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Abstract
We present a novel, physically-based morphing technique for elastic shapes, leveraging the differentiable material point method
(MPM) with space-time control through per-particle deformation gradients to accommodate complex topology changes. This
approach, grounded in MPM’s natural handling of dynamic topologies, is enhanced by a chained iterative optimization tech-
nique, allowing for the creation of both succinct and extended morphing sequences that maintain coherence over time. Demon-
strated across various challenging scenarios, our method is able to produce detailed elastic deformation and topology transi-
tions, all grounded within our physics-based simulation framework.

CCS Concepts
• Computing methodologies → Animation; Physical simulation;

1. Introduction

Keyframe control and shape interpolation are essential techniques
in animation, used to create smooth transitions for characters and
objects. Traditionally, shape morphing algorithms focus on opti-
mization, balancing constraints from keyframed shapes with addi-
tional terms to ensure physical realism. These terms may involve
optimal transport or principles like Newton’s second law. There
are two main approaches: fluidic physical models, which handle
topology changes well with external forces, and elasticity-based
methods, which create visually appealing deformations with inter-
nal forces but usually assume a constant topology.

In this research, we combine the strengths of both approaches
by introducing a physically-based shape morphing algorithm for
elastic materials. This method supports large deformations and
dynamic topology changes, using a differentiable material-point
method (MPM) simulator optimized for elastic materials and con-
trolled through deformation gradients. Inspired by the preliminary
work found in [XL23], our approach includes a multi-pass opti-
mization framework and a differentiable Eulerian loss function for
unique topological transformations. The present work solves the
instability issues identified in [XL23] and enhances overall perfor-
mance. These results demonstrate significant deformations and dra-
matic topology changes.

† Equal contribution.

2. Method

2.1. Differentiable Simulation

In this study, we implemented MLS-MPM, which is naturally
differentiable; analytical gradients have been derived by Hu et
al. [HLS∗19]. We manually implemented the necessary analyti-
cal gradients, to have more control over the implementation and
avoid potential issues with software-based automatic differentia-
tion [JMJF23]. In addition to gradients, a differentiable simulator
naturally requires storing the feedforward simulation network to
allow for the backpropagation of derivatives. We implemented this
network by storing the computation graph of each timestep layer
Tn, which can be abbreviated by the key steps with superscript de-
noting the timestep number:

Tn = P1n→ P2Gn→Gn→G2Pn→ P2n. (1)

Then, backpropagation can then be used on the simulation network
to compute gradients via the chain rule:

T1← ·· · ← Tn←L. (2)

Our method involves controlling particles’ deformation gradients,
so we introduce a control deformation gradient term separate from
the time-evolved deformation gradients.

2.2. Deformation Gradient Control

To represent morphing animation, which fundamentally requires
handling large deformations and accurate rotations, we have chosen
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fixed co-rotational elasticity [SHST12, JST∗16] as the constitutive
model. In elastic constitutive models, the deformation gradient F is
used to ensure that internal energy is only generated when F indi-
cates a non-rigid transformation between the initial state X and the
deformed state x. Therefore, we define our elastic energy function
with the Piola-Kirchoff stress tensor as follows:

P(F) = 2µ(F - R)+λ(J−1)JF−T , (3)

where J is the determinant of F and R is its rotational component,
which can be computed via the polar decomposition of F [GFJT16].

Using this elastic model, we can manually control internal forces
in our MPM simulation through the particle deformation gradients.
Of course, to actually drive a shape morph, an automatic method for
per-particle deformation gradient control is required. We achieve
this through the optimization of the feedforward simulation net-
work, which requires a loss function to be defined.

2.3. Log-based mass loss function

In MPM, we utilize a background grid whose nodes store interpo-
lated quantities like mass from particles. Using a nodal mass loss
function instead of a point position loss function simplifies input
geometry requirements, such as the need for identical numbers of
particles in the input and target geometries.

We compute the sum of the squared differences between the
nodal masses mi and m∗

i of the interpolated input and target masses:

L= ∑
i

1
2
(mi−m∗

i )
2, (4)

However, this loss function can cause “mass ejections”, especially
with large shape differences, due to local minima. These mass ejec-
tions result from stronger forces in areas with less overlap between
input and target geometries (Please refer to [XL23] for more de-
tails). To mitigate this, we propose a log-based mass loss function
to reduce sensitivity to outliers.

L= ∑
i

1
2
(ln(mi +1)− ln(m∗

i +1))2. (5)

3. Results

We use a modified explicit time integration scheme for MLS-MPM,
which helps prevent instability when taking larger timesteps. MPM
point cloud visualization was performed using Polyscope [S∗19],
and rendering was conducted using Houdini. We ran the experiment
on a machine with an Intel i7-10750H CPU, 32GB RAM, and an
NVIDIA RTX 2060 GPU

4. Conclusions and Future Work

This study presented a framework for shape morphing using the
differential material point method (MPM), emphasizing the novel
log-based nodal mass loss function to prevent spurious particle
movement and enable efficient, detailed morphing animations. Fu-
ture work will focus on improving the parallel performance of
our method, exploring GPU-based implementations, and enhancing
scaling up to a few dozen cores for practical animation use cases.

Figure 1: Sphere to bunny morphing animation. Key stages show
the sphere evolving into a detailed bunny form, highlighting our
method’s precision in capturing sharp features like the ears.
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