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Abstract
We present a novel approach to simulate large-scale lava flow in real-time. We use a depth-averaged model from numerical vul-
canology to simplify the problem to 2.5D using a single layer of particle with thickness. Yet, lava flow simulation is challenging
due to its strong viscosity which introduces computational instabilities. We solve the associated partial differential equations
with approximated Green’s functions and observe that this solution acts as a smoothing kernel. We use this kernel to diffuse
the velocity based on Smoothed Particle Hydrodynamics. This yields a representation of the velocity that implicitly accounts for
horizontal viscosity which is otherwise neglected in standard depth-average models. We demonstrate that our method efficiently
simulates large-scale lava flows in real-time.

CCS Concepts
• Computing methodologies → Modeling and simulation; Real-time simulation;

1. Introduction

Lava is a dangerous yet fascinating phenomenon, which has been
staged in many digital productions. Lava is simulated in computer
graphics as a viscous fluid [PICT15, JST∗16], but requires either
a prohibitively low time step or the solution of a linear system,
which hinders their application to the real-time simulation of large
volcanic landscapes. Faster models have been proposed at the cost
of a simpler viscosity representation [SAC∗99].

Some approximations are used in the specialized litera-
ture [KV15, HDP22], mainly that lava is shallow enough to be
treated as a vertically-averaged single-layer of fluid, and that the
viscous forces are so strong that the inertial terms are neglectable
in momentum conservation:

0⃗ =∇· τ−ρg∇S (1)

where S is the lava surface elevation, ρ the lava density and g
the gravity. The stress tensor τ is related to the strain rate tensor
ϵ = 1

2

(
∇u+∇uT

)
with τ = µ(θ)ϵ. Several non-linear rheologies

have been proposed for the viscosity µ, from the Bingham model
used by [HBV∗11] to viscoplastic Herschel-Bulkley in [BSS16],
and they all agree on the importance of the temperature θ. Here,
we simplify our derivation by assuming that the viscosity depends
on the temperature only, but we assume that our model could adapt
to more complex rheologies. The main weakness of vertically aver-
aged models is that they neglect the horizontal components of the
viscosity. While this approximation leads to a closed-form formu-
lation for the velocity, it is only valid for flat and shallow flows

and yields a non-linear diffusion equation whose solution requires
extremely small time steps.

We propose a solution to integrate the horizontal components of
the viscosity in a vertically averaged model, using Green’s func-
tions. We observe that these functions behave as a smoothing ker-
nel. Therefore, we devise a new Smoothed Particle Hydrodynamics
(SPH) approach, where a kernel for velocity is chosen in a way that
implicitly models viscosity.

We implemented our approach on the GPU and showed that our
model provides a good balance between physical realism and fast
computational time to efficiently simulate and render lava flow in
real-time.

2. Method

On large landscapes, a full 3D simulation is costly and not neces-
sary as lava flows are mostly shallow. Therefore, we use a depth-
averaged simulation where each particle embeds the lava flow
thickness. The motions of the particles are driven vertically by the
altitude of the terrain and horizontally by a 2D depth-averaged
velocity ū. The thickness of the lava flow h has to accommo-
date for the divergence or convergence of the 2D velocity vec-
tors [SBC∗11], and evolve with:

Dh
Dt

=−h∇· ū, (2)

where D/Dt is the notation for material derivative, i.e., the variation
of a quantity attached to the particle.
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Let us consider a volume of
lava of local thickness h, flow-
ing on a bedrock of height H,
and a surface S = h+H (see in-
set Figure).

We assume a linear stress-strain relationship and low tempera-
ture variations. From the incompressibility of the lava ∇·u = 0 we
can rewrite the momentum equation (Eq. 1) as:

0⃗ = ∆u+
∂

2u
∂z2 − ρg

µ(θ)
∇S. (3)

Note that we separated the 2D Laplacian of the velocity ∆u from
the vertical term ∂

2u
∂z2 .

Shallow models are derived by neglecting the horizontal Lapla-
cian [BSS16] and integrating twice, with the boundary conditions
u(H) = 0 and ∂u

∂z (S) = 0. This yields an expression for the veloc-
ity inside the lava column that we note u0(z) as it is often called a
0-th order approximation [BSS16]. The associated depth-averaged
velocity is ū0(z) =

ρgh2

3µ(θ)∇S. This formulation is convenient as it
gives a closed-form solution for the velocities. However, neglect-
ing the horizontal viscosity is inaccurate for sharp terrain gradients,
and, coupled with the particle advection, leads to a simulation that
requires very small time steps to be stable.

Instead of neglecting the horizontal viscosity, we approximate it.
We integrate vertically Eq. 3 and set U = h3ū; ū being the vertically
averaged velocity, which gives:

∆U −α
U
h2 = α

h3ρg
3µ(θ)

∇S, (4)

where α is a shape factor that depends on the vertical profile veloc-
ity, for instance, α = 5/2 for u ≈ u0. For a detailed derivation of
Eq. 4 you can refer to the supplementary material.

Assuming that h does not vary significantly, Eq. 4 is of the form
∆u− k2u = b, which we solve by convolving the right-hand term
b with the associated Green’s function Gk(r) =− 1

2π
K0(kr), where

r is the convolution distance and K0 the modified Bessel function
of the second kind. We approximate K0 with a series expansion at
r = 0: K0(r) ≈ (− log(r)− γ+ log(2))+ 1

4 r2(− log(x)− γ+ 1+
log(2)) where γ is the Euler’s constant. Finally, we obtain U with:

U(x) =
∫∫

Gk(∥s− x∥)b(s)ds, (5)

Note that this equation is similar to the smoothing operation cen-
tral to the SPH method. Therefore, we assign to each particle a
pseudo velocity b = α

h3ρg
3µ(θ)∇S, and use G as the smoothing opera-

tor. We can then evaluate U(x) and its derivatives for any x ∈ IR2,
and eventually recover the velocity ū =U/h3. Finally, we use the ū
to advect the particles and update the ice thickness with Eq. 2.

Figure 1 shows a volcano (real topography from Mount St. He-
lens, US), and a lava flow simulated with our method. Using an
NVIDIA RTX A6000 as the GPU we were able to simulate around
10000 particles at more than 100 FPS consistently. Compared to a
version that does not take into account the lateral components of
the viscosity, our approach yields smoother velocity fields and is

no longer constrained by a diffusive stability condition (with very
small time steps, which also depend locally on the lava thickness).
In contrast, we constrain our time step solely by a CFL-like crite-
rion that forces the particles to advance less than the distance be-
tween neighboring particles. Please see our video and poster for

Figure 1: Simulation of a viscous lava flow over Mount St Helens.
The top view shows the particles, and the bottom view the recon-
structed lava surface, color-coded with the height of each column.

additional results.

Future work includes the improvement of our simulation by ex-
ploring non-linear viscosity laws [HBV∗11] and vertical temper-
ature variations [BSS16], which model the spatially changing be-
havior of lava flow from fluid to solid. Further experimentation is
needed to assess the impact of our different approximations.
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