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Figure 1: Comparison of different approaches. Our method achieves a faster frame rate by reducing the number of particles simulated, while
still maintaining the quality of an upsampled approach.

Abstract
We present a method for generating simulations of granular materials more quickly within a position based dynamics frame-
work. We do this by combining an adaptive particle sampling scheme with an upsampling approach. This allows for faster
simulations in interactive applications, while maintaining visual resolution. Particles are merged or split based on their dis-
tance from the boundary, allowing for high details in areas of importance such as the surface and edges. Merging particles into
a single particle reduces the number of particles for which collisions have to be simulated, thus reducing the overall simulation
time. The adaptive sampling technique is then combined with an upsampling scheme that gives the coarser particle simulation
the appearance of much finer resolution.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Granular materials such as sand, gravel, snow, grains, etc. are im-
portant to creating realistic virtual environments. Simulating such
materials at interactive rates is challenging due to the interplay
of forces between the particles used to represent them. Although
granular materials display many properties similar to those of flu-
ids, they differ from fluids in that they lose kinetic energy quickly.
We propose a technique to improve performance of a PBD-based
(or other particle-based) granular simulation. Adaptive sampling
[APKG07] [HHK08] enables simulation with adaptive numbers

of particles, trading resolution in less visible areas for increased
performance. Thus, we introduce a modified adaptive merging and
splitting scheme for granular materials that increases performance,
especially in scenarios where particles pile up, without sacrificing
details in important areas.

2. Method

Our proposed framework is based on Sommer et al. [SSS22] which
combines low-resolution or coarse-scale simulation with a high-
resolution or fine-scale simulation in order to get high particle
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Table 1: Frame times for the demos with comparisons.

Average Number Mean Time Per Frame (ms)
Demo LR Particles HR Particles LR Updates HR Updates Neighbor Search Total
Piling Fixed 6,460 129,200 13.29 10.21 24.18 47.68

Adaptive 3,902 129,200 6.46 8.59 21.66 36.71
Compact Box Fixed 5,760 115,200 14.59 9.08 25.52 49.20

Adaptive 2,881 115,200 7.068 7.19 22.49 36.75
Excavator Fixed 5,760 115,200 16.05 11.39 25.89 53.33

Adaptive 3,544 115,200 7.46 9.32 24.53 41.30

Figure 2: Three demo scenarios including particle settling into a stable pile, particles settling in a compact box and particles colliding with
a moving excavator bucket. Timings for each are in Table 1.

counts without having to generate collisions for all particles. The
low-resolution simulation is based on the PBD algorithm since it
is a particle based approach focused on the needs of interactive
applications. Around each low-resolution particle, smaller high-
resolution particles are sampled to give more detail without having
to generate additional collisions. The initial sampling is very im-
portant in order to avoid artifacts such as aliasing [SSS22]. Thus,
high-resolution particles are sampled using randomized volume
sampling [SS21]. These high-resolution particles are set in motion
by the velocity field of neighboring low-resolution particles as de-
scribed by by Ihmsen et al. [IWT12].

In order to reduce the number of particles that need to be updated
each frame, the particles are adaptively merged or split depending
on an importance criterion. Particles on the boundary are deemed
to be important and are split whereas non-boundary particles are
merged together to form larger particles.

A particle is determined to be a boundary particle if it is either a)
an isolated particle, b) near the surface of a volume of the particles
or c) has spread out over a surface.

We define merging and splitting by following energy conserva-
tion laws to keep the total energy constant and the system stable.
The equations for merging are:

m f = m1 +m2,v f =
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The processes of merging and splitting introduce new particles
in locations that can overlap with existing particles. In a standard

PBD framework, this can lead to an artificial increase in kinetic en-
ergy, since these overlaps must be resolved by a constraint solve,
which would induce a resulting velocity. In order to reduce the ef-
fects of these induced overlaps, we run one iteration of constraint
solving following a merge/split. For the new particles, we subtract
the components of the calculated velocity in the direction that the
overlap is resolved in from the total velocity. This allows the parti-
cles to (mostly) resolve to a non-overlapping configuration without
inducing velocity, and thus not adding kinetic energy artificially.

The method described was implemented in C++ and runs en-
tirely on the CPU. The frame times are given on a system with a
12-core 3.7GHz AMD Ryzen 5900x processor and 32GB of RAM.
See Table 1 for a summary of timing improvements. Figure 1 com-
pares our method to alternatives and Figure 2 illustrates scenarios.
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