
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Compression, Segmentation, and Modeling of Filamentary
Volumetric Data

Bruce H. McCormick, Brad Busse, Purna Doddapaneni, Zeki Melek, and John Keyser

Department of Computer Science, 3112 Texas A&M University
College Station, TX, 77843-3112 USA

Abstract:
We present a data structure for the representation of filamentary volumetric data, called the L-block. While the L-block can be used to
represent arbitrary volume data sets, it is particularly geared towards representing long, thin, branching structures that prior volumetric
representations have difficulty dealing with efficiently. The data structure is designed to allow for easy compression, storage,
segmentation, and reconstruction of volumetric data such as scanned neuronal data. By “polymerizing” adjacent connected voxels into
connected components, L-block construction facilitates real-time data compression and segmentation, as well as subsequent geometric
modeling and visualization of embedded objects within the volume data set. We describe its application in the context of reconstruction
of brain microstructure at a neuronal level of detail.

Categories and Subject Descriptors (according to ACM CCS): I.3.5[Computer Graphics]: Curve, Surface, Solid, and Curve Generation,
I.4.10[Image Processing and Computer Vision]:Image Representation – Volumetric, J.3[Computer Applications]:Biology and Genetics

1. Introduction

1.1 Motivation

 Recent advances in biomedical data capture have highlighted
inadequacies in existing volumetric modeling approaches. Many
of the existing modeling techniques are not suited for the nature of
the data being captured or the analysis that must be performed on
the data. As the collection of this data becomes more common,
the need for appropriate tools to model and analyze the data
becomes more important.
 The work presented in this paper describes a volumetric data
structure that is suitable for modeling within this newer
environment. Our work is particularly motivated by our attempts
to scan and reconstruct stained brain tissue at a neuronal level of
detail. New data collection techniques allow this data to be
collected at rates far exceeding those previously possible.
Furthermore, existing modeling techniques have difficulty
representing the shape of the objects being reconstructed in a
fashion that supports analysis.
 To give greater context to our problem, we briefly describe
data collection and the distinguishing features of our data sets and
analysis needs.

1.2 Data Collection

 The Knife Edge Scanning Microscope (KESM) is a unique
instrument developed at Texas A&M for the collection of
volumetric data from brain tissue embedded in plastic [McC02].

The KESM uses knife-edge scanning, where a diamond knife acts
as both a cutting tool and an optical element (directing the light),
and tissue is scanned while being cut. A line-scan camera is used
to record at the optical limit a linear array of pixels seen through
a microscope, which focuses on the area just behind the cutting
edge of the knife. As successive sections of tissue are taken
deeper in the specimen, a volumetric data set is formed from the
“stacks” of images. The imaging can be in either grayscale or
color, depending on the camera.
 When fully operational, an entire mouse brain scanned by the
KESM would yield approximately 30 terabytes of raw volumetric
data at the limit of optical resolution. . A small portion of one
section imaged from test scans of KESM is shown in Figure 1.
 Other 3D microscopes currently under development have the
potential to produce terabytes of data; our work could easily be
applied to these data sets.

1.3 Distinguishing Features of Our Data

 Among the features that distinguish our data from more
common biological volumetric data sets are:
• The full volume data set can be extremely large. Raw data set

sizes can reach into terabytes.
• The data of interest within the volume data sets (i.e., the

stained neuronal tissue) tends to be sparse, taking up only a
modest portion of the overall volume.

• Segments of the neurons to be modeled have a very long but
thin (as opposed to blobby) structure.

• The neurons have a high degree of branching.

Figure 1. A portion of a section from the KESM. A Nissl stain was used, so only cell bodies are stained. The section shown is
only 500 pixels by 5500 pixels, representing a tiny fraction of the overall brain.

 The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

B. McCormick et al. / Compression, Segmentation, and Modeling of Filametary Volume Data

1.4 Requirements of Analysis

 Analysis of the neuronal data also varies from traditional
volumetric analysis requirements. Due to the large volumetric
data size, it is not feasible to maintain the entire volumetric region
in main memory at once. Only a few sections of raw volume data
can be kept in memory at any point in time. The real-world data
tends to be noisy, with tiny, false “specks” appearing throughout
the volume. We need to be able to identify and delete these
easily. Another problem is the very high data acquisition rate. We
need to be able to compress and store data rapidly. For the same
reason, we would like to be able to exploit parallelism in
processing the data.
 Random access to the individual voxels from the entire
volume is not a necessary feature. Due to the amount of data and
its acquisition rate, we are interested in accessing only voxels
“connected” to some group of voxels.
 We need to be able to easily “thread” data – find out how data
is connected to other regions, as well as capture gross shape
properties of the data. Thus, we need a representation scheme that
is geometrically meaningful. And finally, like most methods, we
need interactive display routines to assist visualization.

2. Previous Work

 A number of data structures can be used to describe volumetric
solids. A current and detailed summary of the most important of
these methods is given by Winter [Win02].
 The simplest form of describing volumetric solids is spatial-
occupancy enumeration, where the individual voxels of interest
are listed and stored individually in a fixed, regular, rectilinear 3D
array. To address the excessive overhead and cumbersome
operations on such structures, the octree, uses a hierarchical
spatial-occupancy approach [JT80] [Sam84] [SW88] [SW288]. It
provides a consistent way to recursively subdivide the modeling
space until all voxel elements are homogeneous. The octree
suffers from a high pre-computation cost and cannot be
incrementally constructed, which is necessary for the acquisition
of neuronal data.
 Other spatial subdivision approaches include the BSP-tree
[FKN80]. This approach recursively divides space by an arbitrary
plane at each level, usually dividing the remaining points equally.
Being a spatial subdivision approach, the BSP-tree is forced to
define planes based on the decomposition of space, rather than the
structure of the object itself. Similar to BSP-trees, kD-trees
[OV82] also subdivide space recursively, but at each level the
(axis aligned) direction and exact position of the plane can be
chosen. They suffer from the same shortcomings as BSP trees.
 Axis-aligned bounding box trees (AABB-trees) [van97], more
commonly used in collision detection, are used by our data
structure. These trees consist of a hierarchical collection of iso-
rectangular boxes, each bounding the boxes of child nodes. The
key difference in our approach is that the enhanced data allows us
to easily build boxes incrementally and to maintain connectivity
between nodes without having to go through a parent node.
 We have found these and other volumetric representation
techniques to be deficient in addressing at least one of the features
we care about. Due to the potential data size, methods that keep
the entire volume in memory at once are unrealistic. Several
methods (such as the octree) are poorly suited for modeling long,
thin structures. Medial-axis methods, while good for representing
neurons, tend to process too slowly and can require too much data
to be stored in memory. Pure image and video compression
techniques work well for compression, but fail to give any

meaningful insight into the geometric structure of the objects to
be modeled.

3. Representation and Operations

3.1 Enhanced volume data sets

 Allowing data compression in real time in a manner that
facilitates subsequent segmentation of the volume data set is one
of our main concerns. We also need to provide data compression
and segmentation strategies that exploit the efficiencies of
examining successive serial images, yet are independent of the
axis chosen for serial sectioning. Separation of segmentation from
both geometric modeling and visualization of the identified
objects in the volume data set is required.
 We define an enhanced volume data set (EVDS) as follows: in
addition to the value assigned to every vertex (voxel) of the grid,
selected edges between vertices of the grid are given a Boolean
label of 1 for active edges and 0 for inactive edges. This
enhancement alone can aid in topological analysis of the relevant
data [KR89]. Edge labeling is used to provide independent
information about whether two vertices sharing a common active
edge belong to the same underlying object. Far more advanced
methods for describing digital topology exist [EHV*03]; we are
capturing only basic connectivity between components at a local
level.
 It is important to note that the decision function used to assign
the Boolean values is essentially the segmentation process, and is
of primary importance in determining how faithful a particular
segmentation or reconstruction is. We have developed and
experimented with a variety of decision functions, generally based
on statistical analysis of large-scale scanned regions, and analysis
of prior reconstruction by manual editing.
 Any enhanced volume data set (in three dimensions) can have
many representations. Most useful for our purposes is an
assignment at each vertex, in addition to the voxel value, of a
Boolean vector indicating the activity level of the edges
emanating from the vertex. Vertices at the boundary of the grid
may lack some edges; we treat these as inactive.
 The number of edges emanating from any one vertex is
referred to as the connectivity level. Placing edges in the axis
directions (i.e. (i,j,k) is connected to (i+1,j,k), (i,j+1,k), and
(i,j,k+1)) gives 3-connectivity. Imagining an axis-aligned cube
around the vertex, 3-connectivity would give connections across
each face. Connections across the edges as well would yield 9-
connectivity, while including the corners in addition would yield
13-connectivity. A vertex in an EVDS with 3-connectivity can be
thought of as having “links” that extend to neighboring vertices
along the three axes. Thus it behaves somewhat like a Lego®
block, with connections possible along 3 axes.
 Given an EVDS, “whitespace” is defined as vertices that do
not satisfy some threshold test. Often this threshold test is
equivalent to determining whether any of the edges leading to or
from the vertex are active.

3.2 L-blocks

 An L-block is defined as a 3-dimensional iso-rectangular block
of enhanced vertex information. An (l1, l2, l3) L-block refers to a
block of l1 vertices in the x-direction, etc. Each L-block includes
both a header and a vertex block. The header defines both the
position, e.g. (x,y,z), of its least vertex and its template (l1, l2, l3).
The vertex block contains the enhanced vertex information (voxel

 The Eurographics Association 2004.

334

B. McCormick et al. / Compression, Segmentation, and Modeling of Filametary Volume Data

value(s) and edge labels) for all voxels in the isorectangular block
defined by the header.
 The L-block as a whole can be visualized as a block of
vertices, with extensions that demonstrate connectivity (see
Figure 2).

Figure 2. A (3,3,2) L-block. Cylinders represent active edges

emanating from the L-block.

3.3 Notation

 Hereafter, we will use the following abbreviations. An L-
block will be referred to as an LB, with the template optionally
given immediately beforehand. For example, a single voxel could
be described by a (1,1,1)LB. LBs sharing an active edge are
assumed to be connected. We store connected LBs in a
hierarchical data structure, similar to an AABB-tree, that we refer
to as an L-block covering, which we abbreviate LBC.

3.4 The polymerization strategy

 The polymerization strategy refers to the construction of an
enhanced data set stored as an LBC to encompass an object of
interest within a given volume. This strategy will be successful to
the extent that the data-dependent edge-labeling function captures
the connectivity of the underlying physical objects in the scanned
block. In practice, we usually use a conservative labeling
function initially, allowing us to quickly segment and compress a
superset of the critical data. Later, more sophisticated (and
slower) techniques can be applied to these initial LBCs in order
to adjust the edge labeling.
 Focusing on connected components in the extended volume
data set and efficiently packaging these within LBCs can
significantly compress an EVDS. Isolated vertices outside the
connected components may also be retained as individual LBs.
The remaining vertices outside these coverings are treated as
“white space”, and ignored in subsequent image processing.
Given an EVDS then, polymerization lets us retain only the data
we care about, allowing for significant compression.
 Volume data generated by serial sectioning and scanning of a
three-dimensional specimen can be compressed in real time by
incrementally generating the EVDS. As each consecutive image is
scanned, only its immediate predecessor needs to be retained in
memory, while the current image data is enhanced and
incrementally added to the evolving EVDS. For example, let
consecutive serial sections be scanned in the XY plane at depths
of Z and Z+1 respectively. The Z+1-plane image data is used to
enhance the Z-plane image data. Regions-of-interest in the Z-
plane image are then packaged in (m n 1) L-blocks and added to
the evolving compressed representation of the EVDS. This is a
key advantage of the LBC approach in that it allows us to process,
compress, and (coarsely) segment data on the fly based on only a
local set of data.

4. Operations with LBCs

4.1 LBCs as Geometric Superstructures

 L-block coverings can be viewed as a geometric
superstructure, encapsulating several other common volumetric
representations. These include grid-sampled data, enumerated
voxels, octrees, BSP-trees, kD-trees, and AABB-trees (see section
2). LBCs can be used to describe these structures, with the same
algorithmic benefits, but possibly at an increased storage cost. We
refer the reader elsewhere for the details of this encapsulation
[MBM*02].

4.2 KESM Specific Operations

 The most important motivation behind the LBCs is the huge
data flow in the KESM pipeline. The amount of data we have
does not allow us to generate data structures that keep all the data
in memory. LBs can be generated by processing only two
consecutive layers in memory, and filtering and thresholding on
the fly, while the next layer is scanned. Other data structures are
also suitable for on the fly generation using only partial data, but
their implementations are rather complex, whereas the LB
generation is straightforward and extremely simple to implement.
For more details see section 5.1.
 Filtering and thresholding in image space can detect 2D noise
but there is still 3D noise left in the volumetric data. This 3D
noise arises from scanning limitations as well as staining artifacts.
The LB structure allows us to easily detect 3D noise by looking
for small isolated blocks. Since LBC is a local packaging
structure, noise will be wrapped in small isolated packages. For
more information, refer to section 5.2.
 Since LBs consist of axis-aligned boxes, finding neighboring
LBs within LBCs is fast. However, since two neighboring LBs
might not be connected, the EVDSs must be checked to determine
whether a connection actually exists.
 Threading is described in section 5.3. The LB data structure
allows us to work with blocks of data for initial thread generation,
rather than with the pure volumetric data, making our algorithms
run faster. The same is true for estimating thread thickness. While
other data structures might have faster random access, their
algorithm complexity can become a limiting factor.

4.3 General Operations

 A pure LB data structure is not as convenient for random
access as other commonly used volumetric data structures.
However, our hierarchical LBCs can give better performance,
giving the same access times as other hierarchicies. Still, random
access may be slower than for a spatial subdivision approach. On
the other hand, in the KESM pipeline, random access is not one of
the required operations.
 Isosurface calculation can be easily used for visualization..
Here we can use LBCs to our advantage, generating isosurface
pieces per LBC, which is largely parallelizable. In our current
implementation, we have used isosplats [CHJ03] for interactive
isosurface generation and display. The surface continuity to the
neighboring LBs is guaranteed by using the connectivity
information already generated in the EVDS. The hierarchical LBC
also helps performance if raytracing is used for visualization.
 For any two features, a very fast and fairly tight lower bound
on distance can be obtained from the minimum distance between
their encapsulating LBCs. To find features within a given distance
we can use the dilation process. Dilated LBs will overlap with

 The Eurographics Association 2004.

335

B. McCormick et al. / Compression, Segmentation, and Modeling of Filametary Volume Data

those near by, and this then becomes an AABB collision detection
problem, which is well studied.

4.3.1. Case Study: Comparison between LBC and Octrees
 As a case study we compare the header overhead of LBCs vs
octrees for two data sets. Our first set consists of 90 sections of
250x230 resolution, a total of ~5Mbytes of raw grayscale data.
This portion of the data includes several long thin neuron
processes. Filtering and noise detection leaves us with 572,304
data points. LB storage stores some additional white space
totaling 20,272 locations, into a total of 28,930 LBs. If stored as
octree, this data requires 123,046 tree nodes plus overhead.
 What is the overhead of the LB storage? Since the data is only
250x230x90, we can use 6 bytes per LB. We also store some
whitespace, totaling 20,272 bytes which must be considered as
part of the overhead. Finally, each LB must be pointed to from the
LBC. This makes the total cost for using LBCs (excluding the
cost of storing the grayscale information itself) 251,712 bytes.
 For octrees, the header cost is one bit for marking leaf nodes,
and a 2 byte pointer for each node. The total cost for of the octree
for the same data is 261,473 bytes – more than for the LBCs.
 Another data set shows different characteristics. This data set
only contains cell bodies, which tend to be short and blobby, and
consists of 100 sections of 500x500 resolution, making the total
volumetric data storage 25 Mbytes. Filtering and noise detection
leaves us with 156,831 bytes, stored in 10,684 LBs with
additional 188,359 cells of whitespace included. Note that the
whitespace included is a lot larger than in the previous case,
because the cell bodies form chunks of data irregularly shaped.
The header cost is 284,515 bytes. The octree version has 83,273
tree nodes, and the total cost is 176,996 bytes.
 One should note that the second set of data is the worst case
behavior for the LB data structure, and the best case for the
octree. Even then, the additional cost is not that large. The first
data set is typical of the volumetric data we will deal with, though
on a smaller scale. Thus, using the LB data structure we get on the
fly generation, noise detection, and simpler threading, with only
minor or even less overhead than using octree storage.

5. Application

 We describe here the results of the polymerization strategy
applied to a sample database of scanned neuronal data –
demonstrating the utility of our approach for the compression,
storage, segmentation, and reconstruction of volume data.

5.1 Forming the EVDS

 We use our L-block structure to process the volume data sets
obtained from sets of serial scanned sections of stained mouse
brain tissue. These sections were scanned using the Knife Edge
Scanning Microscope (KESM) [McC02] and are of the size 4096
x 50,000. Note that due to limitations on the amount of scanned
data available now and initial limitations on the microscope setup,
we deal with much smaller data sets in the examples. However,
this method is being developed to handle the larger data sets that
wil

 To test our polymerization strategy, we have considered two
specific sets of data, one consisting of mostly threads and the
other mostly of cell bodies and considered only partial data. For
the first case we have 90 sections, each of 250x230 resolution.
And for the second we have 100 sections, each of 500x500
resolution. Each voxel of the data set represents a volume of 0.37
µ m by 0.37 µ m by 0.5 µ m. The Z direction is taken to be
perpendicular to the image plane. The details of this data set have
been described in [BMT*01]. A sample of the input sections is
shown in Figure 3.
 For the examples presented here, we use very simple functions
to determine valid vertices and edge labels. We consider vertices
significant if they pass a simple thresholding test (e.g. have
grayscale values above a certain level and below another level).
Edges are labeled active iff both of the adjacent vertices are
significant. While future reconstruction efforts will likely involve
more complex labeling functions, these suffice for making an
EVDS for initial testing purposes.

Figure 3. Two sections in our dataset.

5.2 Compression of Data

The memory needed to hold useful amounts of uncompressed
neuronal data is exceedingly large. For example, the raw KESM
data for an entire mouse brain requires approximately 30 terabytes
and is a continuous data stream. For this reason, space saving
features of the L-block structure and compression of the initial
data are very important.
 The majority of data compression takes place during the
thresholding stage. Voxels that do not pass a thresholding stage
are considered “white space”. The EVDS is partitioned into 2x2x2
cells. If any of the voxels in a cell is valid (i.e. passes the
threshold test), that cell is stored as a (2, 2, 2) LB. The
compression achieved depends on the stain, the threshold used,
and the density of the data. For the two data sets (250x230x90,
500x500x100) considered from the Golgi-stained data set, the
uncompressed data requires approximately 5 MB and 25 MB of
storage space respectively. With realistic threshold levels, we
form 65,611 LBs and 50,218 LBs, requiring about 1.1 MB and 0.8
MB to store, yielding compression factors of approximately 4
(20%) and 31(3.2%) respectively.

We employ two types of noise reduction strategies. The first
consists of removing large smear noise that exists on single layers.
The second method of noise removal eliminates small
disconnected LBs. Table 1 gives the detailed statistics obtained
during the entire process of reconstruction. Combining LBs

e

336
l be generated in the near future. minimizes the overhead of the header information. Whil

2x2x2 LBs Noise Removal I Noise Removal II Compression Cleaning Data Set
LBs LBCs LBs LBCs LBs LBCs LBs LBCs LBs LBCs

250x230x90 65611 2353 64737 2131 60784 1150 28938 1150 28930 1148
500x500x100 50218 4450 43506 3327 40887 2500 10684 2490 10648 2484
Table 1. L-block construction statistics

 The Eurographics Association 2004.

B. McCormick et al. / Compression, Segmentation, and Modeling of Filametary Volume Data

combining two (2, 2, 2)LBs is straightforward, combining larger
LBs with smaller ones may be more problematic. Since LBs store
all data in an iso-rectangular volume, expanding an LB might
require storing “white” space along with relevant data. To
determine whether or not it is appropriate to create such LBs, we
use a cost function based on the relative storage requirements for
the merged and unmerged LBs. We consider merging LBs in each
of the positive X, Y, and Z axis directions. The L-blocks are
extended if the space that would be saved by eliminating L-block
overhead is greater than the space lost by storing empty data. For
the entire data set, our merging strategy reduces the total number
of LBs twofold (28,938) and fourfold (10,684), requiring less than
0.4 MB and 0.18 MB of storage respectively.
 Note that these strategies are well suited for processing 3D
microscopic data where data arrives one “section” at a time and
each section must be processed in real time. Merging LBs requires
only storage of the (possibly already combined) LBs that cover
portions of the immediately preceding section – typically there
will be relatively few such LBs, and in any case, the number is
bounded by the size of the section. Finally, noise reduction can be
applied to only those LBs currently in memory.
 In the first data set, since we concentrate on the threads, the
occupancy of the threads is greater and the amount of white space
is less. For the second data set (where we classify primarily cell
bodies), since there are few cell bodies in the region we get very
good compression rates. From Table 1, we can see that the
acquired compression rate due to noise removal techniques is not
much. The reason for this is that, before starting with the first
stage of reconstruction, some image-based filtering is done to get
rid of some scanning artifacts. Some of the filtering techniques
include contrast enhancement, applying a mean filter and a
median filter, and multiplying in the X, Y and Z directions.

Figure 4. Filtered data stored as LBCs

5.3 Data segmentation

 Taking advantage of the fact that neuronal data is both sparse
and clustered, our data is combined into clusters, defined as
groups of interconnecting LBs. If two LBs border on each other
and at least one of the voxels on the border has an active link to a
voxel in the other LB, both LBs are considered to be in the same
cluster, and these are joined in an LBC. Since the voxels
themselves are used to determine cluster boundaries, this scheme
effectively segments the data, i.e. it does not group two pieces of
data that should have been separate. If LBs are clustered before
merging (see section 5.2), the space of LBs to be examined for
potential merging is reduced, thus speeding up the algorithm.
Once the LBCs are formed they can be processed in parallel.

 Figure 6c shows an example of the connectivity between the
LBs from a close-up region from Figure 4. The lines in the figure
indicate that the LBs centered at each endpoint are joined by an
active edge, and thus are grouped together in a cluster.

5.4 Neuron Reconstruction

 We have implemented a method for extracting neuron models
based on the segmented LBC. This is presented primarily to show
the utility of the LB/LBC data structure, and not as an ideal
neuron reconstruction algorithm. Note that our goal is actual
neuron modeling, not simply visualization [ASK94]. We begin by
dilating the LBs within each cluster, and LBs overlap (in extent)
“nearby” LBs. We join these overlapping LBCs, effectively filling
in gaps that could be missing due to noise. We form an expanded
connectivity graph, linking the overlapping dilated LBs (Figure
6c). Of course, this also joins some LBCs that should be kept
separate, therefore the complexity of the connectivity graph is
reduced in order to identify the major threads along which the
neuron lies. This complexity reduction involves identifying short
cycles that do not change the global topology. The LB structure
allows us to work with packages, rather than the data contained
within, decreasing the memory requirements of the algorithms.

Figure 5. A view of the reconstructed neurons

 The expanded connectivity graph is then simplified into a tree
format (i.e. a hierarchical LBC) that captures the major dendritic
threads passing through the sample section set (this tree is used
for storage and does not necessarily describe the neuron structure
itself). “Fine-scale” detail is removed temporarily, which can be
identified based in part on the LB sizes and their connectivity with
the rest of the graph. This simplifies the connectivity graph
considerably. Graph algorithms are applied to simplify the graph
further. We note that these graph simplifications are rather
complex; their justification is beyond the scope of this paper. A
“thread axis”, possibly including branching, is constructed around
which the hierarchical LBC can be created. Given the hierarchical
LBC, a medial axis approximation can be obtained. Using radius
estimation, the medial axis representation can be iteratively
refined to match the LB representation (Figure 6e). A 3D
reconstructed view can be seen in Figure 5. Note that because the
reconstruction region is so small, we have only portions of each
neuron, and thus we do not capture much of the branching
structure typical of neurons.

6. Conclusion

6.1 Summary

 We introduce a new data structure optimized for the
representation of filamentary volumetric solids. There are two key

 The Eurographics Association 2004.

337

B. McCormick et al. / Compression, Segmentation, and Modeling of Filametary Volume Data

components of our data structure. First, we describe the enhanced
volume data set (EVDS), where the data set is enhanced by
explicitly introducing Boolean labeling of edges between adjacent
voxels of the volume data. Next, we introduce a new container
type, the L-block. L-blocks are designed to efficiently package
the connected components of the EVDS, with a minimum of
adjacent unconnected voxels. We have implemented the L-block
structure described, and present a comparison with other data
structures and the results of its application to some sample neuron
data. The structure is well suited for sparse, clustered data, for
which it provides very good compression. The data structure is
very general, and flexible, and is capable of mimicking the
operation of other data structures.

6.2 Further Work

Currently, we are working on expanding on the LBs/LBCs in the
following ways:
• The polymerization strategy on volume data is highly

dependent on the edge labeling strategy. Developing an
effective edge-labeling strategy is thus important for the
polymerization strategy to be effective.

• The threading approach used here is still somewhat ad hoc.
We are exploring alternative and more formal ways of
generating threads from an LBC’s graph.

• We are seeking ways of getting improved visualizations of
LBCs and their contained data, particularly over large
regions.

Acknowledgement

 This work was supported by Texas Higher Education
Coordinating Board ATP grant 000512-0146-2001 and NSF grant
CCR-0220047.

References

[ASK94] Avila R. S., Sobierajski L. M., Kaufmann A. E.,
Visualizing Nerve Cells. IEEE Computer Graphics
and Applications, (Sept. 1994), pp. 11-13.

[BMT*01] Burton B.P., McCormick B.H., Torp R., Fallon
J.H., Three-Dimensional Reconstruction of
Neuronal Forests. Neurocomputing, (2001), 38-
40:1643-1650.

[CHJ03] Co C.S., Hamann B., and Joy K.I, Iso-splatting: A
Point Based Alternative to Isosurface
Visualization, Pacific Graphics 2003 Proceedings,
2003, pp 325-334.

[EHV*03] Edelsbrunner, H., Harer, J., Natarajan, V.,
Pascucci, V., Morse Complexes for Piecewise
Linear 3-Manifolds. Proceedings of ACM
Symposium on Compuatational Geometry, (2003),
pp. 361-370.

[FKN80] Fuchs, H., Kedem, Z., Naylor, B., On Visible
Surface Generation by A Priori Tree Structures,
Proceedings of SIGGRAPH, pp. 124-133, 1980.

[JT80] Jackins C., Tanimoto S. L., Oct-trees and Their
Use in Representing 3-D Objects. Computer
Graphics and Image Processing 14, (1980), pp.
249-270.

[KR89] Kong T.Y., Rosenfeld A., Digital Topology:
Introduction and Survey. Computer Vision,
Graphics, and Image Processing 48, (1989), pp.
357-393.

[McC02] McCormick B.H., Development of the Brain Tissue
Scanner. Technical Report, Department of
Computer Science, Texas A&M University,
College Station, TX, 18 (Mar. 2002). Available
from http://research.cs.tamu.edu/bnl

[MBM*02] McCormick B.H., Busse B., Melek Z., Keyser J.,
Polymerization Strategy for the Compression,
Segmentation, and Modeling of Volumetric Data.
Technical Report 2002-12-1, Department of
Computer Science, Texas A&M University, (Dec.
2002). Availabe at: http://research.cs.tamu.edu/bnl

[OV82] Overmars M. H., Van Leeuwen J., Dynamic Multi-
Dimensional Data structures Based on Quad- and
k-D Trees. Acta Inform. 17, (1982), pp. 267-235.

[Sam84] Samet H., The Quadtree and Related Hierarchical
Data Structures. ACM Computing Survey 16,
(1984).

[SW88] Samet H., Webber R. E., Hierarchical Data
Structures and Algorithms for Computer Graphics,
Part 1: Fundamentals. IEEE Computer Graphics
and Applications 5, (1988), pp. 48-68.

[SW288] Samet H., Webber R. E., Hierarchical Data
Structures and Algorithms for Computer Graphics,
Part 2: Applications. IEEE Computer Graphics
and Applications 7, (1988), pp. 59-75.

[van97] van den Bergen G., Efficient Collision Detection of
Complex Deformable Models Using AABB Trees.
Journal of Graphics Tools, 2:4, (1997), pp. 1-13.

[Win02] Winter A.S., Volume Graphics, Field Based
Modelling and Rendering. Ph.D. Thesis,
Department of Computer Science, University of
Wales, Swansea, (Dec. 2002).

338

Figure 6. a) Filtered data b) L-blocks displayed as boxes c,d) connectivity graph e) estimated threads
 The Eurographics Association 2004.

http://research.cs.tamu.edu/bnl
http://research.cs.tamu.edu/bnl

	Introduction
	Motivation
	Data Collection
	Distinguishing Features of Our Data
	Requirements of Analysis

	Previous Work
	Representation and Operations
	Enhanced volume data sets
	L-blocks
	Notation
	The polymerization strategy

	Operations with LBCs
	LBCs as Geometric Superstructures
	KESM Specific Operations
	General Operations
	Case Study: Comparison between LBC and Octrees

	Application
	Forming the EVDS
	Compression of Data
	Data segmentation
	Neuron Reconstruction

	Conclusion
	Summary
	Further Work

	Acknowledgement
	References

