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Abstract
We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the
product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the
language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry
of its own, which we exploit to define map operations in the spectral domain. To apply these ideas in practice, we introduce
localized spectral analysis of the product manifold as a novel tool for map processing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis, 3D Shape Matching, Geometric Modeling

1. Introduction
A modern theme in shape correspondence involves the represen-
tation of a map from one shape to another. While an obvious rep-
resentation maintains source and target points, this is not the only
option. Our paper is related to two frameworks developed for es-
tablishing correspondence between shapes: optimization on prod-
uct manifolds and functional maps.

Motivation and contribution. We advocate posing correspon-
dence in terms of functions on the product manifold of the source
and target. A motivating observation is that functional maps ap-
proximate a distribution representing the correspondence in the
product space as a linear combination of separable basis functions.
This distribution is supported on a manifold with a dimension lower
than the product space. Consequently, most of the support of the
basis functions is wasted on “empty” regions of the product space.
This viewpoint suggests new techniques to represent and approxi-
mate mappings directly on the product. Reasoning about the prod-
uct manifold leads to compact, understandable bases for map de-
sign that focus resolution in the part of the product most relevant
to a correspondence task. One of such means is the construction of
inseparable bases as localized harmonics on the product manifold.

2. Map representation on the product manifold

Given two manifolds (M,gM),(N ,gN ) of dimension dM and
dN , respectively, their product (M×N ,gM⊕gN ) is a manifold
of dimension dM+dN . All properties, like the metric tensor or the
spectral decomposition, can be derived from the original manifolds
properties by simple algebraic operations [Cha06].

Functional Maps are linear operators TF : F(M)→ F(N ) be-
tween functional spaces onM,N , where TF ( f ) = f ◦T−1 is based
upon a bijection T :M→N .

Soft functional maps. We introduce a “soft” generalization of
functional maps. For soft maps µ̃ :M→ Prob(N ) [SNB∗12] with
associated density µ∈ L1(M×N ), we define a soft functional map
Tµ as the expectation

Tµ(g)(x) =
∫
N

g(y)µ(x,y)dy . (1)

A connection can be derived between functional maps and ex-
panding soft map measures in the Laplace–Beltrami basis:

Theorem 1 (Equivalence) Let Tµ : F(N ) → F(M) be a soft
functional map (1) with underlying density µ ∈ L1(M×N ). Fur-
ther, let ci j = 〈φi,Tµ(ψ j)〉M be the matrix coefficients of Tµ in
the orthogonal bases {φi}i≥1 ⊆ F(M),{ψ j} j≥1 ⊆ F(N ), and
let pi j = 〈φi ∧ψ j,µ〉M×N be the expansion coefficients of µ in
the product basis {φi∧ψ j}i, j, such that µ = ∑i j(φi∧ψ j)pi j. Then,
ci j = pi j for all i, j.

Spectral representation. Consider the order-k, band-limited ap-
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Figure 1: Examples of basis functions on the product manifold
(here visualized as a torus embedded in R3) of two 1D shapes. We
plot a few standard LB eigenfunctions (top row) and localized man-
ifold harmonics (bottom row). The first basis function in the bottom
row also indicates the used region. In the color scheme blue denotes
small values, red large values and white is zero.
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proximation of µ:
µ≈

k

∑
`=1

ξ`p` , (2)

where each ξ` is an eigenfunction of ∆M×N which uniquely iden-
tifies a pair of eigenfunctions φi,ψ j on M and N . According to
Theorem 1, the expansion coefficients p` are exactly those appear-
ing in the functional map C, when it is expressed in the Laplacian
eigenbases ofM andN as originally proposed in [OBCS∗12].

Truncation. The product eigenfunctions ξ` appearing in the sum-
mation (2) are associated to the product eigenvalues αi +β j , which
are ordered non-decreasingly. In contrast, in [OBCS∗12] it was
proposed to truncate the eigenvalues to i = 1, . . . ,kM and j =
1, . . . ,kN , where indices i and j follow the non-decreasing order of
the eigenvalue sequences αi and β j separately. Due to the different
ordering the eigenfunctions φi,ψ j involved in the approximation
(2) of µ are not necessarily those involved in the construction of a
standard Functional Map C. In the former case we operate with a
reduced basis directly onM×N , while in the latter case we con-
sider two reduced bases onM andN independently. See Figure 2.

Localized spectral encoding. Theorem 1 establishes the equiv-
alence between the soft functional map Tµ representation coeffi-
cients ci j in the bases {φi}i≥1 and {ψ j} j≥1 and the coefficients
p` of the underlying density µ Fourier series (2) in the eigen-
basis {ξ`}`≥1 ⊆ F(M×N ) of the product manifold Laplacian
∆M×N . This equivalence directly stems from ξ`’s having the sep-
arable form φi ∧ψ j. It may be advantageous to consider different
orthonormal bases on M×N that are not necessarily separable.
In particular, we observe that µ tends to be localized on the prod-
uct manifoldM×N , and thus the standard outer product basis is
extremely wasteful as it is supported on the entireM×N .

A better alternative is the use of localized manifold harmon-
ics [MRCB17] on the support of µ which is no more separable,
i.e., the functions are not in general expressible as outer products
of functions defined on the originating domains but the size of such
problems is huge, and despite their extreme sparsity, computation-
ally expensive. As an alternative, we consider a patch P ⊂M×N
of the product manifold, and define the eigenproblem

∆P ξ̄`(x,y) = γ`ξ̄`(x,y) (x,y) ∈ int(P)
ξ̄`(x,y) = 0 (x,y) ∈ ∂P (3)
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Figure 2: Left: The k = 100 frequencies involved in the 10× 10
functional map C correspond to an irregular sampling of the spec-
trum of the product manifold. Right: Only some of the ci j appear
among the first k coefficients in the product eigenbasis. Here C is
framed in black, while the blue dots identify the coefficients pi j.
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Figure 3: Product space approximation of the correspondence be-
tween one-dimensional shapes with k = 100 basis functions. Corre-
spondences can be iteratively refined by reducing the patch area P
(1%, 25% and 90% of the total product manifold area shown here).
Top left: accuracy of the correspondence increases as the product
space basis becomes more localized. Middle row: image of a delta
function by the functional maps. Bottom: Ground-truth (curve) and
its approximation in the product bases with a varying degree of lo-
calization. Separable basis (FM) is shown as a reference.

of the product patch Laplacian ∆P with Dirichlet boundary condi-
tions. This choice reduces the complexity to the size of the patch
instead of the entire product manifold.

3. Discussion

We proposed the adoption of (inseparable) localized harmonics for
compactly encoding correspondences while ensuring minimal en-
ergy dispersion. Our theoretical work suggests a new perspective
on properties of the correspondence manifold as well as new ways
to pose algorithmic design for map inference and processing. We
hope that this work promotes further research on algorithmic de-
sign for map inference and processing, while casting new light on
useful properties of the correspondence manifold.
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