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Abstract

Shape skeletonization (i.e., medial axis extraction) is powerful in many visual computing applications, such as pattern recog-
nition, object segmentation, registration, and animation. This is because medial axis (or skeleton) provides more compact
representations for solid models while preserving their topological properties and other features. Meanwhile, PDE techniques
are widely utilized in computer graphics fields to model solid objects and natural phenomena, formulate physical laws to govern
the behavior of objects in real world, and provide means to measure the feature of movements, such as velocity, acceleration,
change of energy, etc. Certain PDEs such as diffusion equations and Hamilton-Jacobi equation have been used to detect medial
axes of 2D images and volumetric data with ease. However, using such equations to extract medial axes or skeletons for solid
objects bounded by arbitrary polygonal meshes directly is yet to be fully explored. In this paper, we expand the use of diffusion
equations to approximate medial axes of arbitrary 3D solids represented by polygonal meshes based on their differential prop-
erties. It offers an alternative but natural way for medial axis extraction for commonly used 3D polygonal models. By solving
the PDE along time axis, our system can not only quickly extract diffusion-based medial axes of input meshes, but also allow
users to visualize the extraction process at each time step. In addition, our model provides users a set of manipulation toolkits
to sculpt extracted medial axes, then use diffusion-based techniques to recover corresponding deformed shapes according to
the original input datasets. This skeleton-based shape manipulation offers a fast and easy way for animation and deformation
of complicated solid objects.

Categories and Subject Descriptors (according to ACM CCS): G.1.8 [Numerical Analysis]: Parabolic equations 1.3.5 [Computer
Graphics]: Curve, surface, solid, and object representations 1.3.6 [Computer Graphics]: Interaction techniques 1.3.8 [Computer
Graphics]: Applications

1. Introduction and Motivation Medial axis, also known as skeleton, offers much more sim-
ple and compact representations for arbitrary complex geometric
r and/or solid objects. Ever since it was first proposed and named

by Blum [Blu67][Blu73], medial axis has started to gain more
and more popularity in visual computing areas especially in re-
cent years. It collectively provides useful shape information such
as topology, orientation, and local properties in an intuitive and
compact fashion. For instance, the medial axis of a 2D polygon
can be directly associated with the concept of grassfire transform:
By igniting boundary points of the polygon, the fire propagates in-
ward from the boundary at a uniform speed, and where the fire
front meets and extinguishes itself defines the medial axis in a nat-
ural and physically plausible way. More mathematically, the medial
axis can be defined as the locus of all centers of circles inside the
2D polygon (or spheres inside the 3D object) that are tangent to the
boundary in two or more places [BS00]. The points on the medial
Figure 1: 2D illustration for medial axis. axis (or skeleton) of an object usually have more than one closest
point on the boundary of the object. Fig. 1 shows an illustration
of the medial axis for a 2D shape. In practice medial axis is also
called medial surface and frequently referred as the 3D skeleton
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(especially in bio-medical applications) for 3D models. Hence the
extraction of medial axis is oftentimes called skeletonization.

There are several unique advantages of using medial axis or
skeleton to model geometric objects. First, it provides localization
of features such as anatomical landmarks (which are extremely
valuable in bio-medical applications). Second, it separates thick-
ness information (e.g., radius of medial axis or skeleton) from ori-
entational and topological information, i.e., shape features can be
subdivided into radial, orientational and location information in
order to facilitate statistical analysis. Third, shape differences be-
tween objects can be quantified in a more intuitive and accurate
way. Fourth, it is more expeditious to capture coarse-scale changes
from the acquired models, making it more stable and robust to han-
dle noisy datasets.

Because of its popularity, there are various developed algorithms
using different techniques for medial axis extraction in both 2D
and 3D. However, the stable numerical computation of medial axis
remains a challenging problem.

On the other hand, PDE techniques use Partial Differential Equa-
tions (PDEs) to model a large variety of concepts in computer
graphics and visual computing areas, such as nature phenom-
ena simulation [FM97][KM90][EMP*00][Wit99][YOHO0], visu-
alization [KWHOO][Tur52][Tur91][WK91], and image processing
[BSCBO0][PGBO03], etc. In addition, PDE methods offer an alter-
native way to model both parametric and implicit geometric shapes
[BW90][DQO0][DQO3]. In a nutshell, they define and govern ge-
ometric objects as solutions of a set of differential equations with
boundary/initial conditions.

In comparison with other techniques, PDE methods have many
advantages:

e Natural physical processes are frequently characterized by
PDEs. In principle, PDE models can be controlled by physical
laws, so they are natural and much closer to the real world.

e The formulation of differential equations is well-conditioned and
technically sound. Smooth objects that minimize certain energy
functionals oftentimes are associated with differential equations,
so optimization techniques can be unified with PDE models.

e Many powerful numerical techniques to solve PDEs are com-
mercially available. Parallel algorithms can be employed for
large-scale problems in industrial settings.

e Users can easily understand the underlying physical process as-
sociated with PDEs, therefore, it is possible to implement in-
tuitive and natural control through the modification of physical
parameters.

e PDE models can potentially unify both geometric and physi-
cal aspects. Various heterogeneous requirements can be enforced
and satisfied simultaneously. They are invaluable throughout the
entire modeling, design, analysis, and manufacturing processes.

Because of the aforementioned advantages, PDE techniques
such as level set methods and Hamiltonian system have
been applied for medial axis extraction in recent years
[BS00][KSKB95][STZ99]. However, the existing work of PDE-
based medial axis extraction techniques mainly focus on 2D im-
ages or volumetric data defined on discretized grids. They are of-
ten associated with Euclidean distance transformation to compute
the distance field on 3D lattices. Therefore, the space complex-
ity will increase dramatically for finer resolution. And the com-
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Figure 2: Medial axis extraction using our PDE technique. The
medial axes are shown in red with transparent datasets surrounding
them.

putation of distance fields for complex models will be much more
time-consuming. Using the PDE approach to detect medial axis or
skeleton directly from arbitrary 3D meshes and/or B-reps is still
under-explored in general. In addition, because polygonal meshes
are one of the most dominant representations for geometric models
and widely used in modeling and animation, the medial axis extrac-
tion to facilitate shape analysis and manipulation for such models
will be strongly desirable.

In this paper, we present a PDE technique to extract medial
axes (or skeletons) for arbitrary 3D objects bounded by polygo-
nal meshes. We formulate a diffusion-based equation with differen-
tial properties of the boundary surface to approximate a simplified
medial axis of the object. The diffusion-based equation is solved
numerically along the time axis, therefore users can obtain visual
feedback during the medial axis extraction process. Note that, be-
cause the PDE formulation can also be applied to objects of other
data formats, it is straightforward to further generalize our method
to handle solid objects with other boundary representations. Users
can define their own medial axis for an object by selecting de-
sired boundary points of the object to be skeletal points on the
medial axis. It provides users more degrees of freedom for shape
skeletonization and further manipulation. Our algorithm also al-
lows users to define local regions for skeletonization for part of
the object interactively during the process, which will speed up
the medial axis extraction for complex models. After the medial
axis is extracted, shape manipulation of the original dataset can be
performed by sculpting the skeleton and using our diffusion-based
front propagation technique along with the distance information
between the skeleton and the boundary surface to reconstruct the
deformed shape. Fig. 2 demonstrates some examples of extracted
medial axes from several objects.

The remaining of this paper is organized as follows. Section 2
reviews previous work of medial axis extraction and some related
work of PDE techniques. Section 3 presents the formulation and
numerical approximation of our PDE-based method for medial axis
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extraction. Section 4 details the PDE-based medial axis extraction
from objects with arbitrary polygonal boundary surfaces as well as
shape sculpting and manipulation based on extracted skeletons. In
Section 5, we discuss our method with possible future directions.
Finally, Section 6 concludes the paper.

2. Related Work
2.1. Medial AxisExtraction

In the past several decades, medial axis extraction has been well
studied and there are various techniques for detecting medial axes
of 2D and 3D objects. Here we briefly review several typical ap-
proaches of computing medial axes or skeletons:

e Thinning
To extract the medial axis of an object, one intuitive way is
to peel off the object’s boundary layer by layer. Such thinning
process can be performed iteratively in the discrete domain. It
will retain points on skeletons and maintain object’s topology
[AdB85][LK94][MBPL99]. However, the thinning-based meth-
ods are fundamentally discrete processes and require fully seg-
mented, compact, and connected objects. These techniques have
difficulties to deal with partial data and are sensitive to Euclidean
transformations of the data.

e Distance functions
Because the skeletal or medial surface points usually coin-
cides with the singularities of a Euclidean distance func-
tion to the boundary, distance functions can be employed
for medial axis extraction. The approaches based on distance
functions construct distance field transformation of an ob-
ject and extract the medial axis based on the distance field
[AdB92][BKSO01][FLMO3][GF99][LL92]. However, usually it’s
difficult to ensure homotopy with original objects using tech-
niques based on distance functions.

e \oronoi skeletons
Because the vertices of the Voronoi diagram of a set
of boundary points can converge to the skeleton as the
sampling rate increases under appropriate smoothness con-
ditions [Sch89], \oronoi diagram and its dual Delau-
nay triangulation have been widely adopted for medial
axis extraction [ACKO01][DZ02][GYKD91][NKK*96][Ogn93]
[SAR96][SPB95] [SPB96]. These types of methods can pre-
serve topology and accurately localize skeletal or medial sur-
face points for densely sampled object. However, for algorithms
based on Voronoi diagrams, it’s more time consuming to build a
3D Voronoi diagram with increasing number of sample points,
thus, direct computing method for Voronoi skeletons is less suit-
able for large datasets.

e Level set method
Another class of methods casts the surface as the level set of a
4D embedded object and finds the weak solution of a PDE which
models the wave propagation process whose singularities yield
the medial axis. Kimmel et al. [KSKB95] introduced a level-set-
based method for skeletonization using numerical approximation
of distance maps of an object. Ma et al. [MWOO03] proposed
a practical approach for extracting skeletons from general 3D
models using radial basis functions (RBFS).

e Direction testing
Bloomenthal and Lim [BL99] proposed an implicit method
based on direction testing that defines the skeleton as the set of
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points at which the direction to the nearest point on the object
undergoes a sudden transition. The geometric skeleton is derived
from a static object using an implicit direction method. The ob-
ject may be reconstructed from the modified skeleton using im-
plicit distance and convolution techniques.
e Hybrid techniques

In addition, many skeletonization techniques combine several
aforementioned methods into a single framework for medial axis
extraction. For instance, Siddiqi et al. [BS00] proposed a method
combining the thinning process and the distance transforma-
tion and using a Hamilton-Jacobi equation to calculate the me-
dial axis of volume data. This method provides accurate medial
axis extractions and preserves homotopy of objects. However, it
mainly focuses on volumetric datasets. Medial axis extraction for
arbitrary polygonal meshes hasn’t been considered. And some-
times the real medial axis for an irregular complex model may
have noisy branches which are difficult to handle in the interest
of shape manipulation.

2.2. Diffusion Equation and Applications

PDEs are at the heart of many computer analysis models or sim-
ulations of continuous physical systems, such as fluids, electro-
magnetic fields, the human body, and so on. Diffusion equation,
wave equation, Laplacian equation, heat equation, as well as the
equations of fluid dynamics, i.e., Navier-Stokes equations, are all
popularly used PDEs [Zau88] for modeling and simulation. Be-
cause most of the physics-based modeling techniques and many
CAD/CAM applications are related to certain PDEs, PDE tech-
niques are playing a more and more important role in computer
graphics areas. In this paper, we mainly focus on diffusion equa-
tions.

A diffusion equation is defined as a PDE describing the varia-
tion in space and time of a physical quantity which is governed by
diffusion. It provides a good mathematical model for the variation
of temperature through conduction of heat and the propagation of
electromagnetic waves in a highly conducting medium. The diffu-
sion equation is a parabolic PDE whose characteristic form relates
the first partial derivative of a field u with respect to time t to its
second partial derivatives with respect to spatial coordinates X:

ou

5= DVZ2u, 1)

where u = u(%,t),X = (Xg,X2,---,xn) € Q C Rt >0, and D is

called the diffusion coefficient. The operator V2 = ¥ % is called
the Laplacian. When D is not constant, but depends on spatial
coordinates and time: D = D(X,t), this spatial variation leads to
anisotropic diffusion equation:

du
o V- (DVu). 2
The solution of a diffusion equation is subject to both initial and
boundary conditions. The numerical solution of diffusion equations
usually makes use of the finite-difference method, which employs
Forward Time Centered Space (FTCS) finite-difference approxi-
mation to the diffusion equation. Because X in above equations
can be of arbitrary variables in any dimensions, diffusion equa-
tions can be applied for various applications in computer graphics
fields. Using such equations, researchers have developed visually
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convincing models of fire, smoke, and other gaseous phenomena.
The diffusion equations can also be used in scientific visualization
of medical images. The applications of diffusion equations include
depicting gaseous phenomena [SF95], surface fairing [DMSB99],
texture synthesis using reaction-diffusion system [WK91][Tur91],
visualizing vector field [PR99][DPROO], etc. In this paper, we em-
ploy a diffusion-based equation to approximate skeletons of objects
bounded by arbitrary meshes (or other boundary representations)
and reconstruct the original shape.

3. PDE Formulation of Medial Axis Extraction for Arbitrary
M eshes

In the previous work, PDE techniques, such as level set methods
and Hamilton-Jacobi equation, are used for medial axis detection
from 2D images and volumetric datasets. However, direct extrac-
tion methods based on PDEs to detect skeletons of 3D solid ob-
jects bounded by arbitrary meshes are still under-explored. In this
paper, we employ a diffusion-based PDE to allow any given 3D
objects to propagate inward their boundaries and approximate sim-
plified skeletons with user interactions, which can provide users in-
stant feedback and interactive control during the extraction process.
The distance information from skeletal points to the boundaries are
recorded for reconstruction and deformation purposes. When ma-
nipulating the skeleton, the original model can be deformed accord-
ingly. Other immediate applications include model simplification,
skeleton-driven parameterization, and animation control of com-
plex, articulated characters.

3.1. Diffusion-based Equation
The grassfire flow on a 3D surface S is governed by

0 ~
=~ =N 3
5 =N ®3)
which allows the fire front propagating at unit speed along the in-

ward surface normal N.

wy

The simplest way to simulate (3) for medial axis extraction of a
polygonal mesh is to let the sample points on the boundary surface
travel along the surface normal inward (i.e., shrinking the bound-
ary) at each time step, and where the points meet with each other
forms the skeleton. However, the time step for this simulation pro-
cess needs to be very small to guarantee a close approximation of
medial axis. Therefore, it’s difficult to achieve satisfactory results
using direct simulation of (3). Furthermore, the complexity of the
medial axis structure of an object depends on its geometric shape.
For a complex object with various detailed features, its real me-
dial axis will be very complicated with noisy branches. Such struc-
tures are not suitable for shape manipulation operations. In addi-
tion, because our goal is to extract medial axes of objects bounded
by discrete arbitrary polygonal meshes, we can only approximate
the surface normal at discrete sample points on the boundary sur-
faces where the regular parametrization is not applicable, and the
mesh qualities will directly affect the results for direct simulation
of (3).

On the other hand, diffusion equations are frequently used for
denoising in image processing. They can also provide smooth re-
sults for geometric surface fairing [DMSB99]. Because of their
smoothing properties, we consider to apply the diffusion process

for medial axis extraction from polygonal meshes, which will pro-
vide simplified approximations and remove noisy branches on me-
dial axes for easy storage and manipulation. Since our main pur-
pose of medial axis extraction is to offer users a compact geometric
representation for shape manipulation and deformation, such ap-
proximation can provide satisfactory results.

We formulate the diffusion-based equation for the simplified me-
dial axis approximation as:
% _ 5N,k v, )
ot
where § = §( B,t) is the propagating boundary surface of an ob-
ject, p = (x,y,2) is the coordinate vector, t > 0 is the time variable,
V2S is the Laplacian of the surface, and D is the diffusion coef-
ficient function related to the surface normal N and curvature K.
The normal N provides directions for boundary propagation dur-
ing the medial axis extraction process. The curvature K is used as a
threshold to detect skeletal points on the medial axis. We consider
the curvature as the threshold for skeletal point detection is because
the Laplacian will smooth the boundary surface and eliminate sharp
features during the propagation. By using curvature of the bound-
ary surface as a threshold, the propagation process can detect sharp
features of an object and preserve such properties on its simplified
medial axis.

(4) is formulated to guide the boundary surface propagation. It
provides the direction of the propagating boundary surface while
smoothing out unnecessary noises at each time step. By solving (4),
the object’s surface will moving inward from the original boundary
guided by its normal, and the Laplacian will smooth the surface to
avoid noisy branches during the propagating process. The curvature
acts as a threshold to preserve feature points of the object on the ap-
proximated medial axis. Therefore, after all the points on the prop-
agating surfaces collide with others which means they reside on a
thin set, we can obtain a compact structure without interior points
inside. We consider it as an approximation for the real medial axis
because it’s a thin set inside the object and preserve features of
the original dataset. Since our major goal is to use a compact and
simple representation for shape manipulation, such an approxima-
tion is enough to provide satisfactory results for this purpose. Note
that, the shape reconstruction from skeletons is a reverse process
of medial axis extraction by applying the normal outward to orig-
inal boundaries. The diffusion equation is suitable for continuous
geometric objects including surfaces and solids. Although in this
paper, we mainly use numerical techniques to solve it on discrete
polygonal boundary surfaces, it can be readily applied to other type
of solid representations for medial axis extraction.

3.2. Numerical Simulations

Diffusion equations can be easily solved through numerical tech-
niques. One of the most popular numerical methods to solve a diffu-
sion equation is the finite-difference method. It discretizes the equa-
tion by applying finite-difference approximations of partial deriva-
tives in the equation. The finite-difference technique is straightfor-
ward for regular parametric objects. However, regular parametriza-
tion for an arbitrary mesh surface is a challenging problem, because
an arbitrary mesh usually has arbitrary connectivities among sur-
face points, therefore it is difficult to discretize the surface into reg-
ular, uniform grids. As a result, previous finite-difference approxi-
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mations of partial derivatives [DQOO0] cannot be applied in such sit-
uation. We have to seek for alternative techniques to approximate
the partial derivatives to obtain a discretized equation.

3.2.1. Umbrella Operator

There is a type of difference operators called umbrella opera-
tor which is commonly used in surface fairing to approximate
the Laplacian operator for 2D meshes [Tau95][KCVS98]. A sim-
ple umbrella operator assumes the mesh has underlying regular
parametrization where every edge length equals with each other
and every angle between neighbor vertices in the parametrization
domain is the same. Then the parametrization of (u;,v;) can be rep-
resented by
2 . 2mi
(uj,vi) = (COST’SmT)’

where n is the number of direct neighbors (points in the 1-
neighborhood) of the point at (uj, V).

The Laplacian operator can be approximated by the discretized
umbrella operator:

V2Iffi:% > Bi—h

jeN(i)

where [ is a surface point, §; is a point in the 1-neighborhood
(N1(i)) of pi.

However, the assumption of regular parametrization is only suit-
able for ideal situations. In most occasions for arbitrary meshes,
such type of parametrization cannot give a satisfactory result. The
umbrella operator can be further improved by adding weights based
on the connectivity of the mesh which allows vertices drifting in the
parametric space and leads to non-uniform mesh parametrization.
One way is to allow edge lengths between points not to be constant.
The discretized Laplacian operator can be approximated by

vh-g 3 PP
jeNi(iy M
where E =3 jen () €i,j and e j is the edge length between [ and
pj. Fig. 3 shows an illustration of umbrella operators. Note that,
the angles between edges in the 1-neighborhood of a point on the
mesh can also be considered as weights to improve the umbrella
operator.

(@) (b)

Figure 3: Umbrella operators. (a) Regular umbrella operator. (b)
Improved umbrella operator with edge lengths as weights.

To simplify the process and provide a fast algorithm for medial
axis extraction, we employ the finite-difference discretization as-
sociated with umbrella operators for iterative computations of the
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evolving surface and its Laplacian operator. The diffusion-based
equation (4) can be discretized as follows:

N1
. T 1 R O

A " i)

3.2.2. Surface Normal Approximation

To calculate surface normal at sample points of an arbitrary mesh
object, we also resort to numerical approximation techniques. The
simplest way is first calculating the normals of surface patches
around the target point, then averaging the surface patch normals
to approximate the normal at the point. This only provides a rough
approximation of surface normal at the sample point. There is an-
other way to approximate the normal at a point proposed in [ZS00]
to provide more satisfying normal approximations. The normal at a
surface point fj can be computed using approximated tangent vec-
tors T} and T along the surface at i which can be computed as:

n—1 ; n—1 ;
- 2nj . . . 2mj

= E cos—pj,tr = 2 sin—=p;
1 2 n ﬁ], 2 & n ﬁ]v

]

where n is the valence of the point on the mesh, and {§j’s are in the
1-neighborhood of f;.

Therefore, the sampled surface normal N at ; can be computed
as

Ni Zfl ng. (6)

3.2.3. Gaussian Curvature of Arbitrary Meshes

Since the diffusion process is also influenced by the surface curva-
ture, we need to evaluate curvature values at the boundary surface.
In this paper, we consider the contribution of Gaussian curvature
for medial axis extraction. The curvature is used as a threshold to
define skeletal points on the medial axis to preserve shape features,
therefore other types of curvature instead of Gaussian curvature can
also be employed for this purpose. We use Gaussian curvature be-
cause it’s very easy to calculate using the approximation scheme for
polygonal meshes. We use a local approximation scheme to com-
pute Gaussian curvature of sample points on the boundary surface
based on Gauss-Bonnet theorem. The Gaussian curvature at a sur-
face point is related to angles and faces connected to the point on
the surface [VL97]. The Gaussian curvature K can be approximated
as:
K= A’

where a is the angular defect at the point which is defined as (211 -
sum of the interior angles of faces meeting at the point) and A is the
area associated to the point that is equal to % of the sum of areas of
triangles meeting at the point. Therefore, the Gaussian curvature Kij
at point p; can be computed as follows:

-1
 — -5 59
= 1¢en-1
32 0A]
where @ is the angle of the jth face connected to [j and A;j is the
corresponding triangle’s area. (7) is for inner points on a mesh and

suitable for any points in a closed surface. As for open surfaces, the
approximation for Gaussian curvature of a boundary point can be
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evaluated using the following scheme:
-1
= m— ZT:O @
= "TTon—1,_
32j-0Ai
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An illustration of Gaussian curvature approximation for a mesh
point is shown in Fig. 4.

Figure 4: The evaluation of Gaussian curvature for a mesh point.
(a) Gaussian curvature for an internal vertex. (b) Gaussian curva-
ture for a boundary vertex.

With numerical discretizations and approximations for Lapla-
cian operator, surface normal, and curvature, (5) can be easily
solved by iterative method along time axis. The diffusion equation
will evolve along time axis according to the surface curvature and
normal, and the medial axis resides on the locations where differ-
ent parts of the propagating surface meet. Because of the discrete
property of the numerical technique, users can freeze certain points
on the mesh to let them stay at their current positions during the
process to obtain different skeletons. Furthermore, we also allow
users to select a region to extract the medial axis inside the region
to obtain any localized results.

For shape reconstruction, because we save the distance informa-
tion between the skeleton and the original boundary surface, the
object can be recovered along the normal outward without any dif-
ficulty. In addition, after the skeleton manipulation, the correspond-
ing deformed shape can be reconstructed through diffusion propa-
gation to follow changes of the skeleton.

4. PDE-based Skeletonization and Shape Manipulation

4.1. Diffusion-based Medial Axis Extraction: An Algorithmic
Outline

In this paper, we use the finite-difference technique to approximate
the solution for the time-dependent diffusion-based equation nu-
merically to provide users progressive results for medial axis ap-
proximation and shape reconstruction. Our techniques can be ap-
plied for solid objects with polygonal boundary surfaces and is also
suitable for other boundary representations.

Starting with the original mesh, our system extracts the medial
axis according to the differential properties of the boundary mesh,
and allow the mesh to shrink to its medial axis. Our algorithm con-
sists of following operations:

e Initialization: at the initialization stage, the system approximates
the surface normal for the boundary surface using (6) and other
differential properties such as curvature by (7) and Laplacian us-
ing umbrella operators.

©) ®

Figure 5: An example of PDE-based medial axis extraction for ar-
bitrary meshes. (a) Original dataset; (b), (c), (d) and (e) are shrink-
ing objects during medial axis extraction at different time step by
performing (5); (f) is the final skeleton.

o Skeletonization: during the skeletonization process, at each time
step, the system first computes the evolving surface based on (5).
Then collision detection is performed on the resulting surface. If
a surface point collides with any other point, edge, or face, it is
considered as residing on the skeleton. In such case, it is marked
as a skeletal point with its position fixed and the distance in-
formation from original surface point to this skeletal point is
recorded. After all the points are checked for collision detec-
tion, surface optimization is applied to delete redundant points
and faces with too small areas. This process is repeated until all
points on the propagating surface are marked as skeletal points.

e User Interaction: in addition, during the process, users can inter-
actively select any points on the propagating surface to be skele-
tal points, thus they can define the user-controlled skeleton based
on their own criteria. Users are also allowed to define local re-
gions for local medial axis extraction.

The medial axis extraction using our technique is a progressive
process along time, which offers users visual feedback during the
extraction. Fig. 5 shows an example of progressively extracting me-
dial axis for an object.

After this skeletonization process, we can obtain a simplified
skeleton approximating the medial axis of the object associated
with distance information between the skeleton and the original
boundary surface. With such information, we can manipulate the
object by sculpting its skeleton with ease.
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4.2. Local Region Skeletonization and User Interaction

To explore local features, our system allows users to extract medial
axis from a selected part of an object. This can be done by selecting
a region in the 3D working space and the system will only extract
skeleton for part of the object residing in the region. By allowing
medial axis to be extracted locally, it will reduce the time com-
plexity for shape skeletonization of complex models and enable the
mechanism for the direct user control. Refer to Fig. 6 for an exam-

ple.

© )

Figure 6: An example of PDE-based medial axis extraction for se-
lected parts from arbitrary boundary meshes. (a) Original dataset;
(b) and (c) are two examples of extracting skeletons for part of the
objects; and (d) is the skeleton for the entire dataset.

Because we provide a simplified approximation of medial axis
for an object, the result may not satisfy users expectation some-
times. For example, there are certain points on the object that users
want to be on the medial axis, but the system doesn’t mark them
as skeletal points during medial axis extraction process. Therefore,
we allow users to select desired points on the boundary surface to
be skeletal points for any user defined skeleton during the extrac-
tion process, which can provide more degrees of freedom for later
skeleton-based shape manipulation (Fig. 7). Since manipulations
on different shape of skeletons can result in different shape defor-
mations, these user interactions provide more flexibility/freedom
and control for skeleton-based shape sculpting. Furthermore, be-
cause the diffusion-based equation is solved on polygonal meshes,
the number of points on the meshes will extremely affect the per-
formance of the medial axis extraction process. It’s time consuming
to extract medial axes for complex models. Therefore, local medial
axis extraction in selected regions will be useful for such cases. It’s
also possible to integrate parallel techniques with our method for
shape skeletonization of large datasets.

4.3. Skeleton-based Shape Sculpting

One of the advantages of medial axes is that they provide much
more compact and natural representations for objects. Therefore,
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Figure 7: Examples of PDE-based medial axis extraction with
user-defined skeletal points. (a), (b), and (c) are different skeletons
obtained after fixing different surface points as skeletal points. (d)
is a different skeleton for Fig. 5 (a) by fixing a point at the bottom
of the dataset.

shape deformation/manipulation and other processes based on me-
dial axes alleviate the burden of tedious and less insightful opera-
tions for deforming and animating complex objects, as well as other
shape queries and interrogations. In this paper, we provide users
various sculpting tools to manipulate medial axes, then propagate
the deformation to original datasets according to the distance infor-
mation. However, the deformed result may not be satisfactory if we
just simply reconstruct the objects from their medial axes according
to the distances from medial axes to original datasets. Therefore, we
employ the diffusion-based equation with normal pointing outward
to the original boundaries to reconstruct the modified datasets. Fig.
8 and Fig. 9 have two examples of shape manipulation based on
skeletons and recovered using diffusion propagation. Fig. 10 shows
a deformation sequence of an object through skeleton manipula-
tions. It may be noted that, from this point of view, our technique
also serves as an aid for shape parameterization and can be poten-
tially improved for a powerful shape analysis tool (beyond shape
sculpting and synthesis).

4.4. Curvature Manipulation

In this paper, we employ Gaussian curvature of the polygonal
boundary surface in the diffusion equation for shape skeletoniza-
tion. It works as the threshold for medial axis extraction to de-
cide which surface points will be skeletal points on the medial
axis. Thus, different values of the threshold for Gaussian curva-
ture on the boundary polygonal mesh will result in different shapes
of skeletons. By allowing users to define the threshold themselves,
they can obtain the medial axis for an object according to their own
criteria. Fig. 11 shows examples for several medial axes extracted
from an object with different Gaussian curvature thresholds.
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Figure 8: An example of skeleton-based shape sculpting. (a) Orig-
inal dataset; (b) is the skeleton; (c) is the sculpted skeleton; (d) is
the corresponding deformed dataset recovered from (c).

Figure 9: Another example of skeleton-based shape sculpting.

5. Discussion and Future Work

In this paper, we propose a diffusion-based medial axis extraction
method which combines the grassfire flow simulation and diffu-
sion propagation to approximate skeletons for solid objects whose
boundary surfaces are polygonal meshes or other types of B-reps.
The diffusion-based formulation naturally unifies the thinning pro-
cess along surface normals with surface smoothing for propagat-
ing boundaries. It provides satisfactory medial axis extraction re-
sults for shape manipulation of irregular objects based on skele-
tons. Our technique expands the conventional notion of medial
axis as it allows the direct user control in local regions of objects
for shape skeletonization. In addition, our prototype system allows
users to obtain a sequence of simplified shapes satisfying different
design requirements and offers shape manipulations through skele-
ton sculpting. The system is implemented using Visual C++ and

©) )

Figure 10: A sequence of deformed shapes through skeleton-based
shape sculpting.

©

Figure 11: Examples of skeleton extraction with different value of
curvature thresholds.

runs on Windows systems. The examples shown in this paper are
provided by 3D CAFE and rendered using POV-RAY.

Table 1 summarizes the CPU time on a Pentium M 1.3GHz lap-
top for medial axis extraction of the examples in this paper, where
"Points" stands for the number of surface points for the dataset, At
is the time step value used in (5), and "Time (seconds)" is the CPU
time for approximating the medial axis. Because we use discretized
diffusion-based equation to approximate the medial axis, the com-
puting time is depending on the size and complexity of the dataset
as well as the time step used to solve (5) iteratively. In addition, the
performance of the collision detection also depends on the resolu-
tion of the object.

Our method offers smooth approximations of medial axes in a vi-
sually progressive way. For complex objects bounded by polygonal
meshes, the real medial axes may have numerous noisy branches to
preserve objects’ features. Such structures are difficult to manipu-

(© The Eurographics Association 2004.
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Example  Points At Time (seconds)

Fig.2(a) 2782 0.5 61.790
Fig.2() 909  0.05 17.267
Fig.2(c) 3749 0.5 136.398
Fig.2(d) 3162 0.5 252.801
Fig. 5 867  0.05 96.175
Fig. 6 855  0.05 38.098
Fig.7(@) 38 0.5 21.121
Fig. 8 1149 0.05 35.198
Fig. 9 1545  0.05 31.326
Fig. 10 1672 0.05 121.201
Fig. 11 309 005 15.001

Table 1: CPU time in seconds for medial axis extraction.

late for shape sculpting. In contrast, our technique provides simpli-
fied approximations for medial axes, which are smooth thin sets re-
siding inside objects without noisy branches. The approximated re-
sults are smoothed because of the Laplacian operator, which elim-
inates noisy branches of the real medial axis, so that the resulting
medial axis is relatively simple and easy to manipulate. In addition,
different with previous techniques, our method allows user inter-
action during the medial axis extraction process, which provides
more degrees of freedom for shape skeletonization and manipula-
tion. For example, if users are not satisfied with the results, they can
define medial axes according their own criteria by selecting skele-
tal points for medial axes. The approximated medial axes by user
interaction along with distance information to original objects and
the diffusion-based propagation technique can produce satisfactory
results for sculpting and manipulating objects. Since our major fo-
cus in this paper is approximating medial axes of solid objects with
polygonal boundary surfaces for shape manipulation, the compar-
ison of our method with previous techniques in terms of accuracy
and efficiency is beyond our current scope, but we will address such
issues in our future work.

Because our medial axis extraction algorithm is applied directly
to objects bounded by arbitrary polygonal meshes, the resolution of
meshes and the point distribution on meshes will affect the quality
of extracted skeletons. For instance, when the two end points of a
long edge on the propagating surface stop on the skeleton, all the
points on the edge will be assumed to be skeletal points, although
there may be still spaces between them and real skeletal points.
Therefore, a mesh optimization process will be considered for the
future work to extract more accurate results.

In addition, the approximating techniques to calculate the dif-
ferential properties of the boundary surface sometimes are not ac-
curate enough for extremely irregular meshes. On the other hand,
there are techniques available to provide regular parametrization
for irregular polygonal meshes. The differential calculation will be
much easier under such parametrization. Thus, another future work

(© The Eurographics Association 2004.

of our research will be applying mesh parametrization techniques
to our model for better results.

The third possible future direction is to seek for a better algo-
rithm to detect the skeletal points during the progressive medial
axis extraction. Our current algorithm employs a collision detec-
tion method which simply checks collision for sampling points and
faces. Such algorithm is slow for large datasets and sensitive to the
value of time intervals for the diffusion process. We wish to find a
faster and more accurate skeletal point detection technique such as
singularity of distance fields or curvatures to speed up the medial
axis extraction process and make our method more applicable for
large models. We will also consider to improve the accuracy and
efficiency of our method in comparison with other techniques in
our future work.

6. Conclusion

In this paper we present a PDE-centered technique using diffusion-
based propagation for medial axis extraction of geometric objects
bounded by arbitrary polygonal meshes or other B-reps. By nu-
merically solving the time-dependent diffusion-based equation us-
ing finite-difference approximations, we simulate the skeletoniza-
tion process progressively along the time axis to offer users instant
feedback of the medial axis extraction. The diffusion-based equa-
tion is formulated to unify the grassfire flow simulation and dif-
fusion propagation based on differential properties of the bound-
ary surfaces such as curvature. The evolving surface is propagat-
ing from the boundary surface inwards according to the PDE and
approximates a simplified and smoothed medial axis of the object
associated with distant information between the skeleton and the
original model. With such information, the original model can be
easily reconstructed. In addition, shape sculpting based on skele-
ton manipulations can be conducted without any difficulty. Be-
cause the diffusion equation can essentially smooth out noises of
an irregular dataset, our medial axis extraction process is much less
noise-sensitive and able to provide smoother skeletons for irregular
datasets. Our method offers user control of curvature threshold and
selecting desired skeletal points on the propagating surface for the
skeleton extraction process that can allow users to define different
medial axis extraction criteria and thus obtain satisfactory skeleton
representations. Furthermore, our system also can extract localized
skeletons for selected parts of the objects, which is useful for me-
dial axis extraction of complex models. To illustrate properties of
the extracted medial axis, we also provide interactive manipulation
toolkits to deform the medial axis, and use diffusion propagation
to recover the corresponding deformed shape. Our PDE-based ap-
proach unifies several modeling tasks such as shape smoothing (de-
noising), simplification, editing, and deformation together within
a single framework. We hope that it can be further improved to
become a more powerful and convenient tool for shape modeling,
synthesis, and analysis of complex real-world objects.
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