
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2016)
Ladislav Kavan and Chris Wojtan (Editors)

Asynchronous Implicit Backward Euler Integration

Danyong Zhao Yijing Li Jernej Barbič

University of Southern California, USA

Abstract

In standard deformable object simulation in computer animation, all the mesh elements or vertices are timestepped syn-
chronously, i.e., under the same timestep. Previous asynchronous methods have been largely limited to explicit integration. We
demonstrate how to perform spatially-varying timesteps for the widely popular implicit backward Euler integrator. Spatially-
varying timesteps are useful when the object exhibits spatially-varying material properties such as Young’s modulus or mass
density. In synchronous simulation, a region with a high stiffness (or low mass density) will force a small timestep for the entire
mesh, at a great computational cost, or else, the motion in the stiff (or low mass density) region will be artificially damped and
inaccurate. Our method can assign smaller timesteps to stiffer (or lighter) regions, which makes it possible to properly resolve
(sample) the high-frequency deformable dynamics arising from the stiff (or light) materials, resulting in greater accuracy and
less artificial damping. Because soft (or heavy) regions can continue using a large timestep, our method provides a significantly
higher accuracy under a fixed computational budget.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Animation—Finite Element Method-
Implicit Backward Euler

1. Introduction

Simulation of three-dimensional solid deformable objects has
been widely used in many areas such as engineering, mechanics,
robotics, computer graphics and virtual reality. Almost two decades
ago, Baraff and Witkin introduced the implicit backward Euler in-
tegrator [BW98] to the graphics community. Due to its simplicity
and stability under large timesteps, this integrator is very popular
and widely used in computer animation. Previous implicit back-
ward Euler methods, however, assume that the timestep employed
for the simulation is constant at all the mesh elements. A constant
timestep is inefficient when the mesh contains spatially-varying
material parameters: one either has to choose a spatially-global
timestep that resolves the dynamic deformations in the stiff (or low
mass density) region (incurring a high computational cost), or one
uses a spatially-global larger timestep, which in turn artificially
damps the motion in stiffer (or low mass density) regions, effec-
tively making them rigid. Note that numerical stiffness is propor-
tional to the physical stiffness of the material (Young’s modulus),
and inversely proportional to the object’s mass density. In this pa-
per, we give a method where the timestep can vary spatially across
the mesh (called asynchronous integration, or also multi-rate or
subcycling integration). Our method strikes a compromise, by em-
ploying a small timestep in the stiff (or low mass density) regions
and a large timestep in the soft (or high mass density) regions. It
resolves deformable dynamics everywhere in the mesh, and greatly
decreases artificial damping and computational cost, all the while

still benefiting from stability of implicit integration. To the best
of our knowledge, we are the first work in computer graphics that
timesteps internal elastic forces of a three-dimensional deformable
object using an asynchronous implicit method. We demonstrate our
results using linear elasticity simulated using the Finite Element
Method (FEM), wherein we resolve large deformations using geo-
metric warping. We also give an extension to nonlinear simulation
using co-rotational linear FEM.

Asynchronous implicit integration involves cross-timestep cou-
pling of the vertex displacements and velocities, and is thus chal-
lenging to perform efficiently. For example, suppose we divide
the vertices of a mesh into two regions, with the first region inte-
grated at graphics rates, but the second region having a 10x smaller
timestep. Then, for implicit integration, the positions and veloc-
ities at these smaller timesteps in the second region are coupled
to the positions and velocities of the first region at the end of the
timestep. In this paper, we demonstrate how to properly couple
these positions and velocities, and solve the resulting system ef-
ficiently. We assume that the region with the smaller timestep is
relatively small compared to the entire mesh, and that the interface
between the slow and the fast region is small. We first demonstrate
how to perform simulations with two timestep regions, where the
large timestep is an integer multiple of the small timestep. We then
extend our method to more than two regions, each with a separate
timestep, under the assumption that the ratio between the timestep

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/sca.20161217

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sca.20161217

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

of the main region and the smaller timesteps is an integer, and that
these smaller timestep regions do not interact.

2. Related Work

Asynchronous integration has been studied in many fields includ-
ing mechanics and engineering [BYM79, Bel81, SW98], molecu-
lar dynamics simulation [KPD97], circuit design [vEvSB90], med-
ical simulation [KPC09] and haptics [AH98, cT00]. Most meth-
ods use explicit asynchronous integration, for example, an early
method of [Bel81] and more recently [Dan03, CH09]. Explicit
asynchronous integration is simple and easily couples the regions
with different timesteps. However, very small timesteps are of-
ten needed to guarantee the accuracy and stabilize the simula-
tion. This limits the computational speed of explicit integration.
Debunne et al. [DDCB01] accelerated the simulation by building
an adaptive framework both in space and time. The explicit vari-
ational integrator in [LMOW04, KL07] allowed each element to
have its own timestep. Regions with a single timestep were inte-
grated implicitly. However, its cross-timestep coupling is still ex-
plicit. In haptics, Koçak and colleagues [KPC09] used an explicit
asynchronous method to save computation costs and give a fast lo-
cal contact response. An explicit asynchronous scheme is also used
in [HVS∗09, TPS08] to resolve collisions.

Implicit asynchronous integration is generally more complex
than its explicit counterpart. Sand and Skelboe [SS92] studied the
stability of multi-rate backward Euler with waveform relaxation.
This method is designed for use in circuit simulation where the
magnitude of one subsystem is much larger than the remaining
subsystems. Thus, different timesteps can be used in different sub-
systems to maintain small local truncation error. They studied a
method which is implicit in each individual subsystem but explicit
in the coupling between subsystems, as well as implicit coupling.
Their implicit coupling solves all DOFs in one large timestep by
using the result from the former method as initial guess and then
applying relaxation sweeps to refine the result iteratively. They dis-
cussed several interpolation schemes on the interface. However,
situation in deformable object simulation is different from circuit
simulation. Usually, we do not have such large magnitude differ-
ences in different regions of one object. Besides, such relaxation
sweep is relatively slow, and the convergence is not guaranteed.
We instead solve the system directly without iteration. Gravouil
and colleagues [GC01] give a multi-timestep algorithm that al-
lows coupling between arbitrary Newmark schemes, including ex-
plicit and implicit variations. This work is later extended to α-
schemes [GCB15]. They divide elements into regions with dif-
ferent timesteps and use Lagrange multipliers to enforce cross-
timestep coupling. For linear problems, their method has similar
time complexity as ours. Our method is simpler because we use
implicit backward Euler directly, without needing Lagrange multi-
pliers. Constantinescu and colleagues [CS10] constructed a multi-
rate scheme that jointly integrates the state in the large timestep
region and the first step of the small timestep region. They then
fix the motion in the large timestep region, and integrate the small
timestep region in isolation. This method is simple and fast, but
does not properly perform the cross-timestep coupling.

Since the pioneering work of [TPBF87] and [TF88] on de-

formable object simulation, many methods have been proposed to
improve simulation efficiency. Among them, implicit backward Eu-
ler integration [BW98] was introduced to allow large timesteps.
This method has the drawback of adding numerical damping when
the timestep is too large [MSW14]. In computer graphics, simu-
lations with different timesteps in different parts of the mesh have
been investigated in [DDCB01,TPS08,SKZF11,SD06]. Variational
integrators using both explicit and implicit methods have been pro-
posed by [FSH11] and [SG09]. Schroeder et al. [SKZF11] parti-
tioned the simulation mesh into a semi-implicit outer layer and im-
plicit interior. The outer layer is integrated at a higher rate than the
interior to produce less damped motion and respond timely to colli-
sion and contact. The interior is integrated at graphical frame rates
using stable implicit integration. When a graphical frame begins,
the outer layer is integrated semi-implicitly (explicitly in elastic
force, but implicitly in damping) for a few timesteps, leaving the
interior behind in time. At the end of the graphical frame, both re-
gions are coupled in an implicit solve to get the shape of the entire
object for one graphical frame. The implicit elastic forces from the
interior are absent when integrating the outer layer, as if the inte-
rior is empty. The method needs to filter forces on the outer layer,
adding rigid body force components to maintain a solid shape. Al-
though the method avoids the large solve on all DOFs in one large
timestep, the force filtering is not physical, decreasing accuracy,
and the cross-timestep coupling is not implicit. We compare to their
method in Figure 9.

Different from previous methods, we perform the coupling by
performing an implicit solve on all the timesteps and both regions
in one graphical frame. We include the fast region velocity changes
from multiple small-timestep steps, and the velocity change of the
slow region in one graphical frame, to perform implicit Euler inte-
gration across multiple small-timestep steps. In this way, the slow
region forces are correctly interpolated within the graphical frame,
for use in small timesteps in the fast region.

Our asynchronous method works well on linear FEM [ZTZ05]. It
is because the linearization of the internal force is exact, so that dur-
ing the cross-timestep coupling, all the stiffness matrices on differ-
ent small-timestep steps are correct. However, linear FEM is only
accurate under small rotations. Modal warping [CK05] was pro-
posed to remedy the visible artifacts in linear modal analysis. Later,
Huang et al. [HTZ∗11] introduced rotation-strain coordinate warp-
ing as a better geometric post-process [LHdG∗14]. We adopt this
approach to improve our linear simulation results. In Section 3.4,
we extend our work to nonlinear simulation using co-rotational lin-
ear FEM.

3. Algorithm

In this section, we explain our asynchronous implicit method, start-
ing from implicit backward Euler. We first discuss a two-timestep
system, followed by a generalization to more timesteps. Then we
discuss an extension to co-rotational large deformation FEM simu-
lations.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

2

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

hs

hl

0 1 2 3 m=4

S
L

Region

Frame

Figure 1: Illustration of the multi-timestep scheme used in our
method, for the timestep ratio m = 4. The timestep hL in region L
is 4× larger as the timestep hS in region S.

3.1. Implicit Backward Euler

We begin by describing the implicit backward Euler method. Its
update rule is

uk+1 = hvk+1 +uk, (1)

vk+1 = hM−1 f (uk+1,vk+1)+ vk, (2)

where uk ∈ R3n and vk ∈ R3n are the displacement and velocity of
an object with n vertices at step k, h = tk+1 − tk is the timestep,
M ∈R3n×3n is the mass matrix, and f (u,v, t) ∈R3n is the net force
on all the vertices. The net force f (uk+1,vk+1) is

f (uk+1,vk+1) = fext − fint(uk+1)−Dvk+1, (3)

where fext is the external force applied at step k+ 1, fint(u) is the
internal elastic force under displacements u, and D ∈R3n×3n is the
damping matrix. We use Rayleigh damping in all of our examples.
Here, we assume linear FEM simulations. Therefore, fint is linear
and we have

fint(uk+1) = fint(uk)+K(uk+1−uk), (4)

where K ∈ R3n×3n is the stiffness matrix. So Equation 2 becomes:

(M+hD+h2K)∆v = h(fext − fint(uk)−Dvk−hKvk), (5)

where ∆v = vk+1− vk. To decrease computation costs, matrix K is
evaluated at uk, and Equation 5 is solved only once per timestep.

3.2. Two-Timestep System

We first explain the algorithm for implicitly integrating two regions
with different timesteps. Integrators with more than two timesteps
can be extended from the two-timestep version and will be dis-
cussed later.

3.2.1. System Formation

The input of the algorithm is an object whose vertices are divided
into regions L and S. There will be a few elements that form an in-
terface between L and S. The elements that have vertices both from
L and S form an “interface” layer, and are the cause of interaction
between the two regions. Similarly to [SKZF11], we enforce that
the large timestep is an integer multiple of the small timestep,

hL = mhS, (6)

where hL,hS are the timesteps used in L,S, respectively, and m ∈
Z+. In the remaining sections of the paper, we use subscripts to de-
note evaluation time and superscripts to denote the region. Without
loss of generality, we start at time 0, assuming the displacements
and velocities for both regions are known at step 0. Next, S is evalu-
ated at time indices 1,2, . . . ,m, whereas L is only evaluated at time

index m. We can rearrange the order of the vertices and partition
Equation 2 for timestep size of hL into[

MSS MSL

MLS MLL

][
∆vS

0,m
∆vL

0,m

]
= hL

[
f S
m

f L
m

]
. (7)

Here, ∆vS
0,m and ∆vL

0,m are the velocity changes on S and L, respec-
tively, from step 0 to step m. Similarly, f S

m and f L
m are the forces on S

and L, respectively, evaluated at step m. The mass matrix M is par-
titioned into four sub-matrices Mi j, and we have MSL = (MLS)T .
Note that if mass lumping is used, MSL and MLS will be empty,
but this does not significantly improve the efficiency because the
stiffness blocks are still present in the system solve.

The equation for f can also be partitioned in the same manner,
resulting in[

f S
m

f L
m

]
=

[
f S
ext,m

f L
ext,m

]
−
[

DSS DSL

DLS DLL

][
vS

m
vL

m

]
−

[
f S
int,m

f L
int,m

]
, (8)

and similarly for the linearization of fint :[
f S
int,m

f L
int,m

]
=

[
f S
int,0

f L
int,0

]
+

[
KSS KSL

KLS KLL

][
uS

m−uS
0

uL
m−uL

0

]
. (9)

If we look at the DOFs in L alone in Equations 7, 8 and 9, their
motion at step m is determined by

MLL
∆vL

0,m +MLS
∆vs

0,m = hL f L
m, (10)

f L
m = f L

ext,m−
[
DLS DLL][vS

m
vL

m

]
− f L

int,0−
[
KLS KLL][uS

m−uS
0

uL
m−uL

0

]
.

(11)

Equations 7, 8 and 9 do not have any asynchronous mechanism
yet. Now we will discuss how to substep S asynchronously. We
integrate the motion of S at a smaller timestep than L. The motion
at each step r+1 on S, 0≤ r < m, is solved by

MSS
∆vS

r,r+1 +MSL
∆vL

r,r+1 = hS f S
r+1, (12)

f S
r+1 = f S

ext,r+1−
[
DSS DSL][vS

r+1
vL

r+1

]
− f S

int,r−
[
KSS KSL][uS

r+1−uS
r

uL
r+1−uL

r

]
. (13)

Region L is never evaluated at intermediate steps r, for 0 < r < m.
To acquire a correct interpolation for uL

r and vL
r , we have to use uL

m
and vL

m. Assuming the acceleration of L is constant between steps
0 and m, we have

vL
r =

m− r
m

vL
0 +

r
m

vL
m. (14)

From the equations above, we find that vS
1 depends on vL

1 , which de-
pends on vL

m. We also find that vL
m depends on vS

m, and vS
m obviously

depends on vS
1. This cross-timestep dependency is challenging to

handle in nonlinear simulations because there is no way to pre-
dict how internal force and tangential stiffness matrix will change
across multiple steps. However, by using a linear force model, the

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

3

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

unknowns can be solved together as follows:

MSS
∆vS

0,1 +MSL
∆vL

0,1 = hS f S
1 , (15)

MSS
∆vS

1,2 +MSL
∆vL

1,2 = hS f S
2 , (16)

MSS
∆vS

2,3 +MSL
∆vL

2,3 = hS f S
3 , (17)

...

MSS
∆vS

m−1,m +MSL
∆vL

m−1,m = hS f S
m, (18)

MLL
∆vL

0,m +MLS
∆vS

0,m = hL f L
m. (19)

For 0≤ r < m, we can replace ∆vS
r,r+1 with

∆vS
r,r+1 = ∆vS

0,r+1−∆vS
0,r. (20)

According to the implicit backward Euler update rule, we have

uS
r+1 = uS

r +hSvS
r+1 = uS

0 +hS
r

∑
i=0

vS
i+1, for 0≤ r < m, (21)

uL
m = uL

0 +hLvL
m. (22)

If we substitute Equations 20, 21 and 22 into Equations 15 to 19,
we can arrange Equations 15 to 19 into a matrix form:

AS B1
C AS 0 B2
G C AS B3
G G C AS B4

... ...

G G G G ... AS Bm−1
G G G G ... C AS Bm
E E E E ... E F AL





∆vS
0,1

∆vS
0,2

∆vS
0,3

∆vS
0,4
...

∆vS
0,m−1

∆vS
0,m

∆vL
0,m


=



bS
1

bS
2

bS
3

bS
4
...

bS
m−1
bS

m
bL

m


,

(23)

where

AS = MSS +hsDSS +(hS)2KSS, (24)

AL = MLL +hLDLL +(hL)2KLL, (25)

Br =
1
m
(MSL + rhsDSL + r2(hS)2KSL), (26)

C = (hS)2KSS−MSS, G = (hS)2KSS, (27)

E =
1
m
(hL)2KLS, F = MLS +hLDLS +E. (28)

On the right hand side, we have

bS
r = hS(f S

ext,r− f S
int,0− (

[
DSS DSL]+ rhS [KSS KSL])[vS

0
vL

0

]
),

(29)

bL
m = hL(f L

ext,m− f L
int,0− (

[
DLS DLL]+hL [KLS KLL])[vS

0
vL

0

]
).

(30)

3.2.2. System Solve

The linear system in Equation 23 has size 3m|S|+ 3|L|. Theoreti-
cally, one could factor the entire system before simulation since we
are using linear FEM. However, a large m would greatly increase
the system size. The complexity to solve using this pre-factored un-
symmetric matrix directly is O((m|S|+ |L|)2). To solve the entire

system efficiently, we exploit its regular structure. Our algorithm
(described below) has running time O(m|S|2 + |L|2), i.e., a reduc-
tion from m2 to m. Our experiments confirmed that the solver time
increases about quadratically with the naive method, whereas our
method is much faster (Figure 3).

We partition Equation 23 as[
HSS HSL

HLS HLL

][
∆̄vS

m
∆vL

0,m

]
=

[
b̄S

m
bL

m

]
. (31)

Here, HLL = AL, HSS ∈ R3m|S|×3m|S| is a lower triangular block
matrix consisting of AS,C and G, and

∆̄vS
m =

[
(∆vS

0,1)
T (∆vS

0,2)
T ... (∆vS

0,m)
T
]T

, (32)

b̄S
m =

[
(bS

1)
T (bS

2)
T ... (bS

m)
T]T . (33)

We compute Schur’s complement of Hss, leading to

HLL∗
∆vL

0,m = bL∗
m , (34)

where

HLL∗ = HLL−HLS(HSS)−1HSL, (35)

bL∗
m = bL

m−HLS(HSS)−1b̄S
m, (36)

and ∆̄vS
m can be solved via

∆̄vS
m = (HSS)−1(b̄S

m−HSL
∆vL

0,m). (37)

Matrix HLL∗ can be factored once and reused at every timestep. We
note that HLL∗ has more non-zero entries than HLL. The number
of non-zero entries added is dependent on the interface complexity
between S and L. This can be proved by noting that HLS and HSL

have non-zero entries only in the rows and columns corresponding
to the interface DOFs. If the two regions are well partitioned, the
number of interface DOFs is small compared to the entire mesh,
and HLL∗ is still sparse.

Now the problem reduces to an efficient solve with the matrix
HSS, needed to form bL∗

m and compute ∆̄vS
m at runtime. By ex-

ploiting its regular structure, we have designed a forward substi-
tution procedure (Algorithm 1), consisting of solving a 3|S|×3|S|
linear system m times. Due to linearity, these small system ma-
trices are kept the same in every step. We factor them only once
using Cholesky decomposition. In our examples, we use PAR-
DISO [SG04] to perform all the pre-factorization and the runtime
linear system solves.

Although HLL∗ is structurally symmetric and generally unsym-
metric, it is in practice almost symmetric. The unsymmetric part
is added through the additional non-zero entries, whose number is
often small compared to the total number of DOFs in the object. If
precision is not strictly required, one can pretend that HLL∗ is sym-
metric, and use a symmetric solver to obtain potentially even faster
computational speeds. We have compared the quality and speed of
a symmetric solver to a structurally symmetric unsymmetric solver.
We have found that there is almost no difference in the results (Fig-
ure 2), and the two solvers are very similar in speed (Figure 3).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

4

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

Algorithm 1 solve HSSx̄S
m = b̄S

m

1: procedure COMPUTE_SMALL_REGION(AS,C,G, b̄S
m)

2: [(bS
1)

T (bS
2)

T ... (bS
m)

T]T ← b̄S
m

3: xS
1← (AS)−1bS

1
4: prev← xS

1 . The value of xS in the previous substep
5: sum← xS

1 . The sum of xS in all previous substeps
6: for i← 2 to m do
7: xS

i ← (AS)−1(bS
i −G · sum− (C−G) · prev)

8: prev← xS
i

9: sum← sum+ xS
i

10: end for
11: x̄S

m← [(xS
1)

T (xS
2)

T ... (xS
m)

T]T

12: end procedure

Frame

L2
-N

or
m

 o
f D

is
p.

L2
-N

or
m

 o
f M

ot
io

n
D

i�
.

Figure 2: The motion difference between the symmetric and
unsymmetric solver, giving the L2-norm of object displacements
computed using the symmetric solver (blue line) and the struc-
turally symmetric unsymmetric solver (red line). The L2-norm of
motion difference (yellow line) for the two results is also shown.
Because the motion difference is too small to use the same scale
as the other two curves, we add another (right) vertical axis for the
motion difference curve. The other two curves use the left vertical
axis. The comparison is done using our Asian dragon example.

m

Si
m

. T
im

e
pe

r F
ra

m
e

Figure 3: Comparison of the speed of a symmetric solver of
our method, a structurally symmetric unsymmetric solver of our
method, and the naive method mentioned in Section 3.2.2. The
naive method is the slowest, while the the other two are almost
the same in speed. The comparison is done using our Asian dragon
example.

3.3. More Timesteps

Our two-timestep algorithm can be easily extended to more regions
if the following conditions are satisfied:

• The vertices are divided into n+1 regions: S1,S2, ...,Sn and L.
• Si and S j are not neighbors (no in-between interface) for any i

and j.
• The timestep hL for L is a multiple of the timestep hSi for any Si

region, hL = mihSi ,mi ∈ Z+,1≤ i≤ n.

Under these conditions, we can condense the DOFs in all Si and
solve for L. Since there is no direct interaction among Si, we can
condense each Si into L one by one. The full system matrix is

HS1S1 H1L

HS2S2 H2L

... ...

HSnSn HnL

HLS1 HLS2 ... HLSn HLL




∆̄vS1
m1

∆̄vS2
m2

...

∆̄vSn
mn

∆vL
0,m

=


b̄S1

m1

b̄S2
m2

...

b̄Sn
mn

bL
m

 , (38)

where HSiSi ,HSiL,HLSi , ∆̄vSi
mi
, b̄Si

mi are as HSS,HSL,HLS, ∆̄vS
m, b̄

S
m in

the two-timestep algorithm, respectively, for Si. We have ∆vL
0,m =

vL
m− vL

0 , and vL
m = vL

mi
, for any i. The condensed system is

HLL∗
∆vL

0,m = bL∗
m , (39)

where

HLL∗ = HLL−
n

∑
i=1

HLSi(HSiSi)−1HSiL, (40)

bL∗
m = bL

m−
n

∑
i=1

HLSi(HSiSi)−1b̄Si
mi
, (41)

∆̄vSi
mi

= (HSiSi)−1(b̄Si
mi
−HSiL∆vL

0,m). (42)

It is difficult to design a more general multi-timestep algorithm.
The block matrix in Equation 38 can be denser if there exist i, j
such that Si and S j are neighbors. We leave this for future work.

3.4. Nonlinear Asynchronous System

With nonlinear two-timestep dynamics, fint is no longer linear. We
use the Taylor-series expansion of Equation 4 at uk,

fint(uk+1) = fint(uk)+K(uk)(uk+1−uk), (43)

where K(u) is the tangential stiffness matrix at u. Generally, K(u)
is not constant with u, and therefore the Ki j components in each
row of the block matrix in Equation 23 are no longer the same.
To reduce computational cost, we assume that the internal force
varies nonlinearly across graphics frames, but is kept linear during
the steps 0 to m. Therefore, we only need to evaluate K(u) at steps
0,m,2m, Under such a construction, our asynchronous method
updates its nonlinear internal forces and stiffness matrices at ev-
ery graphical frame. Another difference with the linear algorithm
is that we have to update and factor the system matrix HLL∗ in
Equation 34, each time a large timestep is to be solved. According
to Equation 35, we must solve (HSS)−1HSL to get HLL∗. Non-zero
columns in HSL correspond to the DOFs on the interface between
the two regions. So we only need to solve the HSS system, once per
each interface DOF, to get (HSS)−1HSL. These non-zero columns

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

5

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

can be solved in parallel. Our complete nonlinear two-timestep al-
gorithm is summarized in Algorithm 2. It is straightforward to ex-
tend it to a nonlinear algorithm with more timesteps.

Algorithm 2 nonlinear two-timestep integration

1: procedure DO_ASYNCHRONOUS_TIMESTEP(M, fint ,K,u0,v0)
2: Build HLL,HLS,HSL,HSS

3: Compute (HSS)−1HSL in parallel . factor AS first for
efficient solve

4: Compute HLL∗ using Equation 35
5: Compute bLL∗

m using Equation 36
6: Solve ∆vL

0,m from HLL∗∆vL
0,m = bL∗

m

7: Solve ∆̄vS
m using Equation 37

8: Get um and vm from ∆vL
0,m and ∆̄vS

m
9: end procedure

4. Examples

We have tested our method on several examples. We use the lin-
ear FEM and corotational linear FEM [MG04] implementation
from the Vega simulation library [SSB13]. All linear systems are
solved using PARDISO [SG04]. All examples were computed on a
3.33GHz Intel Core i7 CPU X 980 processor with 23.5Gb memory.
We only allocate four threads when running all our experiments.
Parallelization is achieved with internal force computation, matrix
multiplication and threading in PARDISO. All timings are listed in
Table 1. We compared our linear asynchronous method with stan-
dard single-rate backward Euler on the dinosaur, flower and Asian
dragon examples (Figures 4, 5, 6). In the comparisons, we use a
timestep for the single-rate backward Euler so that the two meth-
ods have the same computation cost in one graphic frame. In the
dragon example, we compare the effect of different sizes of S, and
test our nonlinear asynchronous method. Finally, we make a com-
parison between our method and Schroeder’s method [SKZF11].

We add geometric warping [HTZ∗11] to remove linear artifacts
on all linear examples. The computation cost for warping is al-
ways less than integration. The flower is the most difficult case for
warping since it has many flat and narrow components. Even in the
flower example, the warping cost for one frame is about 60% of the
single-rate simulation cost on one step. On the other models, it is
40% typically. If multiple simulation steps are required per graphi-
cal frame and collisions are not an issue, the relative warping cost
will be much lower because warping is only needed for graphical
frames.

4.1. Dinosaur

We first demonstrate our method on the dinosaur example (Fig-
ure 4). We use three regions, each with a separate timestep. We
put the head and neck into S1 and the tail into S2. The rest is in
L. We use linear FEM and warping. Our method produces high-
frequency motions on the neck and the tail. The single-rate method
cannot achieve the same quality given the same computation time.
Our method only costs triple the computation time of a single-
rate simulation with a timestep of hL, but timesteps the second and
third region at a timestep that is 8× and 15× smaller than the first

Frame

L2
-N

or
m

 o
f V

tx
 D

is
p.

L2
-N

or
m

 o
f V

tx
 D

is
p.

Frame

Comparison on Head Motions

Comparison on Tail Motions

Figure 4: Asynchronous integration of the dinosaur. The region
S1 (brown) includes the head and the neck. The region S2 (red) in-
cludes the tail. We plot the L2-norm of a vertex displacement on
the head (left) and the L2-norm of a vertex displacement on the tail
(right). We pull both the head and the tail at frame 0. For compari-
son, we also show the result of a single-rate backward Euler method
with the same computation cost. Our method generates less damped
motions on S1 and S2, at the same computation cost.

region, respectively, producing much less artificial damping and
higher quality motion. One could increase the quality of a single-
rate method by decreasing its timestep; however, this increases the
cost of the single-rate method as it now needs to perform more
timesteps per graphics frame. Actually, our experiments show that
when the single-rate method’s timestep is decreased so that it pro-
duces comparable quality as our method, the computational cost of
the single-rate method is 3× higher than our method.

4.2. Flower

We also produce the flower example (Figure 5) where the petals are
put into S1. We apply an external force on the stem. To improve the
motion of the leaves that are close to the location where the force
is applied, we also put the upper three leaves and a part of the stem
they are connected to, into S2. The rest is in L. We use linear FEM
and warping. We achieve better motion than the single-rate method
at equal computation cost (see Figure 5).

4.3. Asian Dragon

Our third example is the Asian dragon (Figure 6) where the horns
and the tail are in S. We pull the model on the head and the tail
at the beginning of the simulation. We use linear FEM and warp-
ing. We obtain a better motion than the single-rate method with the
same computational cost. For example, our result exhibits larger
and longer vibrations of the horns and the tail.

4.4. Dragon

We test how the size of S affects simulation on the dragon example
(Figure 7). We pull the lower jaw of the dragon and compare differ-
ent S sizes. Linear FEM and warping is used here. The initial S only

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

6

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

M
ul

ti
-r

at
e

Si
ng

le
-r

at
e

Frame 19 Frame 22 Frame 25 Frame 28Frame 0

Figure 5: Asynchronous integration of the flower. The region S1
includes the petals. The region S2 includes the upper three leaves
and the nearby parts of the stem. The flower is pulled at the begin-
ning of the simulation. Our method produces larger displacement
(frame 19) after the force is released and continues to give larger
motion (frame 22,25) than the single-rate method with the same
computation cost.

M
ul

ti
-r

at
e

Si
ng

le
-r

at
e

Frame 0 Frame 61 Frame 74 Frame 86

Figure 6: Asynchronous integration of the Asian dragon. The
region S is colored red in the figure, including the horns and the
tail. We pull the head and the tail at the beginning of the simulation.
We get better vibrations than the single-rate method with the same
computation cost.

includes the lower jaw. In the subsequent tests, S includes the en-
tire head, then also the neck, and finally the front half of the dragon.
The result shows that increasing |S| makes the motion closer to the
result of a single-rate backward Euler integration with the smaller
timestep used on S, at the cost of longer simulation time. We also
note that when S is almost the same as the entire object, our linear
asynchronous method is only a little slower than the single-rate hS-
timestep backward Euler. Therefore, the computation cost of our
method will in most cases be less than the single-rate hS-timestep
ground truth, unless the user puts too many vertices into S.

We have also created a nonlinear example of the dragon, using
co-rotational linear FEM. It can be seen that our method produces
richer motion than a single-rate result with the same computation
cost (Figure 8). The lower jaw is pulled. We use m = 10 in our
method, and four simulation steps per graphical frame in single-
rate integration. We use corotational liner FEM for nonlinear sim-
ulation. We have also tested our nonlinear algorithm on the other
models. However, we did not observe a performance advantage be-

Frame |S| = lower jaw

|S| = head |S| = head & neck |S| = half body

Figure 7: Effect of different S region sizes on the motion. We
first select the lower jaw of the dragon as the smallest S region,
and compute the motion. We then enlarge the region and compute
the motion, adding in turn the head, the neck, and finally half of the
body. Top-left: the graph showing the L2-norm of a vertex displace-
ment on the lower jaw for each S at every frame. Other images: the
dragon models with different S being pulled and tested.

L2
-N

or
m

 o
f V

tx
 D

is
p.

Frame

Figure 8: Nonlinear implicit asynchronous simulation: compar-
ison between single-rate and our multi-rate method. Dragon exam-
ple. Our method exhibits significantly less artificial damping. Ani-
mation is shown in the supplementary video.

cause the number of interface DOFs is too large. The dragon has
96 DOFs on the interface.

We have also compared our method with Schroeder’s method
(dragon; Figure 9). We set the timestep ratio m to 150 for both
methods. We choose such a large value of m because Schroeder’s
method is semi-implicit (explicit on internal forces) on S, and as
such requires small timesteps to explicitly integrate stiff materi-
als. We put the lower jaw into S and pull it down. In Schroeder’s
method, the coupling between the small timestep region and large
timestep region is too weak. This is caused by the fact that for most
timesteps, the small timestep region is integrated with no interac-
tion from the large timestep region. In comparison, our method gen-
erates plausible and stable coupling between the two regions.

We also tested an example that involves collisions, using both
linear and non-linear FEM. We compared our method to the single-
rate method with the same computation cost. We made the dragon’s
lower jaw stiffer than the rest of the dragon, and dropped the dragon
to the ground, using penalty forces to handle contacts. For both

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

7

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

all #vtx #tets |S| hL m sim. /g. fr. warp. /g. fr. single hL/g. fr. single hS/g. fr.
dinosaur 5,413 20,150 916 / 824 0.01 8 / 15 0.066 sec 0.014 sec 0.023 sec 0.18 / 0.34 sec
flower 2,980 9,382 855 / 1,236 0.02 12 / 10 0.056 sec 0.011 sec 0.019 sec 0.21 / 0.18 sec

Asian dragon 9,961 34,441 1,146 0.03 10 0.058 sec 0.025 sec 0.046 sec 0.46 sec
dragon 1 2,717 8,252 156 0.03 10 0.0079 sec 0.0056 sec 0.0078 sec 0.078 sec
dragon 2 2,717 8,252 574 0.03 10 0.016 sec 0.0057 sec 0.0078 sec 0.078 sec
dragon 3 2,717 8,252 814 0.03 10 0.022 sec 0.0056 sec 0.0078 sec 0.078 sec
dragon 4 2,717 8,252 1,403 0.03 10 0.029 sec 0.0056 sec 0.0078 sec 0.078 sec
dragon 5 2,717 8,252 1,904 0.03 10 0.053 sec 0.0056 sec 0.0078 sec 0.078 sec
dragon 6 2,717 8,252 2,671 0.03 10 0.085 sec 0.0056 sec 0.0078 sec 0.078 sec

Table 1: Performance for all the examples. From left to right: model name, number of all vertices, number of all tetrahedra, number of
vertices in region S, hL, timestep ratio m, multi-rate simulation time per graphical frame (g. fr.), warping time per graphical frame, hL-
timestep single-rate simulation time per graphical frame, and hS-timestep single-rate simulation time per graphical frame (which includes
m simulation steps). In the dinosaur example, two numbers are reported in |S| since it uses three timestep regions. The tail region has 916
vertices and time ratio of 8; the head and neck region has 824 vertices and time ratio of 15. In the flower example, the petal region has 855
vertices and time ratio of 12; the region including upper three leaves has 1236 vertices and time ratio of 10. Six dragon timings are reported.
Each one corresponds to a different size of S.

Frame 5 Frame 10 Frame 15

M
ul

ti
-r

at
e

Ba
ck

w
ar

d
Eu

le
r

Sc
hr

oe
de

r’s

Figure 9: Comparison to Schroeder’s method reveals that the in-
teraction between the regions in Schroeder’s method is weak, which
results in much softer behavior on the interface of the two regions.
First row: our method; Second row: Schroeder’s method. Collision
is turned off. Linear FEM and warping are used.

linear and non-linear FEM, it can be seen that when the dragon hits
the ground, our method produces richer motion of the lower jaw
than the single-rate method with the same computation cost. We
observed that the visual difference to single-rate method is larger
with linear FEM. The motions can be seen in our video.

5. Conclusion

We have designed an asynchronous implicit backward Euler for
linear and nonlinear FEM to reduce artificial damping in stiff/light
regions while decreasing computation cost. We believe that our
method can provide artists with more control on the trade-off be-
tween accuracy and efficiency. We assume a small interface be-
tween asynchronous regions to decrease the system solve time, a
common assumption for asynchronous and mixed integrators. We
use linear interpolation for velocities (Equation 14) at the interface.
Other interpolation schemes could be explored. We update motions
only at the boundary of the largest timestep. Therefore, collision
can only be checked and handled at this rate. Regions are chosen

before simulation by users; we do not vary them at runtime. An au-
tomatic and adaptive grouping method would be helpful. We hope
that our work will inspire more investigation on asynchronous and
mixed integrators in computer graphics.

Acknowledgements

This research was sponsored in part by the National Science Foun-
dation (CAREER-1055035, IIS-1422869), the Sloan Foundation,
the Okawa Foundation, and USC Annenberg Graduate Fellowships
to Danyong Zhao and Yijing Li.

References
[AH98] ASTLEY O., HAYWARD V.: Multirate Haptic Simulation

Achieved by Coupling Finite Element Meshes Through Norton Equiva-
lents. In Proc. of the IEEE Int. Conf. on Robotics and Automation (1998).
2

[Bel81] BELYTSCHKO T.: Partitioned and adaptive algorithms for ex-
plicit time integration. In Nonlinear Finite Element Analysis in Struc-
tural Mechanics. Springer, 1981, pp. 572–584. 2

[BW98] BARAFF D., WITKIN A. P.: Large Steps in Cloth Simulation.
In Proc. of ACM SIGGRAPH 98 (July 1998), pp. 43–54. 1, 2

[BYM79] BELYTSCHKO T., YEN H.-J., MULLEN R.: Mixed methods
for time integration. Computer Methods in Applied Mechanics and En-
gineering 17 (1979), 259–275. 2

[CH09] CASADEI F., HALLEUX J.-P.: Binary spatial partitioning of the
central-difference time integration scheme for explicit fast transient dy-
namics. International Journal for Numerical Methods in Engineering
78, 12 (2009), 1436–1473. 2

[CK05] CHOI M. G., KO H.-S.: Modal Warping: Real-Time Simulation
of Large Rotational Deformation and Manipulation. IEEE Trans. on Vis.
and Comp. Graphics 11, 1 (2005), 91–101. 2

[CS10] CONSTANTINESCU E. M., SANDU A.: On extrapolated multirate
methods. In Progress in Industrial Mathematics at ECMI 2008. Springer,
2010, pp. 341–347. 2

[cT00] ÇAVUŞOǦLU M. C., TENDICK F.: Multirate Simulation for High
Fidelity Haptic Interaction with Deformable Objects in Virtual Environ-
ments. In Proc. of the IEEE Int. Conf. on Robotics and Automation (San
Francisco, USA, 2000). 2

[Dan03] DANIEL W.: A partial velocity approach to subcycling structural
dynamics. Computer Methods in Applied Mechanics and Engineering
192, 3 (2003), 375–394. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

8

Danyong Zhao, Yijing Li, Jernej Barbič / Asynchronous Implicit Backward Euler Integration

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR A. H.:
Dynamic Real-Time Deformations Using Space & Time Adaptive Sam-
pling. In Proc. of ACM SIGGRAPH 2001 (August 2001), pp. 31–36.
2

[FSH11] FIERZ B., SPILLMANN J., HARDERS M.: Element-wise mixed
implicit-explicit integration for stable dynamic simulation of deformable
objects. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2011), ACM, pp. 257–266. 2

[GC01] GRAVOUIL A., COMBESCURE A.: Multi-time-step explicit–
implicit method for non-linear structural dynamics. International Jour-
nal for Numerical Methods in Engineering 50, 1 (2001), 199–225. 2

[GCB15] GRAVOUIL A., COMBESCURE A., BRUN M.: Heterogeneous
asynchronous time integrators for computational structural dynamics.
International Journal for Numerical Methods in Engineering 102, 3-4
(2015), 202–232. 2

[HTZ∗11] HUANG J., TONG Y., ZHOU K., BAO H., DESBRUN M.: In-
teractive shape interpolation through controllable dynamic deformation.
IEEE Trans. on Visualization and Computer Graphics 17, 7 (2011), 983–
992. 2, 6

[HVS∗09] HARMON D., VOUGA E., SMITH B., TAMSTORF R., GRIN-
SPUN E.: Asynchronous Contact Mechanics. ACM Transactions on
Graphics 28, 3 (2009), 87:1–87:12. 2

[KL07] KALE K. G., LEW A. J.: Parallel asynchronous variational in-
tegrators. International Journal for Numerical Methods in Engineering
70, 3 (2007), 291–321. 2

[KPC09] KOÇAK U., PALMERIUS K. L., COOPER M.: Dynamic defor-
mation using adaptable, linked asynchronous fem regions. In Proceed-
ings of the 25th Spring Conference on Computer Graphics (2009), ACM,
pp. 197–204. 2

[KPD97] KOPF A., PAUL W., DÜNWEG B.: Multiple time step integra-
tors and momentum conservation. Computer physics communications
101, 1 (1997), 1–8. 2

[LHdG∗14] LI S., HUANG J., DE GOES F., JIN X., BAO H., DESBRUN
M.: Space-time editing of elastic motion through material optimiza-
tion and reduction. ACM Trans. on Graphics (SIGGRAPH 2014) 33, 4
(2014), 108:1–108:10. 2

[LMOW04] LEW A., MARSDEN J., ORTIZ M., WEST M.: Variational
time integrators. International Journal for Numerical Methods in Engi-
neering 60, 1 (2004), 153–212. 2

[MG04] MÜLLER M., GROSS M.: Interactive Virtual Materials. In Proc.
of Graphics Interface 2004 (2004), pp. 239–246. 6

[MSW14] MICHELS D. L., SOBOTTKA G. A., WEBER A. G.: Expo-
nential integrators for stiff elastodynamic problems. ACM Transactions
on Graphics (TOG) 33, 1 (2014), 7. 2

[SD06] STERN A., DESBRUN M.: Discrete geometric mechanics for
variational time integrators. In ACM SIGGRAPH 2006 Courses (2006),
ACM, pp. 75–80. 2

[SG04] SCHENK O., GÄRTNER K.: Solving unsymmetric sparse systems
of linear equations with pardiso. Future Generation Computer Systems
20, 3 (2004), 475–487. 4, 6

[SG09] STERN A., GRINSPUN E.: Implicit-explicit variational integra-
tion of highly oscillatory problems. Multiscale Modeling & Simulation
7, 4 (2009), 1779–1794. 2

[SKZF11] SCHROEDER C. A., KWATRA N., ZHENG W., FEDKIW R.:
Asynchronous evolution for fully-implicit and semi-implicit time inte-
gration. Comput. Graph. Forum 30, 7 (2011), 1983–1992. 2, 3, 6

[SS92] SAND J., SKELBOE S.: Stability of backward euler multirate
methods and convergence of waveform relaxation. BIT Numerical Math-
ematics 32, 2 (1992), 350–366. 2

[SSB13] SIN F. S., SCHROEDER D., BARBIČ J.: Vega: Non-linear
fem deformable object simulator. In Computer Graphics Forum (2013),
vol. 32, Wiley Online Library, pp. 36–48. 6

[SW98] SMOLINSKI P., WU Y.-S.: Stability of explicit subcycling time
integration with linear interpolation for first-order finite element semidis-
cretizations. Computer methods in applied mechanics and engineering
151, 3 (1998), 311–324. 2

[TF88] TERZOPOULOS D., FLEISCHER K.: Deformable models. The
Visual Computer 4 (1988), 306–331. 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically Deformable Models. Computer Graphics (Proc. of ACM SIG-
GRAPH 87) (July 1987), 205–214. 2

[TPS08] THOMASZEWSKI B., PABST S., STRASSER W.: Asynchronous
cloth simulation. In Computer Graphics International (2008). 2

[vEvSB90] VAN EIJNDHOVEN J. T., VAN STIPHOUT M., BUURMAN H.:
Multirate integration in a direct simulation method. In Proceedings of
the conference on European design automation (1990), IEEE Computer
Society Press, pp. 306–311. 2

[ZTZ05] ZIENKIEWICZ O., TAYLOR R., ZHU J.: The finite element
method: its basis and fundamentals. 2005, 2005. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

9

