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Abstract
When finding analytical solutions to Partial Differential Equations (PDEs) becomes impossible, it is useful to approximate
them via a discrete mesh of the domain. Sometimes a robust triangular (2D) or tetrahedral (3D) mesh of the whole domain is
a hard thing to accomplish, and in those cases we advocate for breaking up the domain in various different subdomains with
nontrivial intersection and to find solutions for the equation in each of them individually. Although this approach solves one
issue,it creates another, i.e. what constraints to impose on the separate solutions in a way that they converge to true solution on
their union. We present a method that solves this problem for the most common second and fourth order equations in graphics.

1. Background

Partial Differential Equations (PDEs) arise in many areas of sci-
ence, from physics to biology to computer graphics. In the latter,
they can be used for data smoothing [SGWJ17], shape deforma-
tion [Jac13] and even computing geodesic distances [CWW13],
among many others. By far the most common PDE present in com-
puter graphics and geometry processing applications is the Pois-
son equation (∆u = h for some known function h) or its particular
case, the Laplace equation (∆u = 0). Our objective is usually to
find the solution for these equations in a two-dimensional or three-
dimensional domain Ω subjected to some Dirichlet boundary con-
dition u|∂Ω = g for a known function g.

The preferable method to numerically approximate solutions to
these equations consists in discretizing the domain in a mesh of
small elements (triangles in 2D, tetrahedra in 3D) in a way that the
analytical equation can be converted into a quadratic energy mini-
mization problem where the variables are the values of the function
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Figure 1: Our method allows for computation of geodesic dis-
tances on a shape without requiring a tetrahedral mesh of the com-
plex domain.

u at the elements’ vertices, which we denote by the vector u. This
problem can be solved with the standard techniques of quadratic
programming to obtain the minimizer u?, from which we can build
a piece-wise linear function which can be shown to be a discrete
approximation of the PDE’s analytical solution u.

The accurateness of this approximation is directly related with
the goodness of the discretization, measured mainly by its coarse-
ness (size of the elements) and its regularity (aspect ratio of edges
of each element). In practice, manually constructing quality meshes
for complex three-dimensional domains is an arduous and gener-
ally undesirable process, while the automatic software available fail
too often. Most of the times, the final complex domain Ω we intend
to solve the PDE on (see Fig. 1) can be described via the union of
very simple primitive domains Ωi, the discretizations of which are
either known or easy to find. Inspired by this, we present a method
for solving PDEs on the final domain which makes use only of the
meshes of the primitive shapes, thus eliminating the need for dis-
cretizing the complex domain itself.

2. The consistency requirement

Our first step is constructing a combined quadratic energy which
functions as an analogue of the single-domain energy described
above. To achieve this, we add the individual energies we would
obtain from solving the PDE on each primitive and weigh them in
a way that we avoid accounting for the same area twice in the zones
where the primitives intersect.

Simply minimizing this combined energy subject to the orig-
inal PDE’s boundary condition is not enough. The problem lies
precisely in those regions where the primitives intersect, where
we would obtain various different solution values u1, . . .un (cor-
responding to the n intersecting primitives) which need not be con-
sistent with each other. We will explore different methods of impos-
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Figure 2: Convergence plots of our linear equality constraint meth-
ods for both the Poisson and Laplace equations.

ing this consistency requirement within the energy minimization in
a way that the individual minimizers on each primitive do approxi-
mate the analytical solution on the final domain.

For clarity, let us restrict ourselves to the case where n = 2, i.e.
our final domain can be written as Ω = Ω1∪Ω2 and we wish to for-
mulate a constraint that guarantees us that our energy minimizers
u1 and u2 take similar values in the region Ω1∩Ω2. Since the ver-
tices of each domain’s discretization need not coincide, enforcing
an equality between u1 and u2 is not as straight-forward as it may
seem. In order to be able to make this comparison, we will need to
construct the piece-wise linear functions u1(x) and u2(x) from the
vertex values u1 and u2.

Enforcing u1|Ω∩Ω2 ≡ u2|Ω1∩Ω2 (equality on all points in the in-
tersection) can easily be shown to be too harsh a constraint since it
will effectively restrict our minimization to the space of functions
which are linear over the intersection (see Fig. 3). This is an artifi-
cial restriction which persists even as the discretizations are refined.
We will refer to this type of undesirable consequences as locking.

The first formulation of this consistency that we present is that
which enforces equality between both functions only at all of the
discretizations’ vertices. This requirement can easily be expressed
as a linear equality constraint to add on to our previous quadratic
program. We show that this method also results in locking when
attempting to solve the Poisson equation, although it performs sur-
prisingly well when solving the Laplace equation (see Fig. 2). The
reason for this lies in the similarity between our imposed linear con-
straint and the energy associated with the Laplace equation (usu-
ally known as the cotangent laplacian or discrete laplacian), which
we intuitively show by a study of each’s eigenmodes. Softening
the requirement by exchanging the linear equality constraint for a
quadratic penalty term to add to the PDE’s energy we are minimiz-
ing. Naturally, the severity of the penalty will have to be governed
by a positive parameter λ. If λ is small, u1 and u2 become increas-
ingly disconnected; on the other hand, if λ is too large, adding this
term is equivalent to the linear equality constraint seen to fail above.
The optimal value of λ may depend on the equation itself and even
on the characteristics of the discretization.
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Figure 3: Behaviour of our three suggested solvers for saddle-like
and paraboloid-like shapes.

3. Our method

Finally, we present our boundary method, which consists in en-
forcing equality between the solutions only at the vertices in the
intersection’s boundary, which can also be expressed as a linear
equality constraint to add to our quadratic program. We show that,
contrary to the previously suggested formulations, this requirement
results in a convergent solver which is parameterless and consis-
tently achieves low error. We also compare this method’s conver-
gence to the one we would obtain if we used a standard solver on a
discretization of Ω (blue line in Fig. 2). We find that the expected
loss in accuracy is small compared to the benefit of not requiring a
mesh of the final domain, thus validating our method.

We end by showing a sample of computer graphics applications
of our solver for complex three-dimensional domains constructed
as the union of simpler ones, and present generalizations of our
method to other PDEs such as the Wave or Heat equations, as well
as higher-order ones like the Bi-Laplace ∆

2u = 0. We also exhibit
possible future extensions of our boundary-only constraints to do-
mains generated via Constructive Solid Geometry, which includes
other basic set operations apart from unions, such as intersections
and subtractions of basic shapes.
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