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ABSTRACT

Normal estimation on sampled curves or surfaces is a basic step of many algorithms in computer graphics, com-

puter vision, and especially in recognition and reconstruction of three dimensional objects. This paper presents a
simple and intuitive method for estimating normals on point based surfaces. The method is based on Robust Prin-
cipal Component Analysis (RPCA) therefore is capable to deal with noisy data and outliers. In order to estimate an
accurate normal on a point, our method takes a neighborhood of variable size around the point. The neighborhood
size depends on local properties of the sampled surface. It is shown that the estimation of the tangent plane on a
point is more accurate using a neighborhood of variable size than using a fixed one.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-

tion).

1. Introduction

Algorithms for surface reconstruction, surface segmen-
tation and edge extraction on point based surfaces, needs
accurate estimation of the normals. Estimation of normal is
important for detecting and extracting geometric features
and preprocessing steps in surface reconstruction. In order
to estimate the normal, is necessary filter the noise of the
points; although, this causes loss of the sharp features in
the surface. To avoid loss of sharp features is important
design good algorithms capable of estimate accurate nor-
mal and preserve sharp feature even on noisy data.

The normal estimation problem has been addressed by
different research areas, such as computer graphics, ma-
thematics and image processing. A common step is estimat-
ing a local neighborhood around each sampled point, ap-
proximating the local surface at each point. Several algo-
rithms used to surface reconstruction, takes a fixed neigh-
borhood size, which are determined experimentally,
[MVDe03], [ABCO*01], [HDeD*92], ignoring, the varia-
tion of curvature and the sampling density around each
point in the cloud.

A way to get a better normal approximation and there-
fore the tangent plane is not taking the neighborhood size
fixed, but variable, and depending on intrinsic charac-
teristics on the surface from which the sample was taken.

This paper presents a simple method for normal estima-
tion on point based surfaces. The proposed method takes
into account the noise in the point cloud, the curvature
variation to each point, and the neighborhood size. The
proposed method also analyzes the normal estimation on
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sharp features, like corners and edges, achieving a better
estimating of the normal.

2. Related Work

Many researchers have used a fixed size of neighbor-
hood, or k nearest points [PGKO02], [HDeD*92],
[ABCO*01], [MVDe03], [FCS04], [LSK*10] to estimate
the normal vector at a given point.

The pioneer work of Hoppe et al. [HDeD*92] for surface
reconstruction, fits a tangent plane by least-squares, at each
point of the cloud, using k nearest neighbors, the value of k
is selected experimentally. This method fails in point
clouds with presence of noise and outliers, because the
tangent plane is estimates using a classical PCA.

Mitra and Nguyen [MNO4], made eigen analysis of
points belonging to each neighborhood, their analysis in-
volves the curvature, sampling density and noise, thus
achieving an adaptive neighborhood size estimation, the
approach depends on parameters entered by users, which
makes the algorithm depends on the intrinsic features
strongly which are found in different data sets, the PCA
approach is not robust to noise and outliers.

Several Works [ABCO*01], [MVDe03], [FCS04],
have used a combination of linear and polynomial approx-
imations, these approaches use the Moving least-squares
(MLS) [Lev98], which makes them robust to the noise and
outliers, therefore can estimate good normals. MLS-based
methods have the inconvenient of over smooth the surfaces
they process, Mederos et al [MVDe03] and Fleishman et al
[FCS04] solve this problem, although they need to tune
local kernel parameters, which is crucial for final results.
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Another drawback is that MLS-based methods are compu-
tationally expensive, these approaches uses also a fixed
neighborhood size. In [LSK*10] resolve the problem intro-
ducing a kernel density, this method is robust to outliers
and noise, producing good approaches to normal estima-
tion.

Methods based on triangular meshes, the normal esti-
mating on a vertex V;, is derived from the average of the
normals to each faces or triangles adjacent to vertex V.
Approaches like [Tau02], [Van02], [WKWLO02] go in this
direction. In [PSK*02], have proposed an improvement to
the standard estimation method on triangular meshes,
called "Normal Vector Voting", using a geodesic neigh-
borhood of triangles, around the vertex V;. In general these
methods have the disadvantage of being sensitive to noise,
also imply the process of building a mesh of triangles over
the surface. Another disadvantage is that such methods do
not describe a smooth and continuous surface.

Delaunay/Voronoi, are based on geometrical concepts,
several approaches use this concepts [DS06], Amenta y
Bern [AB99]. The methods to estimate normals from noise
free point clouds, use the idea of pole; specifically, these
approaches reveals that the farthest Voronoi vertices from
poles, provide a good estimating of normal. Dey and Sun
[DS04], extends the earlier idea of poles to noisy data.
Ouyang and Feng [OF05] build a Voronoi local mesh
based on 3D Voronoi diagrams and proposes a heuristic
rule of mesh growing, to fit quadratic curve groups through
which are obtained the tangent vectors. These methods do
not describe how to treat normals at edges and corners.

The paper is organized as follow: in section 3 we
presents the mathematical foundations and explain the
proposed method in detail; in section 4 we show the results
and illustration how the algorithm work; in section 5 our
conclusion are presented.

3. Proposed Method

Our method is roughly made up of two stages: the first
one finds the suitable size of the neighborhood to estimate
the normal on each point. This process begins with a
neighborhood of size equal to 4, and iteratively increases
the size as long as a pre-established criterion is met. Then
fits a regression plane to the neighborhood and estimate the
normal. The second one corrects normals estimated in on
critical points located in sharp features like borders, edges
and corners where the normal cannot be estimated correct-
ly. In next subsections, our method is explained in more
detail.

3.1 Problem Statement

Given a set of points P = {(x, y, Z)T} c R’ , which
probably were sampled with noise from an unknown curve
or surface S, ie. z; = f(xi N yi) +&;, where &, is

noise in the sampled points.
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The goal is estimate the normal at each point
D, = (x i ,yi) and the error estimation is minimum re-

spect to the true normal.

We start choosing a k-nearest neighbor to each p; in

the cloud. Once the neighborhood has been obtained, the
next step is to fit a plane or curve to surface, using varia-
tion of "Robust Principal Component Analysis" RPCA, as
shown below.

1 & — =
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Where CMyw in (1), is the weighted covariance matrix,

W = {ﬁwl s W, }, are the weights associated to

each point in the neighborhood of p;. p  —in (2) is the

weighted mean. The weights w; in (3) are estimated using a
proportional inverse distribution, where d;, is the Euclidean

distance between the point p; and each neigborhood point.

We obtain a robust version of PCA, called RPCA, the
robust PCA handled noise and outliers contain in the point
clouds, which not depend on user entry parameter how is
used to be in classical RPCA approachesf HRBOS].

3.2 Size of neighborhood

The choice of neighborhood size can directly affect the
estimation of normal at point p, € S . When we choose a

large k-neighborhood, a large surface area is approximate,
producing a very smooth surface estimation, resulting in
loss of fine details and lack of distinction between the sepa-
rations of two adjacent surfaces. On the other hand, if a
small neighborhood is taken, this leaves an inaccurate es-
timation of the normal, mainly close to sharp features like
corners, crest and edges. This uncertainty is even greater
when the sampled data are noisy, because it is necessary to
take a larger neighborhood to reduce the noise, results in
loss of fine details.

3.3 Adaptive neighborhood

For a better understanding of method, and without loss
of generality, we use a manifold in R’ instead one in R®. A
generalization of this analysis can be made directly for R’.

To obtain a good approximation of the normal, must also
take into account the surface curvature at each point. In
order to find the relationship between the size of the neigh-
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borhood and the curvature at point P, , the following anal-

ysis will be made according to the definition of curvature
given in [AKL74].

The curvature in a particular point O, is stated by (4)

k= limz—h “)
-0 ]2
where h is the distance from a second point p., on the
curve to tangent space to O and / is the length of the tan-
gent segment from the point O to the projection of point p,
onto the tangent plane (Figure 1).

ol<—— | — X

Figure 1: Curvature approximation at point O.
Based on above, we choose a rectangular coordinate sys-
tem such that the origin O, is matching with p,, (point in

the curve which the normal will be estimated), and the OX
axis is matching with the tangent space (Figure 2), note

that y'=0 and kz‘y"

, spanned the func-

tion y = f (x), using second order Taylor expansion,
. § . . 1 "2 2
(since f{x) is unknown), we obtain y = Ey X" +&x,

let y'=0. We haveg = 0, whenx — 0,

thenk = ‘y” = IimZ‘y‘/xz , therefore as‘y’ =h R
x>0

. 2h
and x2 = lz implies that kK = 111’1’1—2 .
-0 ]

We can adapt the above analysis, to our neighborhood
size problem as shown in Figure 2.
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Figure 2: Relationship between curvature and neigbor-
hood at point p;

Figure 3 illustrates an intuitive idea of the relationship
between the projections of each point (belonging to the
neigborhood), into the plane and its right size.

We observed, for highest curvatures, the neighborhood

radius 7;, is much smaller than the projection of a point

¥, on the curve, to plane, ie. (¥, <,), the opposite

happen when the curvature is smooth, is observed that the
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projection of point }; , is much smaller than the radius 7;,

ie. (r,>,).

: \_\-—_ r y{_
0 T— o—1T —~
<y, Rt

Figure 3: neigborhood size depends on the curvature.

From the above relations, we can find the mathtematical
expression, which leads us to obtain a variable
neighborhood size. Having obtained the eigenvectors from
the covariance matrix, Our next step is projecting the

vectors ( D — pi) formed by each p, of the neighborhood

and its mean point P to the tangent plane. We denoted to

simplify P

roj

( P~ pi). Figure 4 show the vectors pro-

jection.

Di 71’ P _
Yo =n(p,~(p+m)

h=y,=f(x)

—_—y — X

2 Vo
Proj(p, - p)
Figure 4: Vector projection on the tangent plane

We are looking for an expression that relating the
curvature at the origin O, with  heights

v, =n(p, —(;thn)) of p, and the radius of

neighborhood, 7; = max || ij (pl. —;) || . Where n

is the normal vector and ¢, is displacement in the direction
of normal, the above is made with the finality of
approximate; the mean of neigborhood to the surface

point p; .

To find the expression, we must start with the relation

) . 2h 2y ,
from Section 3.2. i.e., k= 1—2 = —5, now assuming
r
that the curvature in the neighborhood is small, namely

2
7,

¥, >> ., we can establish that | ¥, |[< k—— to en-
2

sure, that high curvature points, the neighborhood must

shrink until 7, is greater than };in the range

r, e [—I",I’]‘ The right hand side of above expression,

identify a parabola, which are a quadratic approximation of
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2
- di
curve on the origin O. | Vi |S k 7 can be used to estab-

lishing a adaptability criterion, that produce a neighbor-
hood size variation depending on the curvature at each
point on the cloud.

Now carrying the above expression to our notation, we
obtain (5):
|| n(P — (F +1tn))||<k/2||Proj(P —F) I> 5

The curvature k (maximum local curvature), is approx-
imated using (6) [PGKO02].

2o

=——— with 4, < 4, (6)
P

and /10 R }“1 , are eigenvalues of covariance matrix CM,,;

This method give us a local curvature estimation (not very
accurate).

The expression (5), operates in the following way, it
takes a neighborhood large enough, if inequality is not
satisfied, we proceed to remove one point from the
neighborhood, until the inequality be satisfied. The result
of this iteration is the right size of neighborhood at each

point D, .

3.4 Normal Estimation on Sharp Features

Fitting algorithms base on PCA have a drawback when
estimate normals on sharp features like edge or corners.
The drawback is presented because there is a discontinuity
in the derivative of the surface on sharp features, and these
algorithms estimate the normal in the same way they do on
smooth surfaces, i.e. computing the mean of points located
in adjacent sides to the discontinuity, instead of using only
points located just in one side

3.4.1 Critical points detection

Critical points can be identified trough principal compo-
nent analysis, the covariance matrix CM,, have three

eigenvalues ﬂ“o < ﬂ,l < ﬂz and their correspondent
eigenvectors V,V,,V,, for which it holds that Vv is an
approximation to the normal on p,, and ﬂ“o is close to
zero, but if p,is located on a sharp feature /10 is large
compared to ﬂz therefore the ratio between j‘o and 12 can
be used to estimate the probability that p, lie on a sharp

feature i.e. if j‘o / lz > & then p;is a critical point.
Where & is a given constant.

Once found the critical points, the next step is to identify
the type of feature (corner, edge, or border) where the point
is located. An detailed explanation can be founded in
[GWXO01].
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3.4.2 Suitable Neighborhood on Sharp Features

As it was mentioned before in section 4, in order to es-
timate a good normal on a sharp feature, the neighborhood
of points to calculate the normal must be conformed only
by points belonging to one of the adjacent sides to the crit-
ical point. To do this, a k-means clustering analysis is made
for knowing to which side of the sharp feature belongs to
the critical point. If the sharp feature is an edge or border,
will be selected two clusters, if it is a corner, will be
selected 3 clusters. Once established the cluster of the
critical point, a regression plane is fitted to the cluster
(neighborhood) and the normal to the plane will be the
normal on the critical point. In this way the normals on the
critical points are fixed.

4. Analysis and Results

In this section, it is replicated the work made in (Mitra,
2003), to show the efficiency of our method. We started
2

sampling a set of points, from the curve y = k— , in the

range X € [—1,1] using different k values (curvature).

The direction of true normal is the "y" axis, i.e. [0 1], we
can calculate the error between the true normal and the
estimated normal like the angle between them. Additionally
we add noise to sampled points, in "y" direction. Figure 5
shows, the error as neighborhood size func-

tion7; =max||ij(pi—;) , where n = 0.05

(noise), for three different k values, k = 0.4, 0.8 and 1.2,
the graph shows as the radius is growing (more neighbors),
as the error increases. Figure 5 shows values for r > 0.2

0.35

— — 04
08||
—12

03

0.25 q

02 1

0.15 Bl

Error Angulo

Figure 5: The normal estimating error grows as r in-
crease. r > (.2

Figure 6, Indicates the estimated error as function of
neighborhood size r. For small r values, when k = 1.2, and
n = 0.017, 0.033, and 0.05. It is noted, the error tends to
decrease as r increases, r <0.08. This confirms that neigh-
borhood size depends on features found around a point.
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Figure 6: The normal estimating error decrease, as n
decrease and increaser. r> 0.2

Figure 6 shows there is always a range in which the
number of points is the adequate, to keep the normal esti-
mating error below a threshold, outside of range, both
above and below, the error tends to increase. This happens
in areas with a high curvature. The right size of neighbor-
hood is given by the normal estimating method, presented
in this paper.

Our method efficiency is shown, when is applied to
surface segmentation algorithm, based on normals, can be
seen in Figure 7a, how the use of variable neighbor-hood
and RPCA, produces in areas of edges and corners, better
boundaries surface definition, compared to normal
estimating, with fixed neighborhood size and simple PCA
Figure 7b.

Figure 7: Normal estimation in fandisk (a) proposed me-
thod (b) not using proposed Method

4.1 Conclusions

This paper has presented a simple and robust method for
estimating normals in noisy point clouds with sharp fea-
tures. The method uses a robust version of principal com-
ponent analysis RPCA, which does not require extra para-
meters entered by the user. The proposed method uses a
neighborhood sized variable, around each point in the
cloud. The eighborhood size depends on the local surface
characteristics that representing the point cloud.
It is shown numerical and visual results, about the validity
of our method. For example, how the estimation error,
decrease when neighborhood size is variable as opposed to
fixed one.

The proposed method also takes into account the pre-
servation of fine details such as edges and corners as well
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as the correct estimation of normal. Future work should be
directed to incorporate a statistical model of noise that
gives robustness and validity to our method.
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