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Abstract
We introduce a novel framework for 3D pose estimation in combat sports. Utilizing a sparse multi-camera setup, our approach
employs a computer vision-based tracker to extract 2D pose predictions from each camera view, enforcing consistent tracking
targets across views with epipolar constraints and long-term video object segmentation. Through a top-down transformer-
based approach, we ensure high-quality 2D pose extraction. We estimate the 3D position via weighted triangulation, spline
fitting and extended Kalman filtering. By employing kinematic optimization and physics-based trajectory refinement, we achieve
state-of-the-art accuracy and robustness under challenging conditions such as occlusion and rapid movements. Experimental
validation on diverse datasets, including a custom dataset featuring elite boxers, underscores the effectiveness of our approach.
Additionally, we contribute a valuable sparring video dataset to advance research in multi-person tracking for sports.

CCS Concepts
• Computing methodologies → Pose Estimation; Optimization;

1. Introduction

Combat sports present significant challenges for motion cap-
ture due to numerous close-proximity interactions and frequently
crowded backgrounds. Optical marker-based tracking, while pre-
cise in controlled environments, becomes impractical due to dy-
namic motions and frequent collisions leading to calibration is-
sues. Inertial measurement unit (IMU) based solutions suffer from
global positional drift, affecting inter-athlete distances. Monocu-
lar vision-based approaches, though freeing athletes from tracking
equipment, often lack precision due to frequent occlusions. How-
ever, these occlusions can be mitigated by incorporating data from
multiple camera viewpoints, a cornerstone of our tracking pipeline.

We propose a multi-stage, multi-view tracking pipeline shown
in Fig 1 designed to reconstruct high-quality 3D motion of athletes
engaged in combat sports such as boxing. Our approach integrates
2D keypoints from multiple camera views through kinematic op-
timization, followed by physics-based trajectory refinement using
model predictive control to eliminate non-physical artifacts. The
contributions of our work are summarized as follows:

• A comprehensive multi-camera multi-person physics-based pose
estimation framework designed for high-quality 3D pose estima-
tion using as few as three cameras.

• A robust triangulation technique employing spline fitting and
Kalman filtering to generate consistent and smooth 3D positions.

• A high-quality dataset of > 20 minutes of video footage featuring
elite boxers during sparring sessions that encompasses several
boxing styles, plus a multi-view dataset of motions representa-
tive of combat sports and synchronized with ground truth from

an optical marker tracking system. We will release these datasets
and the solved motions.

2. Pose Estimation

Our tracking pipeline is summarized in Fig. 1. We describe the
main stages below.

Tracking 2D and 3D: Using epipolar constraints and long-term
video object segmentation [CS22] we produce consistent ids for
everyone, these ids are used to produce 2D joints positions us-
ing [XZZT22] for tracking targets. We then use linear triangulation
and Kalman estimation to produce robust 3D joints positions for
each individual, even in the presence of noise and outliers.

Kinematics Optimization: The kinematics optimization fo-
cuses on refining the pose estimation of athletes using 2D and
3D keypoint data. Fig 2 shows the results of the kinematics stage
on different datasets. The optimization initializes shape parame-
ters (β ∈R10) of the SMPL model based on 3D keypoints obtained
through triangulation. Subsequently, it iteratively adjusts shape and
pose parameters (θ ∈ R72) to refine the pose estimation based on
objectives for smoothness, similarity to human motion priors, and
alignment with both 2D re-projection evidence and triangulated 3D
keypoints. We summarize these objective terms below:

• 2D Re-projection loss (L2D): Aligns 3D with 2D keypoints
across multiple views, emphasizing high-confidence joints.

• 3D Alignment loss (L3D): Distance between predicted joint lo-
cations and triangulated keypoints, weighted by their confidence.

• Smoothness loss (Lsmooth): Promotes temporal coherency in
pose transitions from frame-to-frame.
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Figure 1: Our pipeline begins with generating bounding boxes and tracking ids for each individual in the scene, which are then used
to produce 2D poses for each individual for each view j. A triangulation process is then used to compute 3D keypoints. The kinematics
optimization step incorporates the 2D and 3D keypoints to compute SMPL parameters (θ, β). The 3D relative joint positions, initial pose
state and velocity state of the humanoid, serve as a reference for a dynamic optimizer to correct artifacts in the motion.

Figure 2: Poses estimated from the Campus (left), Shelf (middle) datasets, and our custom supplementary (right) dataset.

• Prior losses (LGMM, LVposer): Gaussian Mixture Model (GMM)
and Vposer [PCG∗19] priors to penalize unnatural poses.

Dynamics Optimization: Motions produced by the kinematic
stage often contain high-frequency jitter and foot skating. We found
that a dynamics optimization using a physics-based humanoid
model helps to mitigate these artifacts. The model consists of an
articulated rigid-body structure with 56 joint-angle degrees of free-
dom, plus 6 degrees of freedom for the root motion. Capsule colli-
sion geometry aligned with SMPL landmarks comprises the shape.
The dynamics optimization refines motion trajectories from the
kinematics stage by considering joint torques and biomechanical
constraints within the physical environment. Joint torques are com-
putd using an iLQR algorithm [HGT∗22], This approach accounts
for contact forces and body dynamics, enhancing the overall qual-
ity and naturalness of the generated motions by iteratively refin-
ing control trajectories over short time horizons. Table 1 presents
quantitative metrics computed using our supplementary dataset on
the motions produced by the kinematics optimizaton stage and af-
ter the dynamics optimization. The dynamics optimization clearly
increases the naturalness of the solved motions.
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