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Abstract: 
We present a data structure for the representation of filamentary volumetric data, called the L-block.  While the L-block can be used to 
represent arbitrary volume data sets, it is particularly geared towards representing long, thin, branching structures that prior volumetric 
representations have difficulty dealing with efficiently.  The data structure is designed to allow for easy compression, storage, 
segmentation, and reconstruction of volumetric data such as scanned neuronal data. By “polymerizing” adjacent connected voxels into 
connected components, L-block construction facilitates real-time data compression and segmentation, as well as subsequent geometric 
modeling and visualization of embedded objects within the volume data set. We describe its application in the context of reconstruction 
of brain microstructure at a neuronal level of detail.  
 
Categories and Subject Descriptors (according to ACM CCS): I.3.5[Computer Graphics]: Curve, Surface, Solid, and Curve Generation, 
I.4.10[Image Processing and Computer Vision]:Image Representation – Volumetric, J.3[Computer Applications]:Biology and Genetics 

1. Introduction 

1.1 Motivation 

 Recent advances in biomedical data capture have highlighted 
inadequacies in existing volumetric modeling approaches. Many 
of the existing modeling techniques are not suited for the nature of 
the data being captured or the analysis that must be performed on 
the data.  As the collection of this data becomes more common, 
the need for appropriate tools to model and analyze the data 
becomes more important. 
 The work presented in this paper describes a volumetric data 
structure that is suitable for modeling within this newer 
environment.  Our work is particularly motivated by our attempts 
to scan and reconstruct stained brain tissue at a neuronal level of 
detail.  New data collection techniques allow this data to be 
collected at rates far exceeding those previously possible.  
Furthermore, existing modeling techniques have difficulty 
representing the shape of the objects being reconstructed in a 
fashion that supports analysis. 
 To give greater context to our problem, we briefly describe 
data collection and the distinguishing features of our data sets and 
analysis needs. 

1.2 Data Collection 

 The Knife Edge Scanning Microscope (KESM) is a unique 
instrument developed at Texas A&M for the collection of 
volumetric data from brain tissue embedded in plastic [McC02].  

The KESM uses knife-edge scanning, where a diamond knife acts 
as both a cutting tool and an optical element (directing the light), 
and tissue is scanned while being cut.  A line-scan camera is used 
to record at the optical limit a linear array  of pixels seen through 
a microscope, which focuses on the area just behind the cutting 
edge of the knife. As successive sections of tissue are taken 
deeper in the specimen, a volumetric data set is formed from the 
“stacks” of images. The imaging can be in either grayscale or 
color, depending on the camera. 
 When fully operational, an entire mouse brain scanned by the 
KESM would yield approximately 30 terabytes of raw volumetric 
data at the limit of optical resolution. .  A small portion of one 
section imaged from test scans of KESM is shown in Figure 1.  
 Other 3D microscopes currently under development have the 
potential to produce terabytes of data; our work could easily be 
applied to these data sets.  

1.3 Distinguishing Features of Our Data 

 Among the features that distinguish our data from more 
common biological volumetric data sets are: 
• The full volume data set can be extremely large.  Raw data set 

sizes can reach into terabytes. 
• The data of interest within the volume data sets (i.e., the 

stained neuronal tissue) tends to be sparse, taking up only a 
modest portion of the overall volume. 

• Segments of the neurons to be modeled have a very long but 
thin (as opposed to blobby) structure. 

• The neurons have a high degree of branching. 

Figure 1. A portion of a section from the KESM.  A Nissl stain was used, so only cell bodies are stained.  The section shown is 
only 500 pixels by 5500 pixels, representing a tiny fraction of the overall brain. 
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1.4 Requirements of Analysis 

 Analysis of the neuronal data also varies from traditional 
volumetric analysis requirements. Due to the large volumetric 
data size, it is not feasible to maintain the entire volumetric region 
in main memory at once.  Only a few sections of raw volume data 
can be kept in memory at any point in time. The real-world data 
tends to be noisy, with tiny, false “specks” appearing throughout 
the volume.  We need to be able to identify and delete these 
easily. Another problem is the very high data acquisition rate. We 
need to be able to compress and store data rapidly. For the same 
reason, we would like to be able to exploit parallelism in 
processing the data. 
 Random access to the individual voxels from the entire 
volume is not a necessary feature.  Due to the amount of data and 
its acquisition rate, we are interested in accessing only voxels 
“connected” to some group of voxels. 
 We need to be able to easily “thread” data – find out how data 
is connected to other regions, as well as capture gross shape 
properties of the data.  Thus, we need a representation scheme that 
is geometrically meaningful. And finally, like most methods, we 
need interactive display routines to assist visualization. 

2. Previous Work 

 A number of data structures can be used to describe volumetric 
solids.  A current and detailed summary of the most important of 
these methods is given by Winter [Win02].  
 The simplest form of describing volumetric solids is spatial-
occupancy enumeration, where the individual voxels of interest 
are listed and stored individually in a fixed, regular, rectilinear 3D 
array. To address the excessive overhead and cumbersome 
operations on such structures, the octree, uses a hierarchical 
spatial-occupancy approach [JT80] [Sam84] [SW88] [SW288]. It 
provides a consistent way to recursively subdivide the modeling 
space until all voxel elements are homogeneous. The octree 
suffers from a high pre-computation cost and cannot be 
incrementally constructed, which is necessary for the acquisition 
of neuronal data. 
 Other spatial subdivision approaches include the BSP-tree 
[FKN80]. This approach recursively divides space by an arbitrary 
plane at each level, usually dividing the remaining points equally. 
Being a spatial subdivision approach, the BSP-tree is forced to 
define planes based on the decomposition of space, rather than the 
structure of the object itself.  Similar to BSP-trees, kD-trees 
[OV82] also subdivide space recursively, but at each level the 
(axis aligned) direction and exact position of the plane can be 
chosen. They suffer from the same shortcomings as BSP trees.  
 Axis-aligned bounding box trees (AABB-trees) [van97], more 
commonly used in collision detection, are used by our data 
structure. These trees consist of a hierarchical collection of iso-
rectangular boxes, each bounding the boxes of child nodes.  The 
key difference in our approach is that the enhanced data allows us 
to easily build boxes incrementally and to maintain connectivity 
between nodes without having to go through a parent node.  
 We have found these and other volumetric representation 
techniques to be deficient in addressing at least one of the features 
we care about.  Due to the potential data size, methods that keep 
the entire volume in memory at once are unrealistic.  Several 
methods (such as the octree) are poorly suited for modeling long, 
thin structures.  Medial-axis methods, while good for representing 
neurons, tend to process too slowly and can require too much data 
to be stored in memory.  Pure image and video compression 
techniques work well for compression, but fail to give any 

meaningful insight into the geometric structure of the objects to 
be modeled.   

3. Representation and Operations 

3.1 Enhanced volume data sets 

 Allowing data compression in real time in a manner that 
facilitates subsequent segmentation of the volume data set is one 
of our main concerns. We also need to provide data compression 
and segmentation strategies that exploit the efficiencies of 
examining successive serial images, yet are independent of the 
axis chosen for serial sectioning. Separation of segmentation from 
both geometric modeling and visualization of the identified 
objects in the volume data set is required.  
 We define an enhanced volume data set (EVDS) as follows: in 
addition to the value assigned to every vertex (voxel) of the grid, 
selected edges between vertices of the grid are given a Boolean 
label of 1 for active edges and 0 for inactive edges. This 
enhancement alone can aid in topological analysis of the relevant 
data [KR89]. Edge labeling is used to provide independent 
information about whether two vertices sharing a common active 
edge belong to the same underlying object.  Far more advanced 
methods for describing digital topology exist [EHV*03]; we are 
capturing only basic connectivity between components at a local 
level. 
 It is important to note that the decision function used to assign 
the Boolean values is essentially the segmentation process, and is 
of primary importance in determining how faithful a particular 
segmentation or reconstruction is. We have developed and 
experimented with a variety of decision functions, generally based 
on statistical analysis of large-scale scanned regions, and analysis 
of prior reconstruction by manual editing.  
 Any enhanced volume data set (in three dimensions) can have 
many representations. Most useful for our purposes is an 
assignment at each vertex, in addition to the voxel value, of a 
Boolean vector indicating the activity level of the edges 
emanating from the vertex. Vertices at the boundary of the grid 
may lack some edges; we treat these as inactive. 
 The number of edges emanating from any one vertex is 
referred to as the connectivity level. Placing edges in the axis 
directions (i.e. (i,j,k) is connected to (i+1,j,k), (i,j+1,k), and 
(i,j,k+1)) gives 3-connectivity. Imagining an axis-aligned cube 
around the vertex, 3-connectivity would give connections across 
each face. Connections across the edges as well would yield 9-
connectivity, while including the corners in addition would yield 
13-connectivity.  A vertex in an EVDS with 3-connectivity can be 
thought of as having “links” that extend to neighboring vertices 
along the three axes. Thus it behaves somewhat like a Lego® 
block, with connections possible along 3 axes.     
 Given an EVDS, “whitespace” is defined as vertices that do 
not satisfy some threshold test. Often this threshold test is 
equivalent to determining whether any of the edges leading to or 
from the vertex are active.      

3.2 L-blocks 

 An L-block is defined as a 3-dimensional iso-rectangular block 
of enhanced vertex information. An (l1, l2, l3) L-block refers to a 
block of l1 vertices in the x-direction, etc. Each L-block includes 
both a header and a vertex block. The header defines both the 
position, e.g. (x,y,z), of its least vertex and its template (l1, l2, l3). 
The vertex block contains the enhanced vertex information (voxel 
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value(s) and edge labels) for all voxels in the isorectangular block 
defined by the header.  
 The L-block as a whole can be visualized as a block of 
vertices, with extensions that demonstrate connectivity (see 
Figure 2). 

 
Figure 2. A (3,3,2) L-block.  Cylinders represent active edges 

emanating from the L-block. 

3.3 Notation 

 Hereafter, we will use the following abbreviations.  An L-
block will be referred to as an LB, with the template optionally 
given immediately beforehand.  For example, a single voxel could 
be described by a (1,1,1)LB. LBs sharing an active edge are 
assumed to be connected.  We store connected LBs in a 
hierarchical data structure, similar to an AABB-tree, that we refer 
to as an L-block covering, which we abbreviate LBC. 

3.4 The polymerization strategy 

 The polymerization strategy refers to the construction of an 
enhanced data set stored as an LBC to encompass an object of 
interest within a given volume. This strategy will be successful to 
the extent that the data-dependent edge-labeling function captures 
the connectivity of the underlying physical objects in the scanned 
block.  In practice, we usually use a conservative labeling 
function initially, allowing us to quickly segment and compress a 
superset of the critical data. Later, more sophisticated (and 
slower) techniques can be applied to these initial LBCs  in order 
to adjust the edge labeling. 
 Focusing on connected components in the extended volume 
data set and efficiently packaging these within LBCs can 
significantly compress an EVDS. Isolated vertices outside the 
connected components may also be retained as individual LBs.  
The remaining vertices outside these coverings are treated as 
“white space”, and ignored in subsequent image processing. 
Given an EVDS then, polymerization lets us retain only the data 
we care about, allowing for significant compression. 
 Volume data generated by serial sectioning and scanning of a 
three-dimensional specimen can be compressed in real time by 
incrementally generating the EVDS. As each consecutive image is 
scanned, only its immediate predecessor needs to be retained in 
memory, while the current image data is enhanced and 
incrementally added to the evolving EVDS. For example, let 
consecutive serial sections be scanned in the XY plane at depths 
of Z and Z+1 respectively. The Z+1-plane image data is used to 
enhance the Z-plane image data. Regions-of-interest in the Z-
plane image are then packaged in (m n 1) L-blocks and added to 
the evolving compressed representation of the EVDS.  This is a 
key advantage of the LBC approach in that it allows us to process, 
compress, and (coarsely) segment data on the fly based on only a 
local set of data.  

4. Operations with LBCs 

4.1 LBCs as Geometric Superstructures 

 L-block coverings can be viewed as a geometric 
superstructure, encapsulating several other common volumetric 
representations.  These include grid-sampled data, enumerated 
voxels, octrees, BSP-trees, kD-trees, and AABB-trees (see section 
2).  LBCs can be used to describe these structures, with the same 
algorithmic benefits, but possibly at an increased storage cost. We 
refer the reader elsewhere for the details of this encapsulation 
[MBM*02]. 

4.2 KESM Specific Operations 

 The most important motivation behind the LBCs is the huge 
data flow in the KESM pipeline. The amount of data we have 
does not allow us to generate data structures that keep all the data 
in memory. LBs can be generated by processing only two 
consecutive layers in memory, and filtering and thresholding on 
the fly, while the next layer is scanned. Other data structures are 
also suitable for on the fly generation using only partial data, but 
their implementations are rather complex, whereas the LB 
generation is straightforward and extremely simple to implement. 
For more details see section 5.1. 
 Filtering and thresholding in image space can detect 2D noise 
but there is still 3D noise left in the volumetric data.  This 3D 
noise arises from scanning limitations as well as staining artifacts. 
The LB structure allows us to easily detect 3D noise by looking 
for small isolated blocks. Since LBC is a local packaging 
structure, noise will be wrapped in small isolated packages. For 
more information, refer to section 5.2. 
 Since LBs consist of axis-aligned boxes, finding neighboring 
LBs within LBCs is fast. However, since two neighboring LBs 
might not be connected, the EVDSs must be checked to determine 
whether a connection actually exists. 
 Threading is described in section 5.3.  The LB data structure 
allows us to work with blocks of data for initial thread generation, 
rather than with the pure volumetric data, making our algorithms 
run faster. The same is true for estimating thread thickness.  While 
other data structures might have faster random access, their 
algorithm complexity can become a limiting factor. 

4.3 General  Operations 

 A pure LB data structure is not as convenient for random 
access as other commonly used volumetric data structures. 
However, our hierarchical LBCs can give better performance, 
giving the same access times as other hierarchicies. Still, random 
access may be slower than for a spatial subdivision approach. On 
the other hand, in the KESM pipeline, random access is not one of 
the required operations. 
 Isosurface calculation can be easily used for visualization.. 
Here we can use LBCs to our advantage, generating isosurface 
pieces per LBC, which is largely parallelizable. In our current 
implementation, we have used isosplats [CHJ03] for interactive 
isosurface generation and display. The surface continuity to the 
neighboring LBs is guaranteed by using the connectivity 
information already generated in the EVDS. The hierarchical LBC 
also helps performance if raytracing is used for visualization.
 For any two features, a very fast and fairly tight lower bound 
on distance can be obtained from the minimum distance between 
their encapsulating LBCs. To find features within a given distance 
we can use the dilation process. Dilated LBs will overlap with 
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those near by, and this then becomes an AABB collision detection 
problem, which is well studied. 

4.3.1. Case Study: Comparison between LBC and Octrees 
 As a case study we compare the header overhead of LBCs vs 
octrees for two data sets. Our first set consists of 90 sections of 
250x230 resolution, a total of ~5Mbytes of raw grayscale data.  
This portion of the data includes several long thin neuron 
processes. Filtering and noise detection leaves us with 572,304 
data points. LB storage stores some additional white space 
totaling 20,272 locations, into a total of 28,930 LBs. If stored as 
octree, this data requires 123,046 tree nodes plus overhead. 
 What is the overhead of the LB storage? Since the data is only 
250x230x90, we can use 6 bytes per LB. We also store some 
whitespace, totaling 20,272 bytes which must be considered as 
part of the overhead. Finally, each LB must be pointed to from the 
LBC. This makes the total cost for using LBCs (excluding the 
cost of storing the grayscale information itself) 251,712 bytes. 
 For octrees, the header cost is one bit for marking leaf nodes, 
and a 2 byte pointer for each node. The total cost for of the octree 
for the same data is 261,473 bytes – more than for the LBCs. 
 Another data set shows different characteristics. This data set 
only contains cell bodies, which tend to be short and blobby, and 
consists of 100 sections of 500x500 resolution, making the total 
volumetric data storage 25 Mbytes. Filtering and noise detection 
leaves us with 156,831 bytes, stored in 10,684 LBs with 
additional 188,359 cells of whitespace included. Note that the 
whitespace included is a lot larger than in the previous case, 
because the cell bodies form chunks of data irregularly shaped. 
The header cost is 284,515 bytes. The octree version has 83,273 
tree nodes, and the total cost is 176,996 bytes. 
 One should note that the second set of data is the worst case 
behavior for the LB data structure, and the best case for the 
octree. Even then, the additional cost is not that large. The first 
data set is typical of the volumetric data we will deal with, though 
on a smaller scale. Thus, using the LB data structure we get on the 
fly generation, noise detection, and simpler threading, with only 
minor or even less overhead than using octree storage. 

5. Application 

 We describe here the results of the polymerization strategy 
applied to a sample database of scanned neuronal data – 
demonstrating the utility of our approach for the compression, 
storage, segmentation, and reconstruction of volume data.  

5.1 Forming the EVDS 

 We use our L-block structure to process the volume data sets 
obtained from sets of serial scanned sections of stained mouse 
brain tissue. These sections were scanned using the Knife Edge 
Scanning Microscope (KESM) [McC02] and are of the size 4096 
x 50,000.   Note that due to limitations on the amount of scanned 
data available now and initial limitations on the microscope setup, 
we deal with much smaller data sets in the examples.  However, 
this method is being developed to handle the larger data sets that 
wil

 To test our polymerization strategy, we have considered two 
specific sets of data, one consisting of mostly threads and the 
other mostly of cell bodies and considered only partial data. For 
the first case we have 90 sections, each of 250x230 resolution. 
And for the second we have 100 sections, each of 500x500 
resolution. Each voxel of the data set represents a volume of 0.37 
µ m by 0.37 µ m by 0.5 µ m.  The Z direction is taken to be 
perpendicular to the image plane. The details of this data set have 
been described in [BMT*01].  A sample of the input sections is 
shown in Figure 3. 
 For the examples presented here, we use very simple functions 
to determine valid vertices and edge labels.  We consider vertices 
significant if they pass a simple thresholding test (e.g. have 
grayscale values above a certain level and below another level).  
Edges are labeled active iff both of the adjacent vertices are 
significant. While future reconstruction efforts will likely involve 
more complex labeling functions, these suffice for making an 
EVDS for initial testing purposes.      

  
Figure 3. Two sections in our dataset. 

5.2 Compression of Data 

The memory needed to hold useful amounts of uncompressed 
neuronal data is exceedingly large.  For example, the raw KESM 
data for an entire mouse brain requires approximately 30 terabytes 
and is a continuous data stream. For this reason, space saving 
features of the L-block structure and compression of the initial 
data are very important. 
 The majority of data compression takes place during the 
thresholding stage. Voxels that do not pass a thresholding stage 
are considered “white space”. The EVDS is partitioned into 2x2x2 
cells. If any of the voxels in a cell is valid (i.e. passes the 
threshold test), that cell is stored as a (2, 2, 2) LB.  The 
compression achieved depends on the stain, the threshold used, 
and the density of the data. For the two data sets (250x230x90, 
500x500x100) considered from the Golgi-stained data set, the 
uncompressed data requires approximately 5 MB and 25 MB of 
storage space respectively.  With realistic threshold levels, we 
form 65,611 LBs and 50,218 LBs, requiring about 1.1 MB and 0.8 
MB to store, yielding  compression factors of approximately 4 
(20%) and 31(3.2%) respectively. 

We employ two types of noise reduction strategies. The first 
consists of removing large smear noise that exists on single layers. 
The second method of noise removal eliminates small 
disconnected LBs. Table 1 gives the detailed statistics obtained 
during the entire process of reconstruction. Combining LBs 

e 
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l be generated in the near future.  minimizes the overhead of the header information. Whil

2x2x2 LBs Noise Removal I Noise Removal II Compression Cleaning Data Set 
LBs LBCs LBs LBCs LBs LBCs LBs LBCs LBs LBCs 

250x230x90 65611 2353 64737 2131 60784 1150 28938 1150 28930 1148 
500x500x100 50218 4450 43506 3327 40887 2500 10684 2490 10648 2484 
Table 1. L-block construction statistics 
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combining two (2, 2, 2)LBs is straightforward, combining larger 
LBs with smaller ones may be more problematic. Since LBs store 
all data in an iso-rectangular volume, expanding an LB might 
require storing “white” space along with relevant data.  To 
determine whether or not it is appropriate to create such LBs, we 
use a cost function based on the relative storage requirements for 
the merged and unmerged LBs. We consider merging LBs in each 
of the positive X, Y, and Z axis directions.  The L-blocks are 
extended if the space that would be saved by eliminating L-block 
overhead is greater than the space lost by storing empty data. For 
the entire data set, our merging strategy reduces the total number 
of LBs twofold (28,938) and fourfold (10,684), requiring less than 
0.4 MB and 0.18 MB of storage respectively.  
 Note that these strategies are well suited for processing 3D 
microscopic data where data arrives one “section” at a time and 
each section must be processed in real time. Merging LBs requires 
only storage of the (possibly already combined) LBs that cover 
portions of the immediately preceding section – typically there 
will be relatively few such LBs, and in any case, the number is 
bounded by the size of the section. Finally, noise reduction can be 
applied to only those LBs currently in memory.  
 In the first data set, since we concentrate on the threads, the 
occupancy of the threads is greater and the amount of white space 
is less. For the second data set (where we classify primarily cell 
bodies), since there are few cell bodies in the region we get very 
good compression rates. From Table 1, we can see that the 
acquired compression rate due to noise removal techniques is not 
much. The reason for this is that, before starting with the first 
stage of reconstruction, some image-based filtering is done to get 
rid of some scanning artifacts. Some of the filtering techniques 
include contrast enhancement, applying a mean filter and a 
median filter, and multiplying in the X, Y and Z directions. 

 
 

Figure 4. Filtered data stored as LBCs 

5.3 Data segmentation 

 Taking advantage of the fact that neuronal data is both sparse 
and clustered, our data is combined into clusters, defined as 
groups of interconnecting LBs. If two LBs border on each other 
and at least one of the voxels on the border has an active link to a 
voxel in the other LB, both LBs are considered to be in the same 
cluster, and these are joined in an LBC. Since the voxels 
themselves are used to determine cluster boundaries, this scheme 
effectively segments the data, i.e. it does not group two pieces of 
data that should have been separate. If LBs are clustered before 
merging (see section 5.2), the space of LBs to be examined for 
potential merging is reduced, thus speeding up the algorithm. 
Once the LBCs are formed they can be processed in parallel.  

 Figure 6c shows an example of the connectivity between the 
LBs from a close-up region from Figure 4. The lines in the figure 
indicate that the LBs centered at each endpoint are joined by an 
active edge, and thus are grouped together in a cluster. 

5.4 Neuron Reconstruction  

 We have implemented a method for extracting  neuron models 
based on the segmented LBC. This is presented primarily to show 
the utility of the LB/LBC data structure, and not as an ideal 
neuron reconstruction algorithm. Note that our goal is actual 
neuron modeling, not simply visualization [ASK94]. We begin by 
dilating the LBs within each cluster, and LBs overlap (in extent) 
“nearby” LBs. We join these overlapping LBCs, effectively filling 
in gaps that could be missing due to noise. We form an expanded 
connectivity graph, linking the overlapping dilated LBs (Figure 
6c). Of course, this also joins some LBCs that should be kept 
separate, therefore the complexity of the connectivity graph is 
reduced in order to identify the major threads along which the 
neuron lies. This complexity reduction involves identifying short 
cycles that do not change the global topology.  The LB structure 
allows us to work with packages, rather than the data contained 
within, decreasing the memory requirements of the algorithms.  

 
 

Figure 5. A view of the reconstructed neurons 
 

 The expanded connectivity graph is then simplified into a tree 
format (i.e. a hierarchical LBC) that captures the major dendritic 
threads passing through the sample section set (this tree is used 
for storage and does not necessarily describe the neuron structure 
itself). “Fine-scale” detail is removed temporarily, which can be 
identified based in part on the LB sizes and their connectivity with 
the rest of the graph.  This simplifies the connectivity graph 
considerably. Graph algorithms are applied to simplify the graph 
further.  We note that these graph simplifications are rather 
complex; their justification is beyond the scope of this paper. A 
“thread axis”, possibly including branching, is constructed around 
which the hierarchical LBC can be created. Given the hierarchical 
LBC, a medial axis approximation can be obtained. Using radius 
estimation, the medial axis representation can be iteratively 
refined to match the LB representation (Figure 6e). A 3D 
reconstructed view can be seen in Figure 5.  Note that because the 
reconstruction region is so small, we have only portions of each 
neuron, and thus we do not capture much of the branching 
structure typical of neurons.  

6. Conclusion 

6.1 Summary 

 We introduce a new data structure optimized for the 
representation of filamentary volumetric solids. There are two key 
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components of our data structure. First, we describe the enhanced 
volume data set (EVDS), where the data set is enhanced by 
explicitly introducing Boolean labeling of edges between adjacent 
voxels of the volume data. Next, we introduce a new container 
type, the L-block.  L-blocks are designed to efficiently package 
the connected components of the EVDS, with a minimum of 
adjacent unconnected voxels. We have implemented the L-block 
structure described, and present a comparison with other data 
structures and the results of its application to some sample neuron 
data. The structure is well suited for sparse, clustered data, for 
which it provides very good compression. The data structure is 
very general, and flexible, and is capable of mimicking the 
operation of other data structures.   

6.2 Further Work 

Currently, we are working on expanding on the LBs/LBCs in the 
following ways: 
• The polymerization strategy on volume data is highly 

dependent on the edge labeling strategy.  Developing an 
effective edge-labeling strategy is thus important for the 
polymerization strategy to be effective. 

• The threading approach used here is still somewhat ad hoc.  
We are exploring alternative and more formal ways of 
generating threads from an LBC’s graph. 

• We are seeking ways of getting improved visualizations of 
LBCs and their contained data, particularly over large 
regions. 
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Figure 6. a) Filtered data b) L-blocks displayed as boxes c,d) connectivity graph e) estimated threads 
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