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Abstract
We propose a novel learning-based approach for predicting fractured shapes based on collision dynamics at run-time and
seamlessly integrating realistic brittle fracture animations with rigid-body simulations. Our method utilizes BEM brittle frac-
ture simulations to create training data. We introduce generative geometric segmentation, distinct from instance and semantic
segmentation, to represent 3D fracture shapes. We adopt the concept of a neural discrete representation learning framework to
optimize multiple discrete fractured patterns with a continuous latent code. Additionally, we propose a novel SDF-based cage-
cutting method to create fragments by cutting the original shape with the predicted fracture pattern. Our experimental results
demonstrate that our approach can generate significantly more detailed brittle fractures compared to existing techniques, while
reducing computational time typically when compared to traditional simulation methods at comparable resolutions.

CCS Concepts
• Computing methodologies → Animation; Neural networks; Learning latent representations;

1. Introduction

Brittle fracture animations bring impressive visual effects to video
games, movies, and virtual reality. Most simulation methods do not
focus on crack propagation but instead concentrate on determining
the cutting meshes. Recently, physics-based simulation methods
based on quasi-static crack propagation can generate detailed real-
istic fractured shapes and surfaces. However, current physics-based
simulation methods based on crack propagation [HW16; FCK22],
including those utilized within the film industry, suffer from com-
putationally expensive costs.

In real-time applications like virtual reality or games, a more
popular alternative involves creating a pre-fractured pattern during
the modeling stage and swapping from the original shape to the
fractured shape upon collision. However, the monotonous Voronoi-
like shapes make it difficult to represent complex real-world frac-
ture patterns, and these shapes are not tailored to each collision.

We introduce a novel approach for predicting brittle fracture pat-
terns utilizing neural discrete representation learning [VV*17]. We
reconceptualize the challenge of brittle fracturing as predicting a
specific fracture pattern related to a BEM simulation collision con-
dition, viewing it as a conditional 3D fracture pattern prediction.

2. Our Method

Our method consists of two main processes: 1) In the learning pro-
cess, we first generate the training dataset. Then, we train a con-
ditional generative model in the training phase of our neural dis-
crete representation learning framework. 2) In the run-time process,

we predict the fractured surfaces using the conditional generative
model in the inference phase. We then synthesize the fractured sur-
faces and original meshes using our caged-SDF segmentation and
employ the reconstructed shapes in the physics engine. Each frag-
ment is assigned new velocities and masses derived from its state
before destruction. The rigid-body simulation proceeds with these
updated configurations.

Generating training data. Our framework utilizes BEM brittle
fracture simulation [HW16] to generate training data that reflects
collision scenarios and their resultant fracture patterns. To predict
the fracture patterns, we abstract the fracturing scenarios caused
by collisions and encode the scene into a deep learning-friendly
dataset. This dataset pairs impulse data inputs with outputs of frac-
tured fragments.

Training phase in learning process. We have designed a custom
conditional generative model to enable the generation of fracture
patterns at various 3D resolutions through a discrete representation
training framework [VV*17]. The input representation includes a
normalized impulse code representing the strength, direction, and
position of the impulse when collision occurs. To better represent
3D fractured surfaces, we define an output 3D representation suit-
able for generative geometric segmentation, similar to truncated
signed distance fields (TSDF), by accepting the internal unsigned
distance values. In the training phase, we concatenate the input im-
pulse code with initialized noisy code to link to specific fractured
patterns and generate an embedding space following the discrete
representation training framework.
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Figure 1: Comparison between the simulation results and fractured shapes predicted by deep learning. Left to right: Alphabet A, Chair,
Lion, Mug. Top to bottom row: Input collision condition, Brittle fracture simulation results, Results of our method. All collision conditions
are not contained in the learning process.

Inference Phase in run-time process. When a collision with the
target shape occurs, impulse data is captured and transmitted to the
conditional generative model. Similar to the training phase, we en-
code the normalized impulse code for the conditional generative
model. In the inference phase, unlike the training phase, we gen-
erate a normal distribution random noisy code and concatenate it
with the normalized impulse code. By searching for the closest el-
ement in the embedding space, we forward the conditional genera-
tive model to obtain the fractured surfaces.

Caged-SDF Segmentation. We have developed a method called
caged-SDF segmentation to reconstruct destruction patterns while
preserving the original external surface mesh. The caged-SDF seg-
mentation method aims to generate predicted internal fractured sur-
faces, which are enclosed by a thin, soft-wrapping cage. This ap-
proach involves several Boolean set operations between the cage
with fractured surfaces and the original mesh.

3. Results

In our experiments, we used the shape data provided by Thingi10K
[ZJ16] and Objaverse 1.0 [DSS*23]. For each target shape, we con-
ducted both the learning and run-time processes with a generative
model tailored to one target shape individually. We generate the
dataset for 10 hours on four PCs with Ryzen 9 5950X CPUs. We
conducted over 200 frames of destruction experiments, colliding
60 times and collecting the data. As a result, we calculated 60 sets
of input and output learning data for each shape, 50 sets used in
the training phase, and 10 sets used in tests as shown in Figure 1.
The average time cost in the training phase for one target shape is
3 hours, 46 minutes, and 14 seconds with 1500 epochs.

Figure 1 shows that our results are similar to brittle fracture sim-
ulation results in terms of destruction patterns, global complexity,

and fracture surface shapes. Our deep learning-based method gen-
erated visually close results to brittle fracture simulation within an
average calculation time of 12.2 seconds, compared to the average
calculation time of 13.0 minutes for crack propagation-based brittle
fracture simulation.

4. Conclusion and Future work

We introduced the prior application of a deep learning-based frac-
ture system, defining the task of 3D destruction shape genera-
tion. Additionally, we develop a novel and stable SDF-based cage-
cutting method that can be adapted in other works.

Future work includes further evaluating the proposed framework
by improving the run-time process and developing a general gen-
erative model to predict brittle fractures across a specific category
rather than focusing on individual shapes.
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