
Interactive visualizations of automatic debugging reports

André Riboira1, Rui Rodrigues1 & Rui Abreu1

1Dept. of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal

ABSTRACT

Automated debugging techniques, based on statistical analysis of historical test executions data, have recently received
considerable attention due to their diagnostic capabilities. However, current automatic debugging tools suffer from a
common shortcoming that may affect their adoption and correct use: the lack of effective visualizations of their output.
This paper explores the use of interactive visualization techniques applied to automatic debugging results, and integrated
in a common development environment (Eclipse), to improve the efficiency of the debugging process. The proposed tool
– GZOLTAR– is an Eclipse plug-in that includes an automatic debugging algorithm and generates interactive visualiza-
tions of the resulting hierarchical data, with direct links to the IDE’s source code editor.

1. Introduction

Software faults are among the strongest concerns of software
developers. Unfortunately, almost all software projects have
faults, and their localization and fixing is one of the most
expensive tasks during software development [HS02]. On
large systems, software faults are even more difficult to find,
because they are usually not isolated, and their origin can
be related with different system components. There are also
systems where a software fault can be critical, such as in the
aviation context, or in military advanced equipment [DA09].
Due to this, methods and techniques that aid in fault localiza-
tion and fixing are of utmost importance. Debugging tech-
niques have therefore been the focus of many researchers.
As an example, automated debugging techniques based on
statistical analysis of historical test executions data have re-
cently received considerable attention due to their diagnos-
tic capabilities [Abr09]. However, current debugging tools
(that implement these techniques) suffer from a common
shortcoming that may affect their adoption and correct use,
which is the lack of effective visualizations of their out-
put [Rib11a].

Visualization is very important in information compre-
hension [vW05]. In general, human beings find it more in-
tuitive to understand information laid out in a logical, hier-
archical way, than with a simple a list of values. The tool
presented in this paper – GZOLTAR– was created to fill this
gap, by offering a package with automatic debugging and
interactive debugging data visualizations to be seamlessly
added to a developer’s integrated development environment
(IDE). The main premises in GZOLTAR’s development were
therefore the following:

• To implement a robust automatic debugging framework
that allows different visualization techniques, and that
may be easily expanded in the future;

• To help the user to find software faults faster, by aiding
the understanding of debugging results;

• To be highly integrated in a multi-platform development
environment to reduce the learning curve, and the time
spent on swapping between faults localization and their
fixing;

• To have an easy and fast installation process to facilitate
its adoption and use;

The automatic debugging tool that is behind GZOLTAR

is called ZOLTAR [JAG09], a Spectrum-Based Fault Local-
ization (SFL) framework whose performance is among the
best [AZGvG09]. The chosen IDE was Eclipse [Bur05] due
to its wide adoption [Gee05] and its plug-in development
facilities [McC06]. The interactive visualization framework
uses OpenGL for graphics rendering, due to its flexibility
to produce both 2D and 3D graphics, its performance sup-
ported by hardware acceleration and its multi-platform avail-
ability [SG09]. As Eclipse can not access OpenGL directly,
some supporting libraries such as JOGL were used to create
bindings to OpenGL native system libraries [Wol05]. The in-
teractive visualization framework is extendable, and on this
paper we present two examples of possible visualizations.

GZOLTAR processing can be divided into three phases:

• Project and Code Detection on Eclipse;
• Automatic Debugging Process using the collected data;
• Interactive Visualization Framework in Eclipse view.

The Interactive Visualization Framework creates different
debugging data visualizations and allows navigation and in-
tegration with default Eclipse features, such as the code edi-
tor and the building warnings’ list.

V Ibero-American Symposium in Computers Graphics – SIACG 2011
F. Silva, D. Gutierrez, J. Rodríguez, M. Figueiredo (Editors) 31

V Ibero-American Symposium in Computers Graphics – SIACG 2011



2. Automatic Debugging using the Zoltar Framework

GZOLTAR’s automatic debugging core, ZOLTAR, is an
actively-developed framework that performs statistical anal-
ysis of historical software test executions’ data to calculate
the failure probability of each component of a system under
test (SUT). That calculation is made using spectrum-based
fault localization (SFL) algorithms [JAG09]. ZOLTAR’s SFL
algorithms are among the most efficient [AZGvG09], and its
usefulness has already been demonstrated and recognized on
academic and industrial environments, and is currently under
active development.

2.1. Concepts

To compute the failure probability of software components –
typically lines of code – ZOLTAR requires information about
the number of times a given component was involved in
failed and successful tests. For this it is necessary to instru-
ment the source code, so that during execution the informa-
tion of which lines were executed gets recorded. This record
is called the execution’s code coverage. With this informa-
tion and the result of the test execution (if it passed or failed),
ZOLTAR is able to calculate the failure probability of each
system component. This input data is received by ZOLTAR

in the form of a code coverage matrix, where each column
represents a system component, and each line represents a
test execution. The result of the test executions is received
by ZOLTAR as an error vector (see Figure 1) [Abr09].

N spectra

M components


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM




error
detection


e1
e2
...

eN




Figure 1: SFL input matrix. N means test executions, M
means SUT components, a means code coverage and e
means test execution result.

Because ZOLTAR is based on test executions code cov-
erage and results, its accuracy will depend on the qual-
ity of test cases. The ZOLTAR framework offers several
SFL algorithms, including the Ochiai algorithm [AZGvG09]
(amongst the best for diagnosis). During the statistical anal-
ysis, ZOLTAR processes the failure probability of each sys-
tem component, and at the end it returns that information in
the form of a list, with the component and its corresponding
failure probability.

ZOLTAR’s core automatic debugging processing is very
efficient but this tool has some shortcomings, mainly re-
lated to its user interface. Its default output is a list with
the system components and their failure probability (see Fig-
ure 2), presented in a text-based user interface. ZOLTAR also
has a graphical interface, XZOLTAR, but it is very limited.
XZOLTAR is essentially a code viewer with each line of code
highlighted and color-coded with its failure probability (see
Figure 3). Besides, at this moment XZOLTAR is only avail-
able for Linux operating system. The lack of integration with
an IDE is also an issue, because the developer has to localize
its faults on one environment and fix them on another, which
may lead to a loss of productivity.

Figure 2: Zoltar output.

Figure 3: XZoltar output.

3. Visualizations of debugging results

As stated earlier, current automatic debugging tools (includ-
ing Zoltar) lack efficient visualizations and integration with
IDE’s. GZOLTAR’s purpose is to address this issue, by laying
out the debugging information in context with the SUT code
structure. Under Eclipse and in particular in terms of Java de-
velopment, the paradigm of workspace is used. A workspace
contains a set of projects, each consisting of packages with
classes within, and ultimately lines of code, which corre-
spond to the components of the SUT in ZOLTAR’s termi-
nology. This structure can be represented as a tree where
each node represents a component or a group of compo-
nents. A node can therefore be a project, a package, a class, a
method or a line of code (these being the leaves of the tree).
GZOLTAR supports multi-level packages, so it has to deal
with trees with an arbitrary number of levels.

There are many ways to visually represent tree data struc-
tures [SCGM00]. A given representation may be effective
for a tree with a given pattern of node weight distribution
and node relationships, but it would be too confuse for a
differently-structured tree. Furthermore, different people re-
act differently to the same visualization, so it is important to
give alternatives to the user [SCGM00].

For this reason, GZOLTAR was implemented in a modu-
lar way that allows to easily add different visualizations to
the system. In the current version, two visualizations were
implemented, treemap and sunburst. The first is more fo-
cused on the tree hierarchy, while the other is more focused

32 A. Riboira, R. Rodrigues and R. Abreu / Interactive Visualizations of Automatic Debugging Reports

V Ibero-American Symposium in Computers Graphics – SIACG 2011



on the tree leaves. In both of them, the debugging infor-
mation, namely the component failure probability, is repre-
sented by color-coding each node, using colors ranging from
pure green (no failure probability) to pure red (maximum
failure probability). The two visualizations are described in
more detail in the following sections.

3.1. Sunburst

Sunburst is a circular visualization [SCGM00] that can be
compared to a multiple level ring graph. Each level of the
visualization represents a different hierarchical level (pack-
ages, classes, methods, etc.) of the tree-structured data. Be-
cause it supports multi-level packages, the same level of the
visualization can represent different kinds of components
(the same visualization level can have classes and packages,
for instance). The tree leaves (which represent lines of code)
have a fixed area, calculated by the total number of lines of
code on the system. The inner nodes (methods, classes, ...)
have their area calculated based on the sum of the areas of
their descendants (see Figure 4). Sunburst uses the green-to-
red coloring scheme referred earlier. It has however an addi-
tional coloration method that is activated on user interaction:
when the user places the mouse cursor over a representation
of a line of code, the coloration of the visualization changes
to reveal the relations between each line of code of the sys-
tem.

Figure 4: GZOLTAR sunburst visualization.

The color of each leaf node will vary from the one that
the selected component has to gray, revealing the percent-
age of test executions where that line and the selected one
were both executed. It is possible to have a notion about the
way components relate with each other. With this feature it
is possible not only to know if components are related but
also how deep is that relation.

3.2. Treemap

Treemap is a rectangular visualization [JS91] that is widely
used on disc space usage analyzers, because it focuses more
on the tree’s leaves than on its hierarchy. Each node is repre-
sented as a rectangle with an inner margin, and its interior is
divided proportionally by its descendants according to their
weight. To avoid node representations with disproportion-
ate width and height, nodes at odd levels of the hierarchy
are divided horizontally and nodes at even levels are divided
vertically (see Figure 5). With this concept the leaves have
the majority of the display area (the remaining corresponds
to the margins).

Figure 5: GZOLTAR treemap visualization.

3.3. Comparison

These two visualization concepts privilege different aspects
so they are both useful. Sunburst focuses more on the tree
hierarchy, which reflects the system organization. The sys-
tem organization knowledge is important to isolate groups
(packages, classes, ...) which should be seen in more detail
(in this case, which have higher failure probability). Treemap
focuses more on the tree leaves, which represent lines of
code. Fast access to lines of code is important when errors
are well isolated, and the user wants to access directly to the
source code at the desired line. As the render area is rectan-
gular and treemap offers a rectangular visualization, it makes
better use of the available space.

A comparison between Sunburst and Treemap view is dis-
played in Figure 6. GZOLTAR considers all packages levels
so a composed package like “org.demo” will have two lev-
els on GZOLTAR tree. This feature aims to provide a better
visualization of the system’s structure, to help the user in his
fault localization task.

To better understand the differences between visualiza-
tions, two sample systems are presented in Figure 7, hav-
ing sunburst and treemap visualizations side-by-side. It is
clear that although the visualizations provide an overview of
the systems and the fault probability distribution, the more
complex system is not trivial to analyze using just this broad
view. In these cases, it would be useful to have additional
control over the visualization, allowing to focus the visual-
ization on specific parts of the system, and even accessing
the faulty sources directly from the visualization. This leads
to the other important component of GZOLTAR, the inter-
action with the visualization and its connection to the IDE,
presented in the next section.

Figure 6: GZOLTAR visualizations comparative.

A. Riboira, R. Rodrigues and R. Abreu / Interactive Visualizations of Automatic Debugging Reports 33

V Ibero-American Symposium in Computers Graphics – SIACG 2011



Figure 7: GZOLTAR visualizations of a simple (top) and complex (bottom) systems.

4. Interaction

A software developer tends to use tools that are more com-
fortable to him. Usually, software is developed in some IDE,
which provides a lot of useful tools that help the developer
during software development. Those tools can give not only
useful functionalities about code editing, like line numbers
and syntax highlight, but also about project organization,
code completion, integrated help and the ability to analyze
the system state at a given stage. The most powerful au-
tomatic debugging tools are external to IDE’s, which may
compromise their adoption. GZOLTAR is integrated with
Eclipse IDE. All GZOLTAR’s visualizations are rendered on
a standard Eclipse view. This allows the user to place and
resize the visualization area to the desired place and size, to
enhance his/her comfort. Default Eclipse code editors can be
opened directly from the visualization, and standard Eclipse
warnings are generated by GZOLTAR. Those warnings are
displayed on Eclipse “Problems” list, and as tooltips in the

code editor (see Figure 8). For interested readers, refer to
[Rib11b] for a video demonstration GZOLTAR.

Figure 8: GZOLTAR integration with Eclipse IDE.

34 A. Riboira, R. Rodrigues and R. Abreu / Interactive Visualizations of Automatic Debugging Reports

V Ibero-American Symposium in Computers Graphics – SIACG 2011






