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Abstract
We introduce a Schrödinger operator for spectral approximation of meshes representing surfaces in 3D. The operator is
obtained by modifying the Laplacian with a potential function which defines the rate of oscillation of the harmonics on different
regions of the surface. We design the potential using a vertex ordering scheme which modulates the Fourier basis of a 3D mesh
to focus on crucial regions of the shape having high-frequency structures and employ a sparse approximation framework to
maximize compression performance. The combination of the spectral geometry of the Hamiltonian in conjunction with a sparse
approximation approach outperforms existing spectral compression schemes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

In most areas that involve representation of discrete virtual surfaces
as 3D meshes, there has been an increasing trend in working with
higher precision. This has lead to the generation of meshes which
comprise of a large number of elements, for which processing, vi-
sualization and storage has become a challenge. The task of trans-
mission of these geometric models over communication networks
can lead to a large amount of storage space and put a considerable
strain on network resources. The information contained in a mesh
can be generally divided into two categories: the geometry infor-
mation, which is the position of each vertex of the mesh in the 3D
Euclidean space, and the connectivity or topological information,
which describes the incidence relations between the mesh vertices.
Since the geometric information comprises a dominant part of the
mesh, most recent algorithms focused on its efficient compression.

2. Motivation

The discrete Laplace operator is ubiquitous in spectral shape anal-
ysis, since its eigenfunctions are provably optimal in representing
smooth functions defined on the surface of the shape [ABK15].
Indeed, subspaces defined by its eigenfunctions, also referred to
as manifold harmonics, have been utilized for shape compression,
treating the coordinates as approximately smooth functions defined
on a given surface. Karni and Gotsman [KG00] were one of the
firsts to propose a generalization of the Fourier basis on discrete
graphs in order to compress mesh vertex positions. They achieved
mesh compression by projecting the coordinate vectors onto the or-
thonormal basis obtained from the spectral decomposition of the
combinatorial Laplacian of the shape. However, surfaces of shapes
in nature often contain sharp geometric structures for which the

general smoothness assumption, captured by the Laplacian eigen-
structure, may fail to hold. Therefore, it is desirable to have a basis
which has a larger capacity to encapsulate high-frequency struc-
ture. The methods enumerated in [SCOIT05] and [Mah07] provide
some perspective on the results in this direction.

Given a basis, a plain spectral truncation of the signal in that
basis is a fairly simplistic method for representation which uses a
restrictive assumption of only focusing on the lower frequencies
of the signal. However, with regards to 3D meshes, local geom-
etry and fine details of the mesh corresponding to high frequen-
cies are generally missing and require a much larger support for
their preservation if a truncation approach is followed. Instead, the
concept of sparsity and redundant representations provides an al-
ternative perspective for representation where the basic idea is to
estimate a given signal as a linear combination of just a few ele-
ments (sparse) extracted from a large pool of constituent vectors -
called a dictionary. These vectors, or atoms, are selected such that
the coefficients of representation are sparse. The main difficulty
with sparse algorithms is the availability of a rich representative
dictionary. This seems trivial for signals defined over regularly and
consistently sampled domains, like images and speech, but it is not
straightforward to extend the idea to non-flat domains like meshes
of surfaces in 3D or general graphs. The use of redundant repre-
sentations for mesh representation and compression have started
to emerge in [TFV06, ZQ14]. Here, we address both these aspects
of shape representation. We design a data-aware operator whose
spectral geometry is modified by a potential function, in order to
emphasize designated regions of interest. We then employ a sparse
approximation algorithm which enables efficient information en-
capsulation in the coefficients for compression.
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3. Hamiltonian Operator

A Hamiltonian operator H, also called Schrödinger operator, is an
operator acting on a scalar function f ∈ L2(M) on a manifoldM
that has the form

H f =−∆M f +µV f , (1)

where ∆M is the Laplace Beltrami operator of the surface, V :
M→R is called a potential function and µ∈R. Since the Hamilto-
nian is a symmetric operator, its eigenfunctions form a complete or-
thonormal basis on the manifoldM. An illustration of the Hamilto-
nian basis is given in figure 1. The parameter µ defines the trade-off
between compactness and global support of the basis. Larger val-
ues of µ will give solutions that concentrate on the low potential re-
gions, while a smaller µ will give solutions that better minimize the
total energy obtaining smoother wave functions. [HSvTP12, IK12]
have used similar approaches for different applications. The addi-

Figure 1: First eigenfunctions of the LBO on a sphere (top). Po-
tential function defined on the sphere and the corresponding Hamil-
tonian basis (bottom). Hot and cold colors represent positive and
negative values respectively. The Hamiltonian basis concentrates
the harmonics to the low potential region.

tion of the potential function to the Laplacian advocates measuring
smoothness differently for different regions of the surface which is
a useful property that can be exploited in a representation problem
like compression. A simple 1D Euclidean analysis of the differen-
tial operator corresponding to the Hamiltonian, shows that the po-
tential modifies the shift-invariance property of the gradient and the
effect of a derivative is no more an exclusive property of its local
neighborhood but also depends on its global positioning imposed
by the potential function.

4. Discussion

Our method is designed to take advantage of the two principle com-
ponents of our contribution: sparsity and data-dependent basis. Our
main observation is that the potential function in Equation 1 can
be designed so that the manifold harmonics are altered, in order to
focus on the high-frequency structures and finer details of the 3D
mesh. In order to achieve this, we choose the potential to be a func-
tion of the approximation error of the mesh coordinates using the
standard Manifold harmonics. By doing simple pre-computation of
ordering the vertices in accordance with this error and designing
a fixed structure potential, we avoid the need to encode this ad-
ditional information. Sorting the vertices in order of their approx-
imation error highlights crucial regions of the shape having finer

high-frequency geometric structures and therefore difficult to com-
press for the regular Laplacian. Thus, the Hamiltonian operator can
improve the compression performance by modifying the harmonics
in order to emphasize designated regions of interest.

We construct a dictionary built from the eigendecomposition of
both the Laplacian and the Hamiltonian to benefit from their global
and local properties. Atoms are selected by using a simultaneous
pursuit approach. We encode multiple constants µ in order to ob-
tain a multiresolution of the basis. These regularization constants
are found via a direct search on a given domain. Thus, by design-
ing high vibrations in selected regions of the shape, our dictionary
is much less redundant than the wavelets proposed in [Mah07],
has a better ability to encode localized high frequency details and
achieves better compression performance.

We evaluated our results using the metric proposed in [KG00]
which is a linear combination of the RMS geometric distance be-
tween corresponding vertices in both models and a visual metric
capturing the smoothness of the reconstruction. In order to ease
the demand of a computationally intensive eigendecomposition of
a large matrix and the sparse coding, we resort to mesh partition-
ing, where we segment a mesh into smaller constituents and com-
press each segment independently. The compression ratio calcula-
tion is obtained as a ratio of the net information before and after
the dictionary encoding [ZQ14] where both the atoms and their co-
efficients are encoded. Our results compare favorably with existing
spectral approaches using Manifold Harmonics and Spectral Graph
Wavelets using sparse approximation approaches or not. The main
advantage gained is due to the shape-adaptability of our basis.
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