the sum of all elements from the added column using another ex-
ponential function, removing the need to iterate over each element
of the additional column in each sampling step. This is particularly
helpful when the grain albedo is low since it avoids wasting time
evaluating the element values given that the added column is un-
likely to be sampled in the first place. Although the extra approxi-
mation could reduce result accuracy, we do not observe any visible
difference when using approximated column sums in practice.
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4. Tile-Based Modeling of Granular Materials

Previously, individual grains in a granular material are either
explicitly stored [MPG∗16] or obtained by replicating a single
tile [MPH∗15]. These methods have difficulties in handling large-
scale materials with non-uniform grain properties and distributions.
To address this problem, we introduce a new tile-based represen-
tation for granular materials. This model describes the grains us-
ing a three-dimensional grid of tiles that can be realized at render
time (§4.1). Then, in §4.2, we show how this model can be rendered
using our multi-scale framework described in §3.

4.1. Tile-Based Representation

Under our tile-based representation, a granular material is depicted
via a set of tiles. Each tile T j, in turn, is a three-dimensional cell
that records the locations of a few uniformly distributed grains.
The number of grains can vary between tiles, allowing the mod-
eling of large-scale nonuniform grain distributions. Notice that our
tiles only specifies the grain locations. Other attributes including
the grains’ shapes, sizes, and optical properties are specified sepa-
rately via a process detailed later in this subsection.

Provided the desired number of grainsN j in each tile T j, we aim
to represent and construct all the tiles efficiently without the need
to store the locations for individual grains.

Template tile. At the core of our tile-based model is a template
tile T that stores all possible in-tile grain locations y1,y2, . . . ∈ R3

which are then reused to instantiate all the tiles. Specifically, each
tile T j is obtained by selecting a subset of N j grain locations from
the template.

To this end, we sort the grain centers in the template tile so that
any prefix {y1,y2, . . . ,yk} are distributed evenly. Additionally, for
each prefix with k centers, we calculate and store the maximal ra-
dius R̃k for k spheres located at the center locations to have no in-
tersection. Namely,

R̃k := sup{r : B(yi,r)∩B(y j,r) = ∅ for all 1≤ i < j ≤ k},
(25)

where B(y,r)⊂ R3 denotes the sphere centered at y with radius r.

Tile precomputation. We use a technique developed in computa-
tional physics [SDST06] to generate the grain centers in our tem-
plate tile. This technique offers a highly packing rate while preserv-
ing visual realism (by avoiding visible repetitive patterns).

To rank the generated centers in the template tile, we leverage
a dart-throwing based technique that was originally developed in
Poisson-disc sampling [KCODL06, Yuk15] and works as follows.
Given a set of pre-generated center locations, a random one is cho-
sen as y1. Then, for i = 1,2, . . ., the next grain center yi+1 is picked
(among the unused centers) such that the distance to all chosen cen-
ters (tiled infinitely) is maximized.

Notice that, for Poisson-disc sampling, multiple template tiles
are normally used to avoid repetitive sample patterns. Although our
model representation is fully compatible with multiple such tiles,
we use only one in practice since the variations in grain shape, ori-
entation, and appearance, when combined with our added random-

Medium
Cell/Voxel

Tile

Figure 5: An illustration of our tile-based representation which
expresses grains with complex nonuniform spatial distribution us-
ing a 3D grid in which each cell, or voxel, is in turn comprised of a
number of tiles.

nesses (see the discussions below), make periodic center locations
virtually impossible to perceive.

Introducing randomness. For tiles with identical grain counts, al-
ways arranging the grains at the same center locations from the
template tile can result in visible repetitive patterns. To address this
problem, we introduce randomnesses to the model.

For a tile T j that needsN j grains with some desired radius r j, let
n=max{k : R̃k ≥ r j}. Then, spheres centered at y1,y2, . . . ,yn with
radii r j are guaranteed to be intersection-free. Thus, we can pick
any subset containingN j elements as the grain center locations for
tile T j , allowing additional randomness to be introduced.

In practice, we randomly choose a contiguous subsequence of
y1,y2, . . . ,yn with N j elements. To be precise, we draw an in-
teger t, the index of the first element in the subsequence, from
{1,2, . . . ,n−N j + 1} uniformly at random. The grain centers yt ,
yt+1, . . ., yt+N j−1 are then assigned to tile T j. Here we use con-
tiguous subsequences (instead general ones) since they can be ran-
domly selected very efficiently while providing sufficient visual
variation.

Beyond tiles. To specify the number of grainsN j for each tile T j,
we use a regular 3D grid in which each cell contains multiple tiles
(see Figure 5). By specifying the desired grain count at each grid
vertex, we can then obtain the grain density ρ(x) for any location
x via tri interpolation. Then, we have

N j =

⌊∫
T j

ρ(x)dx
⌋
. (26)

The grain radius r j can be specified similarly using another 3D grid.

Specifying grain properties. With the grain locations and radii
expressed, we now describe how the properties of each grain are
specified. We assume the granular material to contain a few types
of grains such that those of the same type share identical shapes
and surface BSDFs but can have varying scattering parameters (i.e.,
optical density σ and single-scattering albedo a).

Based on this assumption, we use a 3D grid that stores at each
vertex a weight wi for every grain type i. Then, at render time, we
randomly assign a type i to each grain in tile T j with a probability:

pi :=

∫
T j

wi(x)dx

∑i
∫
T j

wi(x)dx
, (27)
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Figure 6: Our precomputed GSDFs obtained via Algorithm 1 allow grain optical properties σ and a to be varied smoothly at render time.
In this example, we illustrate the α

+
g components of two GSDFs evaluated at fixed albedo values (top). The ticks at the x−axis indicate the

expansion locations where the derivatives are precomputed and stored. Additionally, we show grain renderings generated using reference and
our GSDFs with identical albedo a and varying optical densities σ (bottom). Renderings of grains with fixed orientations and 8×-absolute
error images (containing mostly Monte Carlo noise) are shown as insets.
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Figure 7: Scaled phase functions f̂ at the grain level determine a granular material’s medium scattering parameters σ
M and f̂ M via Eqs. (3–

9). In this example, we validate our scaled phase functions (which allows grain optical properties to vary at render time) precomputed for the
two grains used in Figure 6.

where wi(x) is obtained by linearly interpolating the correspond-
ing weights at the grid vertices. Lastly, the optical properties of
each grain are specified by evaluating two user-provided functions
σ(x) and a(x), which can be expressed in piecewise fashions or
procedurally, at the center of the grain.

Medium scattering parameters. Our tile-based models can be
approximated as continuous participating media using the approach

described in §3.3. In this case, we treat each tile T j as a voxel and
compute its optical density σ

M and scaled phase function f̂ M on
the fly. Notice that the summations over all grains in the voxel (6–
8) can be computed efficiently as weighted sums over each grain
type.
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4.2. Ray-Tracing Tile-Based Granular Materials

The rendering techniques introduced in §3 are compatible with our
tile-based representation of granular materials.

To render our tile-based model at the finest scale using explicit
path tracing (EPT), the key operation is to compute the intersection
between a given ray and all grain surfaces. Since the grains are not
stored individually, we introduce a new algorithm to efficiently ray-
trace our model. This algorithm works at two separate scales: cell
and tile.

Computing ray-cell intersections. We precompute a bounding
volume hierarchy (BVH) based on the 3D grids that specify the
grain distributions Ni for each grain type i. Recall that each cell in
this grid generally contains multiple tiles. The BVH’s root node
contains the entire grid while its leaf corresponds to individual
cells. When splitting a node, we always follow the cell boundaries
so that each cell belongs to exactly one node in any depth of the
hierarchy. At render time, this BVH helps to quickly compute ray-
cell intersections.

When the ray hits a cell, we need to check if it indeed intersects
a grain inside. To this end, we subdivide the cell on the fly until
reaching a single tile. Lastly, we use a customized Kd-tree precom-
puted for the template tile to efficiently identify if the ray hits any
grain in this tile (see below for more discussions). The full render-
time ray intersection computation is summarized in Algorithm 3 in
the supplemental document.

Computing ray-tile intersections. When reaching a leaf of the
precomputed BVH, we need to test if a given ray intersects any
grains within the cell. As a grid cell is generally comprised of multi-
ple tiles, this boils down to ray-trace individual tiles. To do this effi-
ciently, we pre-construct a Kd-tree using the surface-area heuristics
(SAH) for the template tile. This Kd-tree contains all grain cen-
ters as points in 3D, and its internal nodes also record the range
of grain indices from the corresponding subtrees. When comput-
ing the intersection between the ray and an actual tile T j specified
with (i) an interval [u,v] indicating the range of template grains are
in this tile and (ii) the grain radii r j, we traverse the precomputed
Kd-tree from the root. During the traversal, we quickly prune all
subtrees with constituent grains having indicies disjoint of [u,v].

5. Results

We now demonstrate the effectiveness of our technique via a few
examples. In §5.1, we validate our method by comparing GSDF
renderings of individual grains. In §5.2, we show rendered results
of a few heterogeneous granular materials with a range of grain
distributions and properties at greatly varying physical scales.

We implemented our technique based on the Mitsuba physically
based renderer [Jak18]. All our precomputed models are stored in
uncompressed binary format using 16-bit floats.

5.1. Validations and Evaluations

In §3, we introduced a new symbolic and differentiated Monte
Carlo process to precompute GSDFs and medium scattering param-
eters while allowing the grain optical properties to be continuously

varied at render time. Figures 6 and 7 show validations of our pre-
computed GSDFs and grain-level scaled phase functions (which in
turn determine the medium scattering parameters) for two exam-
ple grains. Results obtained using our first-order approximations,
i.e., Eqs. (14–16, 19, 20), closely match the references obtained
with existing techniques [MPH∗15, MPG∗16] (that apply conven-
tional Monte Carlo simulations to fixed combinations of grain op-
tical properties). Notice that both the reference and our GSDF re-
sults approximate expected grain appearances (with random orien-
tations).

Additionally, we demonstrate the effectiveness of our polyno-
mial representation Eqs. (11) and (12) in Figure 8. This example
involves a material of grains with gradually changing colors (Fig-
ure 8-a). A naïve solution is to discretize the grain optical proper-
ties (i.e., albedo and density) into a number of bins and precompute
Disney GSDFs and medium properties in a per-bin basis. This, with
similar total model sizes, can lead to noticeable discontinuities (as
shown in Figure 8-b). Another baseline is to compute GSDFs by
linearly interpolating those precomputed at a discrete set of grain
properties (i.e., density and albedo values). This, however, yields
limited physical accuracy (Figure 8-c) due to the non-linearity of
GSDFs. The accuracy can be further increased if we depict symbol-
ically in grain albedo using the polynomial representation Eq.(11)
(Figure 8-d). Our method offers significantly better physical accu-
racy (see Figure 8-e).

Lastly, we provide a white furnace test to demonstrate the effec-
tiveness of our extended polynomials formulation Eq. (21) in the
supplemental document.

5.2. Main Results

We now show a few examples rendered with our technique. De-
tailed model size and render time statistics for all these examples
are available in Table 1.

Models with explicitly described grains. Figures 9 and 10 con-
tain renderings of granular materials with the grains described and
stored individually. In Figures 9, we show a pile of 172 K grains
with gradually changing colors, an effect that cannot be efficiently
handled by prior methods. Thanks to our symbolic and differen-
tiable path tracing process, our method is capable of efficiently ren-
dering this model at high accuracy with minimal precomputation.

Figure 10 shows another example where 144 K translucent
grains with smoothly varying optical densities fall through a funnel.
An early and a late state of the grains during this process are shown
in this figure, and our method successfully captures the smooth
change of grain translucency nicely. Please refer to the accompa-
nying video for the full animation.

Models using our tile-based representation. Figures 10 and 12
show examples modeled with our tile-based approach described in
§4 and rendered with explicit path tracing (EPT) and the multi-scale
approach (EPT+PPT+VPT) discussed in §3.

In Figure 11, we show a castle comprised of 4.5 billion highly
scattering grains with similar optical properties as those in Figure

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

34



Cheng Zhang & Shuang Zhao / Multi-Scale Appearance Modeling of Granular Materials with Continuously Varying Grain Properties

(a) Reference (b) No interp.

(c) Linear 1 (d) Linear 2

(e) Ours

Rel. error: 0% 60%

Figure 8: Effectiveness of our approach: when representing
materials with gradually changing grain properties, using GSDFs
and medium properties precomputed at coarsely discretized grain
albedo and densities can lead to visually distracting artifacts (b).
Depicting those properties by linearly interpolating between grain
properties can provide visually plausible results but is limited in
physical accuracy (c). The accuracy can be further increased if us-
ing the polynomial representation to depict the grain albedo (d).
Our first-order-approximation-based method offers significantly
better accuracy (e).

Table 1: Data size and performance statistics. Render times are
measured in time to unit variance (TTUV) in a similar fashion as
Meng et al. [MPH∗15].

Scene Grain Data size (GB) TTUV (sec.)
count GSDF others ref. ours

Pile (Fig. 9) 172 K 1.08 0.16 18.47 4.21
Funnel (Fig. 10) 128 K 1.52 0.41 11.52 3.36
Castle (Fig. 11) 4.5 B 6.51 0.33 838.96 131.42
Explosion (Fig. 12) 10 B 2.6 0.58 82.56 1.6
Saturn (Fig. 1, 12) 100 B 0.72 2.67 7.74 0.024

2 in the supplement. Thanks to our extended polynomial repre-
sentation, our method manages to closely resemble the reference
appearance while using simple truncated polynomial suffers from
high energy loss.

Lastly, Figure 12 shows another two large-scale models ex-
pressed using our tile-based method. On the top of this figure,
we show an explosion of 10 billion grains with spatially varying
shapes, sizes, optical densities, and single-scattering albedo. Our
technique enjoys the efficiency to model this challenging scene
without storing individual grains. Further, multi-scale rendering
enabled by our precomputation yields significantly better perfor-
mance.

On the bottom of Figure 12, we show renderings of the Saturn

Reference (EPT)

Ours (EPT+PPT+VPT)

(c) EPT (d) PPT (e) VPT

Figure 9: Component-wise evaluation of our technique. We en-
able multi-scale rendering of granular materials by switching be-
tween explicit path tracing (EPT), proxy path tracing (PPT), and
volumetric path tracing (VPT) on the fly. This example shows the
contribution of each component when rendering a pile of colorful
grains.

Figure 10: Renderings of explicitly stored grains. This example
shows two frames of an animation in which translucent grains with
spatially varying optical densities going through a funnel. Please
refer to the accompanying video for the full animation.

model used in Figure 1 where the ring consists of 100 billion grains
with two main types: bright ice blocks and dark space rocks. Grains
within each type have continuously varying sizes and albedo, and
the spatial distribution and optical properties of the grains fully
drive the macro-scale color variation on the ring. Granular mate-
rials with this level of scale and complexity cannot be handled eas-
ily with prior methods. Our technique offers the generality to effi-
ciently model and render this material, and our multi-scale render-
ings closely match the reference at vastly varying physical scales.
Please see the supplemental video for an animated version of this
result.
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Truncated polynomial

Reference

Extended polynomial

Reference

Figure 11: Renderings of our tile-based representation. This
castle model consists of 4.5 billion highly scattering grains with
albedo up to 0.9995 and smoothly changing colors. With our ex-
tended polynomial representation for the GSDF and VPT parame-
ters, the result matches the reference closely. When using conven-
tional truncated polynomials, the result suffers from high energy
loss.

6. Discussion and Conclusion

Limitations and future work. Our symbolic and differentiable
precomputation only supports varying grain optical properties at
render time. Allowing grain shapes to change by differentiating
with respect to its geometry may be a useful extension. Also, in-
tegrating efficient approximated rendering methods such as pre-
computed shell transport (e.g., [MWM07]) and diffusion methods
(e.g., [AWB11]) into our multi-scale rendering framework can be
valuable. Lastly, grains described using our tile-based method can-
not be easily animated as the grain locations are largely fixed at the
tile level. An interesting challenge is to generalize the template tile
to support animations in a temporally consistent fashion.

Conclusion. We introduced a new technique to render heteroge-
neous granular materials. Leveraging a symbolic and differentiable
Monte Carlo process, our technique allows a single precomputa-
tion of grain-light interaction to be reused for grains with varying
optical properties. This flexibility enables efficient multi-scale ren-
dering of materials with continuously changing grain properties.
Further, we show how highly scattering grains can be supported
efficiently by extending the polynomials analytically. In addition,
we presented a tile-based framework to model large-scale granular
materials. Our approach groups individual grains into tiles that are
realized on the fly based on a precomputed template tile. Differ-
ent tiles can have varying grain counts and sizes, allowing grains
distributed in complex and non-uniform ways to be described com-
pactly.

We demonstrated the generality and effectiveness of our tech-

nique on a few examples, featuring heterogeneous granular materi-
als with varying scales, grain distributions and optical properties.
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Our model (EPT+PPT+VPT)

Our model (EPT)

200× 1000× 200× 1000×

Our model (EPT+PPT+VPT)

Our model (EPT)

25× 200× 1000× 5000×

Figure 12: Large-scale models represented with our tile-based approach. (top) An explosion scene involving 10 billions multi-colored
grains with smoothly varying colors and sizes. (bottom) A virtual scene modeled after planet Saturn with the ring comprised of 100 billion
ice and rock grains.
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