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Abstract
We present a novel method to simulate complex bending and twisting of elastic rods. Elastic rods are commonly
simulated using force based methods, such as the finite element method. These methods are accurate, but do
not directly fit into the more efficient position-based dynamics framework, since the definition of material frames
are not entirely based on positions. We introduce ghost points, which are additional points defined on edges, to
naturally endow continuous material frames on discretized rods. We achieve robustness by a novel discretization
of the Cosserat theory. The method supports coupling with a frame, a triangle, and a rigid body at the rod’s end
point. Our formulation is highly efficient, capable of simulating hundreds of strands in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Computer Graphics]: Simulation and
modeling—Animation

1. Introduction

Position-based dynamics (PBD) has been widely accepted
in the field of computer animation due to its efficiency, ro-
bustness and simplicity. The goal of the PBD is not to sim-
ulate physics as accurately as possible, but rather to sacri-
fice some quantitative accuracy to generate visually plausi-
ble simulation results very quickly. To this end, PBD has
broadly been applied in many game engines and visual ef-
fects, where speed and controllability is crucial. PBD has
primarily been used to simulate various physical phenomena
associated with solid and thin-shell (i.e., clothing) deforma-
tions [MHHR07]. We present a new application of PBD to
elastic rod simulation, which is essential for animating thin
strands such as hair, fur, ropes, and so on.

Because of the existence of twist, rod simulations are
more complicated than solid or thin-shell simulations, mak-
ing it hard to implement them in the PBD framework. PBD
requires an object’s deformations be characterized with dis-
crete positions of points. However twist of a rod cannot
be directly specified with only positions of the rod cen-
ter line, because twist requires angular information –rather
than positional– which describes how much the material
is twisted around the center line. Since complex nonlinear
deformation, such as out-of-plane buckling under torsional
strain (e.g., Fig. 2), is caused by an interaction between twist
and bending, handling of twist is critical in nonlinear defor-
mation of rods.

Figure 1: A squishy ball hits a wall. Tentacles of the squishy
ball was modeled with our position-based elastic rods.

Representation of twist in elastic rods is actively re-
searched, but so far no previous work has successfully
implemented it in a PBD framework. While bending and
stretching can be characterized by the position of the center-
line, the twist is represented using material frames defined
on the centerline. Constructing a material frame is difficult
because its orientation is coupled with the centerline. Vari-
ous approaches have been proposed. For example, Spillman
et al. [ST07] use the penalty method to orient the material
frame to rods’ tangential direction. [BWR∗08] defined a ma-
terial frame by rotating a Bishop frame in the direction of
the rod’s tangential direction. However, theses approaches
are not suitable for PBD in which all deformations are de-
scribed via discrete point positions, not frame orientations.

Our goal is to incorporate the twisting and bending
physics of elastic rods into the PBD framework. With proper
handling of twist, we can produce (i) visually plausible sim-
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ulation of rod deformations, capable of reproducing vari-
ous phenomena, which are (ii) fully controllable by physi-
cally meaningful parameters, (iii) the PBD framework en-
sures robustness, speed and simple implementation. Our
position-based elastic rod model is derived from Cosserat
theory [CC07], which describes the physical principles of
elastic rods. Even though our model may not quantitatively
agree with real-world experiments, it reproduces plausible
deformation such as looping phenomena.

Our key contribution is to introduce ghost points, which
are placed on edges to represents material points distributed
around the edge. Using ghost points, we can represent the
material frame so that its orientation naturally follows the
rods’ tangential direction, leading to an efficient formula-
tion. The dynamics of these ghost points are treated straight-
forwardly in the framework of PBD, hence our implementa-
tion is simple and fast.

We propose a novel discretization of the Cosserat theory,
which further enhances robustness and simplicity of the sim-
ulation. Qith this enhancement, we can enforce the twisting
and bending forces without computing expensive trigono-
metric functions or their inverses. Moreover, our formula
prevents the rod from flipping in high-torsion situations. We
extend our discretization to also specify boundary condi-
tions, in which the rod is connected to a rigid body or a
triangle with one- or two-way coupling.

We find that we can interpret the traditional constraint en-
forcement procedure of PBD in a variational formulation.
This allows us to extend PBD so that it can handle mul-
tiple constraints simultaneously, resulting in a significant
speed-up. Furthermore, because the material’s deformation
is usually written in a vector or tensor form, our variational
approach enables us to manipulate the multi-dimensional
anisotropic stiffness parameters of the material.

Our formulation is very efficient. For example, on a mod-
ern workstation we can simulate 200 strands of hair, dis-
cretized with 20 edges, at an interactive rate. Our rods are
also highly stable, to the point of being able to recover from
a random initial deformation without kinks or instability. We
demonstrate the flexibility of our approach by showing vari-
ous examples coupling rods with other rigid and deformable
objects. Our contributions include:

• Ghost points to discretize material frames on a rod which
are directly compatible with position-based dynamics.

• New robust discrete elastic rod formulation based on
Cosserat theory which also can specify boundary condi-
tions of rods.

• New variational interpretation of the PBD constraint en-
forcement, which enables fusing multiple constraints.

2. Related Work

Since Pai et al. [Pai02] first introduced the Cosserat theory
of elastic rod simulation into graphics, it has remained an

Figure 2: Rods show dynamic looping phenomenon known
as Plectoneme when the both ends of a rod is clamped and
twisted. This nonlinear behavior cannot be reproduced with
a model without coupling of twist and bending.

active research topic. Most elastic rod models are based on
Cosserat theory, which describes nonlinear deformation of
rods. A primary difference between formulations is whether
the centerline is represented implicitly or explicitly.

Implicit discretization of Cosserat theory. This approach
uses curvatures to represent curved rod shape and recovers
the rods’ explicit centerline shape by integrating frames from
one end. The first model from Pai et al. [Pai02] falls into
this category. Later, this approach was further extended for
helical elastic rods [BAC∗06] to simulate curled hairs. Re-
cently, a super-clothoid model has been proposed [CBD13]
that uses power-series to integrate curvature to find the cen-
ter line of a clothoid with a stability guarantee. Implicit mod-
els achieve high-order smoothness of the rod with fewer
DoFs and are suitable for hair simulations where one end
is clamped and another end is free. However, since this ap-
proach solves for derivative information of material frames,
it cannot be combined with position based approaches.

Explicit discretization of Cossarat theory. Our methods
are greatly inspired by the CORDE model proposed by Spill-
man et al. [ST07]. We both begin with an explicit represen-
tation of the centerline and define material frames to apply
Cosserart theory. However, Spillman et al. define material
frames independently from the centerline position, and thus
require penalty-based methods to make the frames follow the
centerline. This approach does not directly fit into the PBD
framework because the variables have frame orientation, in
addition to the position of the centerline.

Formulation based on Bishop frame. In the explicit cen-
terline model, the definition of a material frame that tracks
the rods’ tangential direction is not straightforward. The dis-
crete elastic rod proposed by Bergou et al. [BWR∗08] was
a breakthrough because their material frames, constructed
from the Bishop frame, automatically follows the deforma-
tion of the rod center line. The Bishop frame construction
was later transferred from the spatial domain to the temporal
domain to enhance efficiency [BAV∗10, KJM10]. However
as transported frames are not straightforward to represent in
a point-based formulation, formulating constraints for PBD
is a challenge with Bishop-based approaches.

Mass-spring model. Several studies [SLF08, MSW∗09]
modeled hair deformation with network of masses connected
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by springs. The mass-spring model is simple and robust, but
it is difficult to separate the bending stiffness from twist-
ing stiffness. In contrast, our model is highly controllable;
the properties of rods can be manipulated with independent,
physically meaningful parameters.

Position-based dynamics. PBD provides fast and robust
simulation tailored for computer animations [MHHR07,
BMOT13]. The core ideas, such as Verlet integration and
stiffness based on constraints, are presented in [Jak01].
While PBD is not quantitatively accurate, in that it cannot re-
produce real-world experimental data, PBD animation is suf-
ficiently plausible for computer animations. PBD has been
applied in game engines such as Nvidia PhysXTMand vi-
sual effect engines such as Nucleus [Sta09]. The numerous
games and films produced with these tools are a testament to
the importance and utility of PBD. Recently, application of
PBD has been extended to fluid dynamics [MM13]. Muller
et al. [MKC12] presented a fast method to apply inextensible
constraints in the PBD for hair and fur without the twisting
and bending forces. To our knowledge, twisting and bending
of elastic rods have yet to be solved in the PBD framework.

Shape matching method [MHTG05] is the most similar to
PBD, and in that domain several studies tackle simulation of
elastic rods. The model in [RKM∗12] represents the elastic
rod by appending twisting force, computed by method us-
ing Bishop frame, to the shape matching deformation. The
twisting force is modeled as an external force hence this
method doesn’t benefit from shape matching techniques un-
conditional stability. Oriented particles [MC11] consider ro-
tational inertia at the nodes and perform rod simulation sta-
bly, but do not handle the coupling of bending and twist-
ing. Shape matching method treats elasticity as a force to get
back to the rigid goal shape, thus cannot easily handle cou-
pling of twisting and bending where the rigid shape cannot
be a goal shape.

3. Discrete formulation of rod

Like other PBD formulations, our position-based elastic rod
handles elasticity in the form of constraints. Similar to the
Gauss-Seidel method, the particle locations are iteratively
updated, so that linearized constraints are locally satisfied.
Hence, how to construct constraint for twisting and bending
is essential for elastic rod simulation.

We our technique is based on the Cosserat theory, which
we briefly review (§ 3.1). To define differentiable continuous
material frames on a rod in a discrete setting, we introduce
ghost points (§ 3.2). Next, we describe a novel discretiza-
tion of Cosserat theory that makes simulation simpler and
faster (§ 3.3). We extend the types of constraints that PBD
can handle by introducing a variational interpretation (§ 4).
Using this extension, constraints for our elastic rod are de-
scribed (§ 5). Finally, we describe end point constraints that
fix the position and orientation of a rod at its end (§ 5.1).

3.1. Cosserat theory

We briefly review elastic rod simulation based on the
Cosserat theory. For a more detailed discussion, please re-
fer to [Ant05]. We assume that a rod is parameterized by
arclength s ∈ [0, L̄], where L̄ is the initial rod length. The
rod’s one dimensional configuration is described by the cen-
terline, where p(s) ∈ R3 is the position of the rod’s centroid
at the location s.

The twist of a rod cannot be represented by the centerline
positions. Thus, at every point s on the rod, we define an
orthonormal material bases d1(s),d2(s),d3(s). A material
frame is a 3×3 orthogonal matrix D(s) = [d1,d2,d3] which
has material bases as columns. In differential geometry, the
Darboux vector describes how the material frame evolves
along the curve, and is a key component of Cosserat theory.
The Darboux vector is an axial vector of frame rotation with
respect to change of s. More specifically, using the bases of
the material frame, the Darboux vector can be written as

ωωω(s) =
1
2

3∑
k=1

dk(s)×dk(s)′, (1)

where the prime ( ′) denotes derivative with respect to s.

Material coordinates of the Darboux vector at a location s
become ωi(s) = ωωω(s) ·di(s). This ωi encodes how the frame
rotates around the material frame basis di. In Cosserat the-
ory, the rod’s bending and twisting energy is defined using
the material coordinates of the Darboux vector as

V =

∫ L̄

0

1
2

3∑
i=1

3∑
j=1

(ωi− ω̄i)Ki j(ω j− ω̄ j)dt, (2)

where ω̄i is the material coordinate of the Darboux vector
in an initial zero-stress configuration, and Ki j ∈ R, i, j ∈
{1,2,3} is a positive definite symmetric stiffness matrix.

The initial material frame D(s) can be chosen arbitrarily.
In practice, the material coordinates are chosen such that one
of the basis vectors, such as d3, corresponds the rod’s tan-
gential direction so that p(s)′ become parallel to d3 ( this
frame choice is called the adapted frame [BWR∗08]). Next,
d1 and d2 are chosen as the principal axes of the second mo-
ment of area computed for the rod’s cross-section. In this
particular setting, assuming isotropic homogeneous mate-
rial, K becomes diagonal and the K11 and K22 correspond
to stiffness of bending around the axes d1 and d2, and K33
specifies the twisting stiffness.

Material frames must track the motion of the centerline
over time. More specifically, when a rod changes its center-
line, the material frames should move so that the tangential
direction always corresponds to the basis d3. This constraint
on the material frame complicates the simulation of rods. In
contrast to the penalty method used in the CORDE model,
the construction of the material frame that we describe in
the following section naturally satisfies the above condition.
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3.2. Continuous material frames on a discrete rod

We explicitly model the rod’s centerline as a polyline with
N +1 vertices {p0,p1, . . . ,pN}. Edge e∈ {1, . . . ,N} has end
points pe−1 and pe, and masses {m0, . . . ,mN} are associated
with the vertices. As shown in Fig. 3, we assume each edge
e has a ghost point pg

e ∈ R3, which is placed on the per-
pendicular bisector of each edge. Masses {mg

1, . . . ,m
g
N} are

associated with the ghost points .

Figure 3: Configuration of edges, points (red) and ghost
points (cyan).

Within the PBD framework, our ghost points are treated
in the same manner as any other points. The distance be-
tween the ghost point and the edge is set to a fixed value l̄g,
which we set to the average edge length. Ghost points rep-
resent material distributed around the edges, thus inertia for
the rotation around an edge becomes l̄2

gmg
e . As a result, we

can control rotational inertia by changing l̄g.

Material frame at the center of an edge. Using the ghost
points, we define frame De at the center of edge e as

d3
e = (pe−pe−1) / |pe−pe−1|,

d2
e = d3

e × (pg
e −pe−1) / |d3

e × (pg
e −pe−1)|,

d1
e = d2

e ×d3
e .

(3)

For the rest of the rod, the frame is continuously interpo-
lated from these edge centers. Following [ST07], we define
an orientation element e ( e ∈ {1, . . . ,N−1} ) as a segment
starting at the midpoint of edge e and ending at the midpoint
of edge e+ 1. Within the orientation element, the frame is
interpolated from the two end frames De = [d1

e ,d2
e ,d3

e ] and
De+1 = [d1

e+1,d
2
e+1,d

3
e+1].

Interpolation of frames. In order to compute the Darboux
vector and its material coordinates for Cosserat theory, we
interpolate between two frames De and De+1 inside the ori-
entation element e (see Fig. 4-left). We assume that the
material frame changes uniformly from De into De+1 (i.e.,
spherical linear interpolation). This uniform interpolation
between two frames can be easily computed using an axis-
angle formulation. The rotation matrix between two frames
R = De+1(De)

T is represented with a 3-vector ΘΘΘ = θn,
where θ ∈ [0,π) is a rotation angle and n is an unit axis vec-
tor (see Fig. 4-middle). Using the matrix exponential, the
rotation matrix can then be written as

R = exp([ΘΘΘ]), (4)

where “[·]” denotes the cross product matrix (i.e., [a] is a 3x3
skew-symmetric matrix as [a]b = a×b, a,b ∈ R3).

The vector ΘΘΘ parameterizes the rotation, hence we can
scale rotation by scaling this vector with the ratio inside ori-
entation element as R(s) = exp([ΘΘΘ]r), where r = (s−se)/l̄e.
Here, l̄e is the initial length of the orientation element e and
se is the arclength parameter s at the midpoint of the edge
e. With this uniform scaling, bases of the frame are interpo-
lated with s as

di(s) = exp([ΘΘΘ]r)di
e, (5)

The differentiation of basis di(s) with respect to s can be
written as di(s)′= ([ΘΘΘ]/l̄)di(s). Thus, from (1), the Darboux
vector can be written as ωωω(s) = ΘΘΘ/l̄, which is constant over
s. Note that the constant Darboux vector means this orienta-
tion element is modeled as a helix. However our discretiza-
tion is different from super-helix [BAC∗06] in that helices
are an internal representation to model bending and twist-
ing; they are not used to represent outer shape of the rod. In
fact, our helices are not connected to each other.

Because the basis di is rotated around the axis vector n,
the angle between the axis vector and the basis does not
change. Hence, the inner product of the two vectors n and
di(s) is constant with s (see Fig. 4-right). Thus, the material
coordinate of the Darboux vector is also constant as

ωi(s) =
1
l̄

ΘΘΘ ·di
e =

1
l̄

ΘΘΘ ·di
e+1, i = 1,2,3. (6)

θr
θ(1-r)

Figure 4: Left: configuration of points and frames. Middle:
the rotation between neighboring frames. Right: rotation of
basis around an axis.

3.3. Modified frame twist representation

So far, we described a straightforward way to obtain the
Darboux vector using axis-angle parameterization (R→ΘΘΘ).
This parameterization involves inverse trigonometric func-
tions and is computationally intensive for PBD, where con-
straint application may be iterated hundreds of times within
a single time step. In this section, we further simplify our
model - while increasing robustness - by modifying the axis-
angle parameterization ΘΘΘ of the rotational matrix R.

To obtain a better parameterization of ΘΘΘ, we start from
Rodrigues’ rotation formula, which describes the relation-
ship between the rotation matrix and axis-angle parameter:

R = I+[n]sinθ+(1− cosθ)(nnT − I), (7)

where I is an identity matrix. To obtain cosθ, we take the
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trace of both sides of (7), giving

1+2cosθ = trR =

3∑
n=1

dn
e ·dn

e+1. (8)

Here we use the relationship tr(XY) = tr(XY), which is
applicable for square matrices X and Y. Let “vect(·)”
be an operator R3×3 7→ R3 which maps a matrix to an
axis vector which is the anti-symmetric part of the matrix
(i.e., vect(A) = 1/2(A32−A23,A13−A31,A21−A12)). Us-
ing Rodrigues’ parameter [MLSS94], rotation R can be pa-
rameterized with 3-vector ΨΨΨ as

ΨΨΨ = 2n tan
θ

2
=

4vect(R)

1+ trR
=

2
∑3

k=1 dk
e×dk

e+1

1+
∑3

n=1 dn
e ·dn

e+1

. (9)

Here we use a trigonometric identity tanθ/2 = sinθ/(1 +
cosθ). Note that Rodrigues’ parameter ΨΨΨ have the same ori-
entation n as ΘΘΘ, but the parameter has a different magnitude
|ΨΨΨ|= 2tan(θ/2).

Material coordinates of the Darboux vector. In our
Cosserat-based formulation, we interchange axis angle vec-
tor (nθ) with Rodrigues’ parameter ΨΨΨ in the Darboux vector
as ωωω(s)' ΨΨΨ/l̄ ≡ ΩΩΩ(s). We call this approximated Darboux
vector the modified discrete Darboux vector, denoted by ΩΩΩ.
This modification may affect the quantitative accuracy of our
position-based elastic rod, but brings us closer to our goal of
simplicity and robustness.

There are four motivations for using this approximation.
First, Rodrigues’ parameter ΨΨΨ is a good approximation of
ΘΘΘ if the rotation angle θ is small. Second, the ΨΨΨ is easy
to compute from the coordinate bases without using any
trigonometric functions or their inverse. Third, as mentioned
in [BWR∗08], the material coordinate of the modified dis-
crete Darboux vector Ωk goes to infinity when the rod is
kinked completely (θ = π). In such a case, the energy also
goes to infinity, as it tries to push the rod back to the original
shape. Finally, since the magnitude 2 tan(θ/2) is a mono-
tonically increasing convex function, this makes the relative
rotation at V = 0 unique. In other words, the Rodrigues’ ro-
tation parameter is a bijective map to the rotation matrix.
This ensures that there are no kinked rest shapes other than
the initial shape.

From (9), the local coordinate of the modified discrete
Darboux vector Ωi(s)=ΩΩΩ(s) ·di(s), (i= 1,2,3) can be writ-
ten as

Ωi =

(
4
l̄

)
vect(Q)i

1+ trQ
=

(
2
l̄

) d j
e ·dk

e+1−dk
e ·d j

e+1

1+
∑3

n=1 dn
e ·dn

e+1

, (10)

where Q = (De)
T De+1 and indexes i, j,k permute as

{i, j,k}= {1,2,3},{2,3,1},{3,1,2}. Note that R and Q are
both rotation matrices from De to De+1, but they are differ-
ent. While R is rotation in the global coordinate, Q is rela-
tive rotation describing rotation to De+1 observed from the

frame De. Since the coordinate of the modified discrete Dar-
boux vector is also constant over an orientation element, the
bending and twisting energy on the orientation element e can
be written as

Ve =
l̄e
2

3∑
i=1

Kii(Ωi− Ω̄i)
2. (11)

Note that in our formula, the rods’ bending and twisting en-
ergy are computed exactly for both bending and twisting
components. Hence, the bending and the twisting stiffness
parameters are completely decoupled. In other words, we
can make a rod that has zero twisting resistance with high
bending stiffness or vice versa. This gives the computer ani-
mation artist fine-grained control over the rods’ behavior.

4. Variational interpretation of constraint enforcement

In the PBD framework, elasticity is formulated via con-
straints. These constraints take zero values for the rest shape
and increase if strain is applied. In each time step, the parti-
cle is updated in the gradient direction of the constraint, rep-
resenting the internal force pushing object back to the rest
shape. Let each constraint be written in the form C(p) = 0,
where p is a concatenation of the positions of points involve
in this constraint. We denote A as the set of points involv-
ing in this constraint, and we assume the constraint is a M-
dimensional function. While the constraint function is scalar
in the original PBD formula, here we want generalize it for
multi-dimensional function. For this purpose, we introduce
a variational formula for the constraint enforcement.

In the classical mechanics, the points trajectory under
constraints is known to comply the Gauss’s principle of least
constraint [GJS01]. This principle states that the trajecto-
ries of constrained points under gravity g minimize a quan-
tity Z =

∑
a∈Ama |p̈a−g|2, where p̈ is a points’ accelera-

tions. Because the p̈a − g means how much the constraint
changed the accelerations, the principle means constrained
motion takes a path that minimizes the sum of acceleration
change caused by constraints. Batty et al. [BBB07] lever-
age this variational principle for incompressible constraint
around coupling boundary of fluid against rigid bodies.

Let us explain how the Gauss’s principle unfolds for the
PBD time integration scheme. Let pt and vt are positions and
velocities of points at time t and ∆t is the time step. In the
PBD scheme [MHHR07], the positions in the next time step
can be computed as: pt+∆t = pt +∆t(vt +∆tg)+∆p, where
the ∆p is the position updates by constraint enforcement.
Hence, the velocity of points becomes vt+∆t = (pt+∆t −
pt)/∆t = vt + ∆tg + ∆p/∆t. Finally, the acceleration of a
point can be written as

p̈ = (vt+∆t −vt)/∆t = ∆p/∆t2 +g. (12)

By plugging in (12) in the Gauss’s principle, we obtain the
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following variational formula for the position update:

∆p = argmin
∆p

∑
a∈A

ma |∆pa|2 , where C(p+∆p) = 0. (13)

This means the position update minimizes weighted sum of
its squares while satisfying the constraints. This QP problem
can be easily solved by introducing a Lagrange multiplier
λλλ∈RM . First, we add λλλ

T C to the minimization target, which
has to have zero derivative at the solution:

∇b

∑
a∈A

ma |∆pa|2 +λλλ
T C

= 0 (∀b ∈ A). (14)

Here ∇b means derivative with respect to the position of
point b. Then, with a little calculation exercise, we get the
point update using the Lagrange multiplier as:

∆pa =−0.5waλλλ
T∇aC, (15)

where wa is a inverse of the point weight. Nest, we put
this (15) into linearized constraint

C+∇C∆p = 0, (16)

to solve the Lagrange multiplier. Finally, we obtain the final
position update:

∆pa = (wa∇aC)

∑
b∈A

wb∇bCT∇bC

−1

C. (17)

Note that when the mass of all points are equal, this up-
date is equivalent to multiplying the C with Moore-Penrose
matrix inverse of the matrix ∇C. This formula is equal to
the original one when the constraint is a scalar function
(M = 1) and thus, is the natural extension of the original
formula for solving multiple constrains at the same time. In
other words, the original PBD approach solves constraint in
the Gauss-Seidel manor, but we solved in the block Gauss-
Seidel manor, which gives better convergence if there is a
block structure in the coefficient matrix.

This position update preserves the linear and angular mo-
mentum. The constraints are chosen to be invariant to the
rigid transformation of points (i.e., its value doesn’t change
when the points are translated and rotated). Hence, the gra-
dient of constraint ∇C is perpendicular to the null space of
the constraint. As long as we update the positions in the gra-
dient space as (15), each constraint enforcement conserves
translational and rotational momentum, and consequently,
the sequence of constraint enforcements also consequently
do.

We have also tried a different approach to handle the
multi-dimensional constraint. Inspired by the penalty-based
method, we create a new scalar constraint by taking square
norm of the multi-dimensional constraint (C = CT C). This
approach was also functional, because if the constraint is
zero, the square norm becomes also zero. However, since the

square norm is quadratic, the linearization of the constraint
is not a good approximation. Thus, more iterations are re-
quired to achieve a rod with the same stiffness.

5. Constraints for elastic rod simulation

Based on the previous sections, we construct constraints
suitable for elastic rod simulation. Please refer to the accom-
panying supplemental document for differentiations of these
constraint functions.

Edge constraints. We consider three constraints for each
edge. The first one is an edge length constraint

CL
e (pe−1,pe) = |pe−1−pe|− L̄e, (18)

where L̄e is the initial length of edge e. This constraint keeps
the length of the edge similar to the rest length. The second
constraint enforces that the ghost point lies on the edge’s
perpendicular bisector

CP
e (pe−1,pe,pg

e) = (pg
e −pe−1/2)

T (pe−pe−1), (19)

where pe−1/2 = (pe−1+pe)/2 is the midpoint of the edge e.
The third constraint enforces a constant distance L̄g

e between
the ghost point and the edge

CD
e (pe−1,pe,pg

e) =
∣∣∣pe−1/2−pg

e

∣∣∣− L̄g
e . (20)

The rods’ diameter change is usually very small, hence we
enforce this constraint to prevent it.

Anisotropic Bending-twisting constraint. With these
three constraints, CL

e , CP
e , and CD

e , we can define coordinates
at the center of edge. Next, we define bending and twisting
constraints based on the material frames defined on the ori-
entation element. The constraint tries to minimize the differ-
ence of modified Darboux vector (defined in (10)) between
rest shape and current shape.

We specify a rod’s anisotropic stiffness via parameters
αi ∈ [0,1] (i = 1,2,3). More specifically, α1 denotes the
resistance to bending around d1 (the direction from mid-
point to ghost point), α2 denotes the resistance to bend-
ing around d2, and α3 denotes twisting stiffness. To handle
this anisotropic stiffness, we define the goal Darboux vector
Ω

Goal
i = (1−αi)Ωi +αiΩ̄i, with αi ∈ [0,1]. This is simply

an interpolation between the current Darboux vector and that
of the rest shape. The bending and twisting constraint can be
written as:

CBT
e (pe−1,pe,pe+1,p

g
e ,p

g
e+1) =

 Ω1−Ω
Goal
1

Ω2−Ω
Goal
2

Ω3−Ω
Goal
3

 . (21)

Note that if all the αi are zero (zero stiffness), this constraint
C takes value zero and has no effect on the constraint en-
forcement. Similarly, if all αi = 1, the constraint tries to
match the Darboux vector to the one from the rest shape.
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5.1. Endpoint constraints

So far, we have described constraints for bending and twist-
ing deformation of rods. With a few extensions to this formu-
lation, we can constrain the rod’s orientation at its endpoints.
We consider three cases where a rod is attached to a frame,
to a triangle, and to a rigid body.

initial deformed frame rotation

Figure 5: Configurations of frames on a midpoint of an edge
D1 and on a frame E. The rod tip’s orientation is firmly con-
strained to the frame and it moves together with frame.

Frame attachment. Assume a rod’s end point p0 is at-
tached to a frame E. The frame attachment can be interpreted
as the rod being attached to an infinitely heavy rigid body.
More specifically, this attachment is one-way coupling; the
frame rotation is given and is not affected by the rod. As
described in § 3.2, the three points {p0,p1,p

g
1} adjacent to

the end make a frame D1. We assume the rod’s tip direction
is fixed to the frame. Hence, when the frame rotates from
Ē to E, the direction of the tip rotates from D̄1 to EĒT D̄1.
In the deformed state, the rod’s frame changes from EĒT D̄1
to D1 in the length of 0.5l̄1. We compute coordinates of the
modified Darboux vector Ωi between the frame E and D1 as

Ωi(s) =
(

4
0.5l̄1

)
vect(P)i

1+ trP
i = 1,2,3, (22)

where P = (EĒT D̄1)
T D1, which encodes the amount of

twisting at the tip in the material coordinate of the rod. Note
that Ωi is zero in the initial rest configuration. Thus, the con-
straint for keeping the relative orientation between the trian-
gle and rod identical can be written as

CO
f (p0,p1,p

g
1) = (α1Ω1,α2Ω2,α3Ω3)

T . (23)

where αi are the same parameter as the rod’s stiffness. Note
that to represent the initial rest configuration, a rotation ma-
trix ĒT D̄1 is stored for the tip constraints, while three local
coordinates of the Darboux vector Ω̄i are stored for twisting
and bending constraints. The position constraint for a tip of
a rod p0 can be simply written as

CT
f (p

t
0) = |q−p0| , (24)

where the q ∈ R3 is the position where the tip is attached.

Triangle attachment. The attachment to a triangle can be
handled similarly to the case of attachment to a frame. Here,
we consider two ways coupling between rod and triangle;

the triangle’s movement is influenced by the rod. We as-
sume the rod tip edge is attached to a triangle t with vertices
{pt

0,p
t
1,p

t
2} as shown in Fig. 6. We define coordinate bases

Et = {e1
t ,e2

t ,e3
t } as

e1
t = (pt

1−pt
0) /

∣∣pt
1−pt

0
∣∣ ,

e3
t = e1

t × (pt
2−pt

0) /
∣∣∣e1

t × (pt
2−pt

0)
∣∣∣ ,

e2
t = e3

t × e1
t .

(25)

The position where the end point p0 is attached to a tri-
angle can be written as qt = w0pt

0 + w1pt
1 + w2pt

2, where
w0,w1,w2 are the barycentric coordinates for p0 in the tri-
angle in its initial configuration. By plugging in Et and qt

into the frame attachment constraint, we can convert it to a
triangle attachment constraint. Note that as this is two-way
coupling constraint; three triangle vertices {pt

0,p
t
1,p

t
2} and

three rod vertices {p0,p1,p
g
1} are involved.

Rigid body attachment. With the triangle constraint, we
can attach the end of a rod to an object. To represent net-
works of rods, such as trees and nets, we put a small rigid
body at the joint where multiple rod join together. Each rod
is connected to this rigid body to transmit torque between
rods. We represent the frame of this rigid body attached
at the tip of the rod using two additional ghost points. At
the endpoint of the rod p0, we put ghost points {pg1

0 ,pg2
0 },

so that the two vectors pg1
0 − p0 and pg2

0 − p0 are perpen-
dicular. With this ghost point, the frame of the rigid body
Er = {e1

r ,e2
r ,e3

r} at the end of a rod can be written as
e1

r = (pg1
0 −p0) /

∣∣pg1
0 −p0

∣∣ ,
e3

r = e1
r × (pg2

0 −p0) /
∣∣∣e1

r × (pg2
0 −p0)

∣∣∣ ,
e2

r = e3
r × e1

r .

(26)

By plugging Er into the frame attachment constraint, we can
attach a rigid body at the tip of the rod. The orthogonality
and length constraints for pg1

0 −p0 and pg2
0 −p0 are enforced

as we did for ghost point on edges in (19) and (20).

Figure 6: Left: configuration of points and frames in a tri-
angle attachment. Upper-right: configuration of points in a
small rigid-body attachment. Lower-right: Rigid body at-
tachment is used for a network of rods.

6. Implementation details

Resolving order-induced instability. In the FEM ap-
proach, multiple constraints are simultaneously enforced by
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solving a linear system. In contrast, position-based frame-
works sequentially enforce constraints one-by-one, and as a
result, the simulation can be affected by the order of appli-
cation. Since a rod is one dimensional, a natural ordering is
naïve sequential order (i.e., enforcing constraints from one
end to the other). However, we found that with this ordering
the rod vibrates on its own, even without any external forces
and starting the simulation from the rest shape.

In position-based frameworks, each enforcement of a con-
straint takes the form of internal force. Enforcing the rod’s
twist constraint in sequential order is similar to an elastic
wave propagating inside the rod. The rod has many wav-
ing modes where the elastic wave goes back and forth in
the strand and the sequential constraint enforcement can ex-
cite such vibrations. Note that this artifact related to the con-
straint order is specific to rod simulation, because in solids
or shells the order is generally randomly distributed.

1 3 5 7 9

246810

Figure 7: Bilateral interleaving ordering.

Our solution to prevent order-dependent instability is
to utilize a bidirectional interleaving order to apply con-
straints. As shown in Fig. 7, we interleave the order for both
directions of the rod. Applying constraints from two direc-
tions at the same time cancels the vibration modes, produc-
ing stable results without excessive energy gain.

Applying constraints in a random order also gives a good
result that is stable without energy gain. However, we ob-
served a tiny flicker in the high-torsional strain arising from
random permutations, especially for curved rods. Generally,
the interleaving permutation gives better results.

Initial position of ghost points. The ghost points on edges
are placed so that the frame axes d1,d2 correspond to the
principal axis of the cross section. For example, if we model
bending of a thin planar rod, such as a ribbon, one of the axes
is chosen to align with the normal direction of the plate. This
will give the expected anisotropic behavior, where the rod is
stiff in one direction and soft in the other.

In the case of an isotropic rod (i.e., a rod with a circular
cross section), the material frame can be chosen arbitrarily.
But ideally, the initial frame should be chosen such that the
Darboux vector becomes as small as possible. If the frame
rotation between two edges is 180◦, the discrete Darboux
vector become singular. Hence, we initialize the initial ghost
position using parallel transport [BWR∗08], so that the ma-
terial frames become twist-free. If there are loops in the rod
topology, we relax the material frame after parallel transport,
so that there are no excessive jumps between frames. For this
relaxation, we average two material frames at the two edges

of an orientation element iteratively for every orientation el-
ement inside the rod.

Gravity on ghost points. We assume that material is dis-
tributed uniformly around an edge. Hence, the center of
gravity of an edge is located at its mid-point and the gravity
force should be applied there. However, in our discretization,
the ghost point is located off the axis of an edge, and so we
need to cancel the spurious rotational moment that would be
added to the edge.

We address this problem with a simple heuristic. We
tweak the amount of gravitational force on a ghost point
such that the gravitational acceleration becomes equal to
that of the mid point. We compute acceleration at the mid-
point by forward differentiation of its velocities: am = (vt

m−
vt−∆t

m )/∆t. Here vt
m is the velocity of the mid-point at time t,

computed as the average velocity of the end points. After en-
forcing constraints and updating velocities, we compute the
ratio r = (am · g)/ |g|2, which indicates how much the mid-
point was accelerated by gravity. Finally, we re-distribute the
gravitational forces of the ghost points to the edge points
such that the total gravitational force applied to the ghost
point is in the ratio r against gravity. Please refer to the ac-
companying supplemental document for more detailed algo-
rithm and the effect of our gravity force modification com-
pared to other approaches.

7. Results

To demonstrate our twist model, we shows an elastic rod
pendulum in Fig. 8-left. The rod is connected to a fixed
frame on one side (the frame attachment), and is connected
to a cube modeled as a triangle mesh on another side (the tri-
angle attachment). After the cube hits another object, the rod
is twisted and then recovers. The twist resistance is achieved
by the constraints in equations (21) and (23), which are
based on Cosserat theory. Fig. 8-right demonstrates stabil-
ity and resistance to flipping with large twist angles. Please
refer to the accompanying video for more detail.

Figure 8: Left: elastic pendulum. Right: rod under large
twist.

In Fig. 9, inspired by [BWR∗08], we create a ring and
apply twist to the ring. As expected, the ring buckles and
twists into a figure-8 pattern, similar to the results shown
in [BWR∗08]. In this experiment we also tested anisotropic
rods, where the cross section is significantly larger in one
direction than the other (e.g., a ribbon). As twist is applied to
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the ring-shaped ribbon, it first buckles similar to the isotropic
ring, but then because it can bend only in one direction, it
shows a different deformation result.

twist=0 twist=0.5π twist=0.8π twist=1.2π

Figure 9: Twisting ring with (upper) isotropic cross-section
and (lower) anisotoropic cross-section.

Comparison with previous work. We compare our rod for-
mulation with two previous PBD rod simulation techniques.
The first is oriented particles [MC11], where the torsion re-
sistance is modeled by averaging neighboring oriented parti-
cles, and boundary twist is given by explicitly specifying ro-
tation matrices at the end points. The second is Chain Shape
Matching (CSM) [RKM∗12], which applies a twisting force
as an external force, on the top of a shape matching defor-
mation. Using these three methods, we simulate twist de-
formations of a straight and spring rod (discretized with 30
edges) with both ends clamped. In our PBD-based rod, twist
and bending constraints are formulated using two neighbor-
ing edges. To compare fairly, we choose two neighboring
edges as a cluster of shape matching operations in our CSM
and oriented particle implementations. We apply the same
number of constraint enforcement iterations (ten iterations)
for these three methods. Since we wish to compare the de-
formations originating purely from elasticity, we did not in-
clude self-contact and damping in the comparisons.

Fig. 10 shows the comparison result. The oriented par-
ticles method gives stable deformation but it lacks a twist-
ing effect because the method doesn’t model coupling of
twisting and bending. The CSM shows twisting effects but
produces unstable deformations and doesn’t converge into a
static rest shape. This is because the twisting force is applied
as an external force, not as a constraint. Generally, the exter-
nal forces in shape matching work only for simple potential
forces such as gravity, and not for elastic forces. Further-
more, CSM is significantly softer than other models because
of the singularity in the momentum matrix, which is solved
in the oriented particle model by introducing rotational iner-
tia. Our rod deforms stably and plausibly in both examples.
We also note that our PBD approach is faster than previous
shape matching approaches because PBD doesn’t require the
costly polar decompositions.

Robustness. Fig. 11 demonstrates the robustness of our rod
model. Starting with an configuration with random vertex
placement, the simulation quickly recovers, and within a
small number of frames, has returned to the rest shape.

stable stableunstable
no-twisting effect twisting effect twisting effect

oriented particles chain shape matching our method

4.88ms/frame 4.96 ms/frame 1.06 ms/frame

Figure 10: Twisting (upper) straight and (lower) spring rod
simulated with different techniques. The bottom row gives
computational time per frame for each method.

Fig. 1 and 12 demonstrate some complex examples cre-
ated with our rod, implemented in a widely-used visual
effects framework. These examples include large numbers
of rods interacting and colliding with each other. Please
see the accompanying video to observe the stability of our
model in these complex situations. In the tentacle-ball ex-
ample (Fig. 1), the sticky behavior is achieved with large
friction forces. The core ball itself uses a dynamic position-
based cloth model, which is coupled with our rods using
the triangle attachment constraint. In the wire-mesh exam-
ple (Fig. 12), the wire mesh is created by weaving rods in
an over/under configuration. With our bending and twisting
constraint, the mesh is stiff enough to be prevented from sep-
arating or unraveling, maintaining the woven configuration.

0th frame 20th frame 40th frame 100th frame

Figure 11: Starting from random initial configuration, the
rod quickly converges to the original shape stably.

Interactive hair design. Since our PBD simulation is fast
and robust, it can be used inside interactive modeling tools.
We implemented our PBD model with a simple collision
model in a 3D modeling tool, to allow the user to create
hair volumes. Because our model is robust, we can allow the
user to interactively manipulate rest shape of the hair, such
as length and twisting of strands.

In addition to designing hair for virtual applications,
this tool is useful to create solid hair for 3D printing pur-
poses. Fig. 13 shows a simple example where we designed
a hairstyle for the bunny model, and the 3D-printed result.
Please see the video for more examples, including a demon-
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Figure 12: A wire mesh modeled by our position-based elas-
tic rods. The wire mesh goes through a ring pushed by a
sphere. All sequence was solved robust and stably.

stration showing over 200 hairs, each is modeled with 20
edges, being simulated at interactive rates.

8. Discussion and Limitations

We present position based elastic rods, which can simulate a
rod’s bending and twisting deformation efficiently using the
framework of position based dynamics.

We remove the order-induced instability of constraint en-
forcement for rods by introducing a special ordering. Fur-
thermore, we remove artificial rotational momentum in-
duced by the gravity on ghost points. While these methods
works perfectly for various cases, there are no theoretical
proofs. Guaranteeing stability is one of our future works.

Our variation interpretation of constraint enforcement en-
ables a handling multi-dimensional constraint that is specif-
ically useful to modeling deformation of anisotropic mate-
rials. We are planning to apply this concept for anisotropic
solid and shell deformation simulation. Furthermore, han-
dling wider variety of constraints such as ones shown in
[SJLP11] is an interesting future work.

Although our bending and twisting constraints prevent
over 180◦ twisting via the Rodriguez parameter, under high
torsional circumstances the rod may still exceed this angle
limit. This is because we apply partial constraints sequen-
tially. In future work, we will explore additional constraints
to prevent this flip completely.

3D printing

Figure 13: Left: Designed bunny hair. Right: 3D print.
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