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Figure 1: Deep Ocean Waves

Abstract
We tackle deep water simulation in a scalable way, solving 3D irrotational flow using only variables stored in a
mesh of the surface of the water, in time proportional to the rendered mesh. The heart of our method is a novel
boundary integral equation formulation that is amenable to explicit mesh tracking with unstructured triangle
meshes. Our method complements FFT style waves as it is able to handle solid boundaries. It is less memory in-
tensive than volumetric methods and inherently handles the near-infinite depth of the deep ocean. We demonstrate
acceleration techniques using the FMM and GPU computing. The natural Lagrangian motion of our model gives
inherent adaptivity to our simulation without the need for direct mesh operations.

Categories and Subject Descriptors (according to ACM
CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation; Computer Graphics
[I.3.5]: Computational Geometry and Object Modeling—
Physically based modeling;

1. Introduction

Ocean waves are a common animation challenge. To achieve
natural-looking and rich detail, physical simulation of one
kind or another has generally been adopted. However, there
is an inconvenient gap between highly efficient but limited
FFT-based surface displacement methods and full 3D simu-
lation of a large volume of water, which we aim to bridge in
this paper.

For non-overturning waves without significant interaction

with boats or other solids, or just to provide a good ripple-
scale animated displacement texture, Tessendorf’s extremely
efficient FFT-based solver [T∗01] is typically used. This
model is derived from an irrotational flow assumption (i.e.
that the flow beneath the surface has negligible vorticity)
which has been experimentally validated for gentle to mod-
erate waves, along with several other simplifications. How-
ever, its realism falters for stormy oceans, where the assump-
tion of a small and smooth perturbation from flat geometry
is grossly broken, and doesn’t account for the presence of
large solids in the water.

For full-fledged interaction with solids and for overturn-
ing waves with splashes, 3D simulation of the free-surface
Navier-Stokes equations is the main alternative. However,
this comes with a significant performance cost, as a large
volume of water beneath the surface must be discretized and
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solved: though it is not directly rendered, the effect of the
depth is plainly visible in terms of wave speeds and disper-
sion. The finite simulated domain generally has to be much
smaller than the field of view in rendering as well, requir-
ing nontrivial effort to convincingly blend the 3D region into
some sort of continued surface geometry out to the edges of
the view.

The core of our contribution consists of expanding on
principles laid out in engineering literature that are found
in papers such as Xue et al. [XXLY01], Liu et al. [LXY01],
and Grilli et al. [GGD01]. In these papers, numerical meth-
ods solving wave dynamics rely on boundary integral equa-
tions (BIEs) to do surface-only computations to propagate
wave dynamics while allowing solid body interaction with
submerged and partially-submerged objects.

Our method differs from those referenced in that we use
an indirect integral formulation which obviates the need for
high-order geometry and function approximation (required
by the engineering simulations). As a result we are able
to employ explicit mesh tracking using the El Topo library
[BB09] to represent the mesh in a robust and adaptive man-
ner.

There also exists an accelerated BEM wave simulation,
developed by Fochesato et al. [FD06], using principles based
on the Fast Multipole Method (FMM), an acceleration algo-
rithm due to Greengard et al. [GR87]. Our reformulation is
immediately amenable to the FMM and we use it to demon-
strate the favourable asymptotic complexity of our simula-
tion.

In short, our method presents the following novel contri-
butions to the animation of water wave phenomena:

• a surface-only memory-efficient method for computing
deep ocean waves,

• a boundary integral formulation better fitted to coarse ex-
plicit meshes, including solid boundaries,

• a method which implicitly satisfies deep water conditions
without needing a large simulation domain,

• optimal scaling of computation time using advanced hard-
ware and algorithms.

1.1. Related Work

The use of BIE methods in graphics began with James and
Pai [JP99] for elastic deformation. However, the most com-
mon use has been in the computation of solid boundaries
for vortex methods. Many methods construct sheets of sin-
gular vorticity on solid surfaces which then cancel normal
flow. Solving for the necessary vortex sheet strength con-
stitutes solving a BIE: see Park and Kim [PK05], Weiss-
man and Pinkall [WP10] and Golas et al. [GNS∗12] for this
approach to incorporating solid boundaries in vortex-based
smoke simulations. Brochu et al. [BKB12] used a different
BIE formulation called the single layer potential to compute

the potential flow satisfying free-slip boundary conditions
necessary in a vortex method, and demonstrated using the
FMM combined with iterative methods to accelerate com-
puting the solution.

Wave animation in general has a long history in graphics,
and we do not attempt to document it all. Looking at surface
models which can be derived from potential flow, Fournier
and Reeves’ [FR86] and Peachey’s [Pea86] physically-based
procedural models are a major milestone, using Gerstner or
Rankine waves and also including the effect of solid bound-
aries such as beaches. Tessendorf’s FFT simulation [T∗01]
mentioned above also belongs to the potential flow / sur-
face category. Other researchers have turned to discretizing
the shallow water equations, which allows for a very effi-
cient surface-based simulation [LvdP02, ATBG08, CM10]
but only approximates shallow waves: the realistic disper-
sion of deep water ocean waves is not captured. Yuksel’s
wave particle approach [YHK07] similarly does not capture
the dispersion of deep water waves.

Full three-dimensional water solvers can be applied to
ocean scenes, though using a volumetric grid deep enough
to effectively model deep water waves, broad enough to cap-
ture a reasonably large surface area, and detailed enough to
get adequate surface resolution can make this extremely ex-
pensive. Irving et al. [IGLF06] and Chentanez and Müller
[CM11] incorporated vertically stretched grid cells in their
solvers to make deep water more economical. Nielsen and
Bridson [NB11] guided a high resolution simulation of just
the surface layer of the ocean with a coarse but much deeper
simulation to capture deep water effects.

2. Deep Water Waves

The key assumption in our non-linear waves formulation is
that the wave motion is irrotational and thus can be modelled
by potential flow. This assumption is commonly held, and
has experimental evidence supporting it. Potential flow is a
divergence-free velocity field ~u obtained by taking the gra-
dient of a scalar potential function Φ(~x), where Φ(~x) solves
Laplace’s equation,

∇2
Φ = 0. (1)

Potential flow is uniquely defined by its boundary and the
conditions thereon. It is natural then to restrict our mathe-
matical and computational model to the boundary using in-
tegral equations.

For the deep ocean, as seen in Figure 2, our scalar po-
tential exists in an infinite domain Ω with boundary Γ com-
prised of solid boundaries Γs and the free surface represent-
ing the water-air interface Γ f . We will denote points on the
surfaces with subscripts:~x f ∈ Γ f ,~xs ∈ Γs and~xΓ ∈ Γ.

On the free surface the solution to Bernoulli’s equations
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Figure 2: The geometry of our wave formulation.

(which govern potential flow) gives a time dependent Dirich-
let condition,

D
Dt

Φ(~x f ) =
1
2 |∇Φ(~x f )|2−g z(~x f )− p(~x f ), (2)

for the atmospheric pressure p, height z, gravitational accel-
eration g, and the convective derivative D/Dt = ∂/∂t +(~u ·
∇). At solid boundaries Γs in the fluid we impose the normal
velocity~n ·~us of the solid as a Neumann boundary condition,

∂

∂n
Φ(~xs) =~n(~xs) ·~us(~xs). (3)

To approximate the near infinite depth of the ocean floor, we
apply the far-field condition Φ→ 0 as z→−∞.

The wave motion is given by advecting the surface Γ by
the gradient of the potential,

D
Dt

~xΓ =∇Φ(~xΓ) (4)

The entire system is determined at a time t by the vari-
ables Φ(~x f ), Γ(t) and solid boundary velocity. The system
is initialized by defining these variables at time t = 0. We
generally operate under the assumption that the atmospheric
pressure p is zero on the boundary. Added modelling could
include variable pressure such as that due to wind forces.

2.1. Linearization

The non-linear term in Bernouli’s equation (2) is measur-
ably small for ocean waves. We moreover find it can be
destabilizing if included in the numerics, thus we linearize
the equations by dropping the non-linear term, consistent
with Tessendorf’s commonly-used FFT wave simulations.
We are similarly able to simulate the shallow troughs and
steep peaks of ocean waves without it, as we follow the
full motion of the surface and not just the vertical displace-
ment. We expect in future work that more advanced numer-
ical treatment will allow stable inclusion of this term when

it is relevant, allowing for a wider range of animated phe-
nomena where the non-linear term is more important such
as wave breaking and overturning waves.

2.2. Boundary Integral Formulation

The potential flow wave formulation above lends itself di-
rectly to reformulation using a boundary integral equation.
Boundary integrals represent the solution interior by inte-
grating over data contained on its boundaries; finding the
solution requires matching the boundary data to the given
boundary conditions. Integral equations come in two types,
direct and indirect. In direct integral equations the bound-
ary data is some physically relevant quantity, such as the
solution values or normal derivative on the boundary. The
aforementioned engineering literature adopts this approach
in their approach to wave modeling, using Green’s second
identity to represent the interior solution as an integral in-
volving both Dirichlet and Neumann data. For reasons be-
low, we instead take an alternative approach, an indirect in-
tegral formulation, where boundary data used to represent
the potential solution is a fictitious density function σ called
a single layer potential,

Φ(~x) =
∫

Γ

σ(s)G(~x,~y(s))dS,~x ∈Ω. (5)

The kernel G is the fundamental solution to Laplace’s equa-
tion in three dimensions, G(~x,~y) = 1

4π|~x−~y| .

In the limit as ~x approaches the boundary, we have the
following combined first/second kind integral equation for σ

given the respectively Dirichlet/Neumann boundary condi-
tions on Γ:

Φ(~x f ) =
∫

Γ

σ(~y(k))G(~x f ,~y(k))dk, (6)

∂

∂n
Φ(~xs) =

σ(~xs)

2
+

∂

∂ns

∫
Γ

σ(~y(k))G(~xs,~y(k))dk. (7)

Once σ is calculated, we can evaluate the gradient of Φ

on the surface by taking the gradient of (5) and replacing the
normal component with (7). This process of computing the
gradient is straightforward and lends itself to our numerics.
Attempting a similar procedure with the direct formulation
leads to hyper-singular integrals, which are far more difficult
to handle numerically especially on coarse triangle meshes.
Additionally, the indirect formulation sidesteps a numeri-
cal oddity of the direct formulation, where the discretization
treats the Neumann and Dirichlet data with the same approx-
imation basis.

A primary characteristic of our formulation and those in
the engineering literature is that they involve solving a Fred-
holm integral equation of the first kind (6). Mathematically,
this implies that finding σ may be somewhat ill-conditioned
since our kernel is weakly singular (roughly, weakly sin-
gular means the kernel is singular, but integrable in L2 )
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and therefore the integral operator is compact. In practice,
both we and the engineering literature find meaningful re-
sults from solving such a system, though care must be taken
when handling the singular integrals to avoid unsolvable sys-
tems, and even then some degree of high-frequency artifacts
should be expected and regularized or smoothed away. Re-
gardless, handling both free surface and solid boundaries
with straightforward integral equations likely necessitates
solving a first kind equation if we want to avoid solving
systems with hyper-singular kernels (again roughly, hyper-
singular means the kernel singularity is not L2 integrable
and that the integral operator must be considered in a spe-
cial manner).

Advantages of the boundary integral formulation include:

• Resolving everything on the surface dimensionally re-
duces our problem.

• Integral equations have some surprising numerical char-
acteristics that further increase this efficiency

• The infinite depth of the ocean is implicitly satisfied by
the mathematical formulation.

We will further elaborate on the numerical advantages in
the following section.

3. Numerical Method for Boundary Integral Waves

To numerically solve the wave equations we take the follow-
ing pseudo-algorithm:

1. Solve the BIEs (6) and (7) for σ.
2. Calculate∇Φ on Γ.
3. Advance Γ in time using equation (4) .
4. Advance Φ(~x f ) in time using equation (2).

3.1. Step 1: Solving our BIEs by Collocation

The first stage in a time step is constructing the potential so-
lution satisfying our boundary conditions. We approximate
Γ using a triangular mesh comprised of triangles Tj and ver-
tices ~xi. We will refer to a per-triangle enumeration of ver-
tices as ~v j1,~v j2,~v j3,∈ Tj. A collocation scheme simply re-
quires that the integral equations are satisfied at discrete lo-
cations: we choose the mesh vertices. This gives the follow-
ing semi-discrete system:

Φ(~xi f ) =
∫

Γ

σ(~y(k))G(~xi f ,~y(k))dk, (8)

∂

∂n
Φ(~xis) =

σ(~xis)

2
+

∂

∂n

∫
Γ

σ(~y(k))G(~xis,~y(k))dk. (9)

To fully discretize the system requires numerical quadratures
for the integrals. For equation (9), the theoretical proper-
ties of a second kind integral equation means we can ex-
pect numerical stability and well-conditioning with standard
quadrature that smooths the singularity.

In contrast, the first kind integral equation (8) poses im-
mediate challenges to effective numerical quadrature. The
kernel is integrable with smoothness assumptions on the ge-
ometry and σ, but unfortunately any discrete approximation
will have to deal with the singularity of the kernel. In addi-
tion, theoretically the integral operator is compact and there-
fore inverting it is ill-conditioned. However, so long as ap-
propriate resolution, regularization or filtering is used, we
can still attain meaningful results, following in the footsteps
of prior numerical work [XXLY01, GGD01, FD06]. We will
attempt to provide intuition for the issue.

It is readily apparent that a kernel whose action smooths
the argument σ will result in a first kind equation for which
the inverse is ill-posed, since very distinct rough inputs could
be smoothed to virtually identical smooth outputs. Thus,
one expects that treating the singularity by a smooth ap-
proximation will result in an extremely ill-conditioned, if
not unsolvable, linear equation, producing arbitrary high-
frequency noise even if the low-frequency smooth compo-
nents are well-determined. Numerically solving such a sys-
tem, one would expect to see increasing high-frequency
noise as the resolution increases as explained by Groetsch
[Gro07]. However, in regards to solving the weakly singu-
lar integral equation of the first kind such as ours, Atkin-
son [Atk97] states that they can be mathematically well-
behaved and gives examples of numerical treatment that re-
sult in a stable numerical system with accurate solution to
the two-dimensional analog of our equation.

It is not apparent how Xue et al. handle integrating the
singularity in their method, though they mention seeing fine
scale noise that they accordingly filter; Fochesato et al. sim-
ply state that they use “recursive subdivision”. We accurately
integrate the singularity similar to Grilli et al. by first ap-
plying an integral transformation to remove the singularity,
then using Gaussian quadrature. This process is commonly
known as Duffy quadrature [Duf82]. In our case, we found
it resulted in a well-behaved linear system that gave results
consistent with our low-order geometry approximation. In
contrast, neglecting the singularity and using standard low
order quadrature for the first kind equation resulted in our
linear solver failing to converge.

3.1.1. Numerical Quadrature

Our first step in implementing our quadrature is to approx-
imate σ by discrete values σi at each mesh vertex, linearly
interpolated across triangular faces.

We calculate the equations (8) and (9) at a mesh vertex
~xi by integrating over all triangles. For those triangles which
don’t include~xi we use a simple 3-point quadrature rule,
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Figure 3: Ocean Waves initialized with Phillips spectrum [T∗01].

∫
Tj

σ(~y(s))G(~xi,~y(s))ds

≈ 1
3

[
∑

k=1,2,3

σ(v jk)

4π|~xi−~v jk|
)

]
A(Tj) xi /∈ Tj,

(10)

and

∫
Tj

σ(~y(k))
∂

∂n
G(~xi,~y(k))dk

≈ 1
3

[
∑

k=1,2,3
−σ(v jk)

~nis · (~xis−~v jk)

4π|~xis−~v jk|3
)

]
A(Tj) xi /∈ Tj,

(11)

where A(Tj) is the area of triangle j. When vertex ~xi ∈ Tj,
and we are calculating equation (9) we adapt the 3-point
quadrature from equation (11) by setting σi to zero at ~xi =
~vi j , giving an O(h2) approximation for characteristic edge
length h. This low order approximation is acceptable since
the diagonal elements of the resulting matrix are dominated
in the limit by the jump condition in (9). When vertex~xi ∈ Tj
and equation (8) is being calculated, we instead use Duffy
quadrature, described below, to handle the singularity.

3.1.2. Duffy Quadrature

Duffy quadrature uses a simple variable transformation to
completely remove the singularity from the integrand. For
the sake of simplicity, we describe Duffy quadrature on a
reference triangle Tr in the x-y plane, vr1 = (0,0,0), vr2 =
(1,1,0), and vr3 = (0,0,1), where the singularity is at vr1.
All other triangles can be affinely transformed to this ref-
erence triangle. On the reference triangle we can write the
right hand side of (6) as the 2D integral

1
4π

∫ 1

0

∫ x

0

σ(x,y)√
x2 + y2

dxdy. (12)

With the transformation, u = y/x, we arrive at

1
4π

∫ 1

0

∫ 1

0

σ(x,xu)√
x2 +(xu)2

xdxdu

=
1

4π

∫ 1

0

∫ 1

0

σ(x,xu)√
1+(u)2

dxdu. (13)

The singularity in equation (12) no longer exists in (13). We
approximate (13) with a nine-point tensor Gaussian quadra-
ture on the square, using the linearly-interpolated σ. The lin-
ear transformation into the reference triangle of course needs
to be taken into account in general.

3.1.3. Linear Solver

The result of applying quadrature to equations (8) and (9)
is a dense linear system. Actually constructing the dense
matrix for a direct solve would be unacceptably expen-
sive. We instead look to iterative solvers that don’t require
the whole matrix but merely compute several matrix-vector
products, choosing BiCGSTAB [vdV92] in our implementa-
tion. Moreover, we can further accelerate matrix-vector mul-
tiplication with parallelism and the Fast Multipole Method,
described in section 4. For smooth free-surface-only geom-
etry we found BiCGSTAB solved the systems to 10−5 of
the initial residual norm in less than 30 iterations. With solid
geometry included, it typically took 50–60 iterations. How-
ever, when the mesh becomes overly distorted with sliver
triangles, the iteration count can rise past 100, and if the
simulation becomes unstable and the geometry pathologi-
cal, the solver can fail to converge. We thus employ the El
Topo library to maintain a well-formed mesh by restricting
maximum and minimum edge lengths, and further stabilize
the numerical method by adding some viscosity described
below.

3.2. Step 2: Computing∇Φ

The normal derivative at the surface is given by equation
(7) and can be calculated by applying the same process de-
scribe for computing (9). The derivatives in the tangential
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directions~t we compute by applying the gradient directly to
equation (5). There is no jump in the tangential derivatives
as they approach the boundary, yielding

~ti ·∇Φ(~xiΓ) =~t ·∇
∫

Γ

σ(~y(k))G(~xiΓ,~y(k))dk. (14)

We compute this in the same low-order fashion as before,

~ti ·∇
∫

Tj

σ(~y(k))G(~xi,~y(k))dk

≈ 1
3

[
∑

k=1,2,3
−σ(v jk)

~ti · (~xiΓ−~v jk)

4π|~xiΓ−~v jk|3
)

]
A(Tj) xi /∈ Tj.

(15)

Again we neglect the singular components when ~xi ∈ Tj by
setting σi to zero there. We compute the tangential deriva-
tive for two perpendicular tangential components then com-
bine them with the already computed normal component to
construct the gradient of the potential on the boundary. The
engineering literature computes the tangential gradients by
making a local high-order approximation to the surface from
which they can approximate the tangential derivatives using
the necessary geometric information and values of Φ. See
especially the method by Grilli et al. [GGD01]. Our method
is a far simpler way of constructing the tangential derivative
and more robust for unstructured triangle meshes where lo-
cal high-order approximation to the surface would be a chal-
lenge.

3.3. Steps 3 and 4: Time Integration

We update the surface and potential at time t = ∆t · (n+ 1)
using symplectic Euler:

~xn+1
i =~xn

i +∆t∇Φ
n
i (16)

Φ
n+1
i = Φ

n
i +∆t

[
p(~xn+1

i )−gz(~xn+1
i )

]
. (17)

We further stabilize the system by including (in essence)
some artificial viscosity, adaptively smoothing the mesh in
the tangential plane. This is done by computing a weighted
average of each vertex’s position with its m neighbors,

~̃xi = α~xi +β

m

∑
k=1

~xk, (18)

β = (1−α)/m, (19)

and then moving the vertex to the projection of the
weighted average on the tangent plane. We found that
smoothing in the tangential plane resulted in well formed tri-
angles without noticeable energy loss due to the altitude ero-
sion that one would see with regular smoothing. On the solid
surface the boundary values of Φ is not propagated in the
model and the fluid geometry can be changed per time-step

without affecting the solution. Here we tangentially smooth
quite strongly with values of α = 0.05. On the free surface,
we generally smooth with α values around .97 for a time-
step of dt = .01, computing four simulation time-steps per
frame. At the edge of our simulation, we smooth Φ and the
mesh in all planes to avoid problems when large waves hit
the mesh edge. At the edge points we smooth only in the
y-coordinate, but still allow motion due to the potential gra-
dient.

Figure 4: Sequence of images showing waves with longer
wavelength overtaking those with smaller, a characteristic
of deep water dispersion.
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3.4. Solid Boundaries and Mesh Adaptivity

To determine whether a fluid point is a solid or free bound-
ary, we check auxiliary meshes denoting solid objects for
collision with the fluid mesh. Potential collisions are han-
dled by the El Topo mesh library. A fluid point that is in an
adjustable proximity to a solid becomes considered part of
the solid boundary and is moved to a pre-defined distance
from the solid. Solid normal velocities are then applied to
this vertex during time-stepping and it is considered to have
the requisite Neumann boundary condition in the numerical
solver.

For deep ocean waves, we found that the natural tangential
motion of the wave dynamics caused the compression of the
surface mesh near areas of high curvature such as the peaks
of the waves. This gives an added efficiency to the method,
imparting an effective resolution many times higher then the
original mesh size. While this adaptivity can sometimes be
reversed due to unnatural pressure forcing, it is consistent
for areas where the natural wave motion is allowed to occur.

Figure 5: Top down view of the computational mesh show-
ing natural adaptivity induced by Lagrangian motion.

4. FMM and GPU acceleration

Boundary integral equations reduce the geometry and thus
memory requirements of wave simulation, from a 3D grid to
just the 2D surface mesh, and exhibit nice convergence prop-
erties with using iterative solvers. However, the O(N2) com-
plexity of multiplying with the (conceptually) dense matrix
means we’ve essentially moved complexity from space into
time. Fortunately, we can reduce the high compute cost of
solving boundary integral methods. We employ two different
approaches, using the FMM and also GPU acceleration to
more efficiently compute the wave simulation. In both cases,
instead of computing integrals by summing per triangle as
described, we first compute all the quadrature weights accu-
mulated by a vertex from its neighboring triangles, and then

Dims Verts FMM time GPU time
80x80 6400 6.6 6.0E-2

160x160 25600 30 6.3E-1
320x320 102400 96 9.0
640x640 409600 3.5E2 1.3E2

Table 1: seconds per BiCGSTAB iteration using FMM or
GPU acceleration for mesh dimensions (Dims) and total
number of vertices (Verts)

compute the integrals by summing over each vertex. Com-
puting the quadratures in this fashion becomes an N-body
problem involving the fundamental solution for Laplace’s
equation and its gradient. This can be done in O(N) time
using the FMM. In addition, the N-body problem is em-
barrassingly parallel and is straightforward to implement in
OpenCL to exploit the massive parallelism of modern GPUs.

Figure 6: Logarithmic plot of table 1 showing the number
of vertices versus time per iteration asymptotics of the FMM
and the GPU.

The FMM we used ran on a single CPU thread on a
3.2Ghz Intel i5-3470 at 3-4 digits of accuracy; though it
showed linear-time asymptotics, as seen in table 1 and Fig-
ure 6, it was still slower on our examples then the direct
GPU-accelerated version using an AMD Radeon 7970. We
are currently working on a GPU version of the FMM to com-
bine these two acceleration techniques for added computa-
tional efficiency.

An additional advantage of our BIE formulation is that it
allows us to easily use our FMM, implemented according
to that described in [CGR99]. The formulations in the en-
gineering literature require dipole charges rather then single
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point sources, which necessitates non-trivial modifications
to the numerical machinery of the usual FMM.

Figure 7: Waves incident upon a near-vertical wall.

Figure 8: Moving balls with wake.

5. Results

Our results demonstrate deep ocean wave phenomena. Fig-
ure 1 shows the steep peaks and shallow troughs expected
for ocean waves. Figure 3 shows a large scale simulation
of waves initialized with a Phillips spectrum [T∗01]. The
dispersion relationship for deep water waves imparts higher
wave speed to waves of longer wavelength. Figure 4 shows
this happening in our simulation. While this visually appar-
ent dispersion relationship is inherent in FFT simulations
and evident in ours, it is not captured by shallow water sim-
ulations. Figure 9 shows a comparison with a height-field
waves simulation using FFT’s. Figure 7 shows waves crash-
ing on a near vertical wall, demonstrating solid boundary
interactions. Figure 8 shows two balls moving on the water
surface, demonstrating moving solid boundary interactions.
Figure 5 demonstrates the natural adaptivity of our method,
allowing a regular grid to distort naturally, compressing the
grid at the sharp peaks of the waves and decompressing it in
the smoother troughs.

Figure 9: Comparison of our waves (top) with a
Tessendorf/FFT height-field wave simulation (bottom) using
the same initial conditions. Coloring represents the potential
values on the surface .

6. Future Work

Our BIE method is a novel method for deep ocean wave an-
imation, and thus there are ample avenues for future work:

• The greatest immediate barrier to effectiveness of the
method is its relatively high compute cost. As we’ve
shown, the FMM and GPU computing can ameliorate
that. Combining the two could bring us closer to large-
scale, low-memory ocean simulations with dynamic solid
boundaries.

• The method is dependent on good mesh-tracking soft-
ware. While El Topo was well suited to the current
method, phenomena such as overturning waves will need
meshing algorithms that handle topology changes ro-
bustly and immediately, without leaving thin interfaces of
air between fluids as El Topo is wont to do.

• Stable ways to incorporate the non-linear term would ex-
pand the use cases of the method. While the non-linear
term is not necessary for general ocean simulation, spe-
cific phenomena such as overturning waves and wave-
breaking would require implementing this term and pro-
vide interesting problems in their own rights.

• Tight integration with Tessendorf waves to continue ocean
simulations out to the horizon would be a straightforward
next step. It is simple to derive the surface potential values
from a FFT based wave simulation; one could easily use
this information to drive the boundaries of our method.
This would allow seamless interfaces between the more
dynamic and interactive BIE method and a periodically
extended FFT-based procedural ocean.

• Non-reflecting conditions on the edge of the domain
where the free surface continues.

• Two-way coupling with buoyant objects would allow
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18



T. Keeler & R. Bridson / Ocean Waves Animation using Boundary Integral Equations and Explicit Mesh Tracking

more dynamic ocean scenes. This would require devel-
oping a buoyancy model compatible with potential flow.
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