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Abstract
We present a novel data-driven approach for simulating friction between rigid bodies that captures the rich diversity of frictional
behaviors that arises due to the complex interactions of micro-asperities of different surfaces. Rather than performing detailed
simulations with expensive collision detection, we parameterize our friction model based on aggregate features of pairs of
surfaces, such as the distribution of normals from each surfaces, which may be easily computed from a texture-based embedding.
Our data-driven model is constructed by conducting real-world planar pushing experiments that capture the friction behavior of
many different material pairs, and we then fit this data using a Gaussian process (GP). The trained GP model is then evaluated
in a real-time simulation and used to update the limit surface used by the contact solver.

CCS Concepts
• Computing methodologies → Modeling and simulation;

1. Introduction

Coulomb friction is the standard friction model used in computer
animation. The model describes a relationship between the normal
contact force and the planar friction force that is non-linear. In sim-
ulators that target real-time performance, this non-linear relation-
ship is linearized [AEF22]. This simplification in the model makes
major gains in computational performance at the detriment of los-
ing complex friction interactions that would arise from the mate-
rial surface interactions. As such, many simulators fail to capture
the plausible anisotropic friction interactions that materials such
as wood or brushed aluminium would exhibit in certain circum-
stances.

There has been some work in computer graphics that focuses on
developing more complex that go beyond the expressiveness that is
possible with the traditional Coulomb model. For example, Erleben
et al. [EMAK20] developed a simple interpolation model based on
principle material directions that is able to capture direction based
friction responses that depends on the relative alignment of the sur-
faces. Andrews et al. [ANEK21] also account for the relative di-
rection and orientation of the surfaces, but additionally take into
account the meso-geometry interactions using a ploughing model.
We build on this latest work by continuing to focus on geomet-
ric surface interactions, but take a data-driven approach that learns
frictional behavior from a dataset of real-world surfaces collected
using a custom capture pipeline.

2. Overview

The capture pipeline is broken down into three main parts. First,
the data gathering and processing where we perform planar pushing

experiments using pairs of different materials. We further acquire
surface scans of the materials at the meso-scale level. Second, a
modeling stage trains a GP using the collected push force and ge-
ometry information. The inputs of the GP model are the relative
pushing direction and aggregate features computed from the sur-
face normal maps, and the output is a friction coefficient defining
the limit surface for a given push direction and relative orientation
of the surfaces. Finally, once this GP is trained, it can be loaded in
a standard simulator and queried by the numerical solver algorithm
when information about the friction limits is needed.

3. Data Gathering and Processing

Our planar pushing experiment setup consists of a fixed 6"×6" bot-
tom surface and a 3"×3" top object. The top object is pushed by a
human operator until it begins to slide against the bottom surface.
In addition, the top object is able to carry various loads as well as
the ability to attach various sheets of materials at the bottom, giving
the ability to test various material pair interactions. We use an ATI
Nano25 F/T sensor which is mounted on a probe that is handled
by the human operator. We also capture the motion of the probe
and the top moving object throughout the experiment by using a
motion capture setup. Furthermore, to get data on the surface ge-
ometry of the materials, we scan each material using a GelSight
Benchtop scanner that is able to capture a small sample area, which
we export as a normal map. Here we assume that the surface is
homogeneous, i.e., the scan sample is a good representation of the
entire material’s surface geometry.

In a Coulomb based friction model, the friction behavior is char-
acterized by the friction limit surface. That is, the boundary be-
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Figure 1: Left: The experimental setup showing the planar push apparatus with motion capture and forces sensors (top) and the micro-
geometry scanner (bottom). Right: We show the process of learning the coefficient of friction given the probe push direction, the relative
orientation of the two surfaces, and encodings of the material pair’s distribution of normal vectors histograms. Here we’ve used a scan of
brushed nylon (top) and smooth nylon (bottom).

tween static and dynamic friction. As such, we look in our data for
instants where the object started moving and record the correspond-
ing force.

Our dataset consists of frictional and surface data from various
materials, such as wood, nylon, and "brushed" nylon, i.e. nylon that
was scratched in one direction to create grains along the surface.

4. Modeling

The modeling pipeline is summarized in Figure 1. As previously
mentioned, a Gaussian process is used for fitting the data. GPs have
the advantage of working well with a small number of data points
as well as with noisy data, as long as the noise follows a Gaussian
distribution. It also has the advantage of being fast to train, unlike
neural nets. We use the standard radial basis functions as kernel.

The acquire geometry scans are of very high resolution. We re-
duce the resolution of the data by taking a crop of the scan. It is
important that the crop is large enough to be able to capture the
general geometric patterns of the surface. To avoid training with
very highly dimensional and noisy data, we further reduce the di-
mension by extracting a 2D histogram distribution of the normals
of the scan. We finally reduce the dimensions again finding a three
value latent space representation of the 2D histogram using an auto-
encoder.

5. Results and Discussion

We train the GP with four different experiments comprised of com-
binations of nylon, wood, and brushed nylon. The total dataset com-
prises of 2780 data points and we train the GP for 800 epochs. Fig-
ure 2 shows the output of the trained model when evaluated on one
of the experiments. Note the smoothing effect that the GP has as it
does not capture the low-valued outliers. Future work will address
this artefact and extend the GP model to handle this noisy, which
we believes stems from the stochastic nature of friction.

One limitation of our approach is that the data we collect only fo-
cuses on specific regime of materials. Real-world friction depends
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Figure 2: We evaluate the model with one of the training experi-
ments comprising of pushing smooth nylon on a brushed nylon sur-
face. The coefficient of friction (color) with respect to the planar
push orientation and the relative orientation of the two surfaces is
plotted. Axes are in radians.

on a multitude of complex phenomena, such as temperature, load,
wear of the material, sheer forces acting upon the object, micro-
deformations at the surface, and even molecular interactions. One
potential future direction would be to use a high resolution, non
real-time simulation of rigid body planar pushing to collect training
data. This would give additional control over the surface geometry,
as well as adding further modeling capabilities as mentioned above.
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