
Appendix: Position-based Elastic Rod

submission #1006

1 Property of a Darboux vector

Let us assume frame D =
[
d1,d2,d3

]
is parametrized by s ∈ R. Darboux

vector is defined as

ω =
1

2

3∑
i=1

di × di′, (1)

where di′ = ∂di/∂s. Using the Darboux vector, the each axis of the frame
can be written as

dk ′ = ω × dk, k = 1, 2, 3. (2)

here is the proof for k = 1

ω × d1 =
1

2

(
d1 × d1′ + d2 × d2′ + d3 × d3′

)
× d1, (3)

= +
1

2

{
(d1Td1)d1′ − (d1′Td1)d1

}
+

1

2

{
(d2Td1)d2′ − (d2′Td1)d2

}
+

1

2

{
(d3Td1)d3′ − (d3′Td1)d3

}
, (4)

=
1

2

{
d1′ + (d1′Td2)d2 + (d1′Td2)d3

}
, (5)

=
1

2

{
d1′ +

3∑
i=1

(d1′Tdi)di

}
, (6)

= d1′. (7)
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The coordinate of the Darboux vector to the axis d1 can be written as:

ω1 = ω · d1 (8)

=
1

2

(
d1 × d1′ + d2 × d2′ + d3 × d3′

)
· d1, (9)

=
1

2

{
(d1 × d2) · d2′ + (d1 × d3) · d3′

}
, (10)

=
1

2

{
d3 · d2′ − d2 · d3′

}
, (11)

= d3 · d2′ = −d2 · d3′. (12)

Similarly, we can write coordinate value of the Darboux vector for axis
d2 and d3 as:

ω2 = ω · d2, (13)

= d1 · d3′ = −d3·d1′. (14)

ω3 = ω · d3, (15)

= d2 · d1′ = −d1 · d2′. (16)

As a result, these relationships hold

d1′ = ω3d
2 − ω2d

3, (17)

d2′ = ω1d
3 − ω3d

3, (18)

d3′ = ω2d
1 − ω1d

2. (19)

2 Rotation matrix and Axis-Angle vector

Rotation matrix R ∈ SO(3) between two frames Da and Db can be written
as

R = Da
TDb. (20)

The element of this rotation matrix can be written as:

Rij =
3∑

k=1

[Da]ki [Db]kj = di
a · d

j
b, (21)

where Da = [d1
a,d

2
a,d

3
a] ∈ R3×3.
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Let’s think about axis angle representation θn (where |n| = 1) of the
rotation matrix R. From Rogorigues’s formula, we can write rotation matrix
using axis vector n and angle θ as:

R = I + ñ sin θ + (1− cos θ)(nnT − I) (22)

Below are the relationships between rotation matrices and their bases
and axis angle representation.

trR =
3∑

n=1

dn
a · dn

b = 3 + (1− cos θ)(1− 3) = 1− 2 cos θ (23)

cos θ =
1

2

{
(

3∑
n=1

dn
a · dn

b )− 1

}
=

trR− 1

2
(24)

ñ sin θ =
1

2
(R−RT ) (25)

n sin θ =
1

2
vect

(
R−RT

)
(26)

=
1

2
(R32 −R23, R13 −R31, R21 −R12)T (27)

=
1

2

3∑
k=1


Dk3

a D
k2
b −Dk2

a D
k3
b

Dk1
a D

k3
b −Dk3

a D
k1
b

Dk2
a D

k1
b −Dk2

a D
k2
b

 (28)

=
1

2

3∑
k=1

dk
a × dk

b (29)

2n tan
θ

2
=

2n sin θ

cos θ + 1
(30)

=
2vect

(
R−RT

)
1 + trR

(31)

=
2
∑3

k=1 d
k
a × dk

b

1 +
∑3

n=1 d
n
a · dn

b

(32)
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3 Differentiation of constraints

3.1 Constraints for each edge

For simplicity, we consider an edge with two end points p0 and p1 which
has a ghost point p2. We denote mid point of the edge as pm = (p0 +p1)/2.

Figure 1: Configurations of points on a edge

3.1.1 Edge length constraint

As the equation (18) in the paper, the constraint to maintain edge length
as the rest length can be written as:

CL(p0,p1) = |p0 − p1| − L̄. (33)

Hence, the derivative with respect to the two end points of the edge becomes:

∇p0C
L =

p0 − p1

|p0 − p1|
, ∇p1C

L =
p1 − p0

|p1 − p0|
(34)

These result in the point updates:{
∆p0 = − w0

w0+w1
(|p0 − p1| − L̄) p0−p1

|p0−p1| ,

∆p1 = − w1
w0+w1

(|p0 − p1| − L̄) p1−p0

|p1−p0| .
(35)

3.1.2 Perpendicular bisector constraint on the ghost point

As the equation (19) in the paper, the constraint to maintain the ghost point
to be located in the perpendicular bisector of the edge can be written as:

∇p0C
P = p0 − p2,

∇p1C
P = p2 − p1,

∇p2C
P = p1 − p0.

(36)
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The Lagrange multiplier becomes

λ =
(p2 − pm)T (p1 − p0)

w0|p0 − p2|2 + w1|p2 − p1|2 + w2|p1 − p0|2
. (37)

The resulting point updates becomes
∆p0 = −λw0(p0 − p2),
∆p1 = −λw1(p2 − p1),
∆p2 = −λw2(p1 − p0).

(38)

3.1.3 Distance constraint between a ghost point and an edge

We enforce a constraint which keeps the ghost point at a same distance L̄g

form an edge. As the equation (20) in the paper, the constraint is given as:

CD = (p0,p1,p2) = |pm − p2| − L̄g. (39)

The differentiation of this constraint can be computed as
∇p0C

D = −0.5(p2 − pm)/|p2 − pm|,
∇p1C

D = −0.5(p2 − pm)/|p2 − pm|,
∇p2C

D = +1.0(p2 − pm)/|p2 − pm|,
(40)

where pm2 = p2 − p0. The Lagrange multiplier becomes:

λ =
|(p2 − pm)| − l̄g

0.25w0 + 0.25w1 + w2
(41)

Finally, the points are updated as:
∆p0 = +0.5w0λ(p2 − pm)/|p2 − pm|
∆p1 = +0.5w1λ(p2 − pm)/|p2 − pm|
∆p2 = −1.0w2λ(p2 − pm)/|p2 − pm|

(42)

3.1.4 Derivative of the coordinate bases

A material frame basis vectors are defined on a edge as the equation (3) in
the paper. We compute differentiation of these basis vector with respect to
the points. 

∂d3/∂p0 = − 1
|p01|(I− d3 ⊗ d3),

∂d3/∂p1 = + 1
|p01|(I− d3 ⊗ d3),

∂d3/∂p2 = 0

(43)
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∂d2/∂p0 = 1

|p01×p02|(I− d2 ⊗ d2)[p2 − p1],

∂d2/∂p1 = 1
|p01×p02|(I− d2 ⊗ d2)[p0 − p2],

∂d2/∂p2 = 1
|p01×p02|(I− d2 ⊗ d2)[p1 − p0].

(44)


∂d1/∂p0 = −[d3]∂d2/∂p0 + [d2]∂d3/∂p0,
∂d1/∂p1 = −[d3]∂d2/∂p1 + [d2]∂d3/∂p1,
∂d1/∂p2 = −[d3]∂d2/∂p2

(45)

3.2 Derivative of Modified Darboux Vector

Let we have a orientation element that connects edge A and edge B as
shown in Figure 2. There are five points (pa,pb,pc,pd,pe) involved in this
orientation element. Here Ai means the internal labeling of the points inside
edge A and similarly Bi labels the points inside edge B.

edgeA
edgeB

Figure 2: Configurations of points on a edge

As the equation (10) in the paper, our modified Darboux vector can be
written as

Ωi =

(
2

l̄

)
dj
A

T
dk
B − dk

A
T
dj
B

1 +
∑3

n=1 d
n
A
Tdn

B

, (46)

Because our constraint enforcement procedure isn’t affected by scaling
this modified Darboux vector, we can let l̄ = 1 for simplicity. With the
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chain rule, we obtain following derivative of Darboux vector:

Ω′i = X
(
dk
B
T
dj
A

′ − dj
B

T
dk
A
′)

− X
(
dk
A
T
dj
B

′ − dj
A

T
dk
B
′)

− 1

2
XΩi

(
3∑

n=1

dn
B
Tdn

A
′ + dn

A
Tdn

B
′

)
, (47)

where X = 2/(1 +
∑3

n=1 d
n
A
Tdn

B).
Let us denote the derivative of coordinate basis vector with respect to

the position of a point in each edge as:

Dj
Ai

=
∂dj

A

∂pAi

, Dj
Bi

=
∂dj

B

∂pBi

(48)

We have explained how to compute these derivative in Section 3.1.4. Using
these notations, the derivatives of the Darboux vector with respect to the
five points become:

∂Ωi/∂pa = +X
(
dk
B
T
Dj

A0
− dj

B

T
Dk

A0

)
− 1

2
XΩi

(
3∑

n=1

dn
B
TDn

A0

)
(49)

∂Ωi/∂pb = +X
(
dk
B
T
Dj

A1
− dj

B

T
Dk

A1

)
− 1

2
XΩi

(
3∑

n=1

dn
B
TDn

A1

)

−X
(
dk
A
T
Dj

B0
− dj

A

T
Dk

B0

)
− 1

2
XΩi

(
3∑

n=1

dn
A
TDn

B0

)
(50)

∂Ωi/∂pc = −X
(
dk
A
T
Dj

B1
− dj

A

T
Dk

B1

)
− 1

2
XΩi

(
3∑

n=1

dn
A
TDn

B1

)
(51)

∂Ωi/∂pd = +X
(
dk
B
T
Dj

A2
− dj

B

T
Dk

A2

)
− 1

2
XΩi

(
3∑

n=1

dn
B
TDn

A2

)
(52)

∂Ωi/∂pe = −X
(
dk
A
T
Dj

B2
− dj

A

T
Dk

B2

)
− 1

2
XΩi

(
3∑

n=1

dn
A
TDn

B2

)
(53)

4 Algorithm Overview

The overall algorithm is outlined in Algorithm 1. Here, “#iterations” means
the number of constraint-enforcement iterations. Note that we handle con-
tact and damping using the same techniques as in [MHHR07].
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Algorithm 1: Simulation Step

t⇐ t+ ∆t // step time
forall the points i do

vi ⇐ vi + ∆tg // apply gravity

forall the edge e do // modify gravity on ghost points
vt
m ⇐ 0.5(ve−1 + ve)

am ⇐ (vt
m − vt−∆t

m )/∆t
r ⇐ (am · g)/|g|2
vg
e ⇐ vg

e − (1− r)∆tg
ve−1 ⇐ ve−1 + 0.5(1− r)∆tg
ve ⇐ ve + 0.5(1− r)∆tg

forall the points i do
x∗i ⇐ xi + ∆tvi // predict position

while iter < #iterations do
forall the edge e do

update x∗ for the CL
e , C

P
e , C

D
e // (18)(19)(20) in the paper

forall the orientation element e do
update x∗ for the CBT

e // (21) in the paper

forall the tip of rods do
update x∗ for the CO,CT // (23)(24) in the paper

forall the points i do
vi ⇐ (x∗i − xi)/∆t // update velocity
x∗i ⇐ xi // update position
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5 Preservation of rotational momentum

We compare the behavior of a straight rod when three different methods
are used to apply gravity to ghost points. The first method is to apply the
standard gravity force to each ghost point. The second method is to applying
no gravity force to the ghost points. The third method is our gravity force
modification technique (see Section 6 in the paper). We simulated two simple
scenes with a straight rod; hanging down and free-fall.

As shown in Fig. 3, the first method shows an artifact of curved static
deformation. This is because the side of the rod with ghost points is heavier
than the other sides. The second method gains rotational momentum during
free-fall because the ghost points are “pulling up” the rod from one side. Our
gravity force modification approach does not exhibit such artifacts.

static hang-down vertical free-fall

method 1 ours method 1 method 2 oursmethod 2

Figure 3: Simulations of a straight rod (left) hangs down and (right) falls
down with three methods to apply gravity on ghost points: full gravity
force (method 1), no gravity force (method 2), and our modified gravity
force.
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