
A Layered Approach to Animate Intelligent Characters

Ana Paula Cláudio Graça Gaspar Luís Moniz Maria Beatriz Carmo Ricardo Abreu

Daniel Policarpo Marco Lourenço Nuno Martins

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

apc@di.fc.ul.pt; gg@di.fc.ul.pt; hal@di.fc.ul.pt; bc@di.fc.ul.pt; gumbeto@gmail.com
policarpodan@gmail.com; emacs.me@gmail.com; nuno.a.d.martins@gmail.com

Abstract
The IViHumans platform supports the development of diverse applications with virtual humans. It comprises one
layer for graphical processing and one for artificial intelligence. The layers were projected to run in different
processes, communicating by means of a simple, yet effective and extensible client/server protocol that we pro-
jected and implemented. In this framing, the graphical processing layer plays the role of server, while the artifi-
cial intelligence layer occupies the position of the client. Therefore, the graphical processing layer is the base of
the platform, providing services for the intelligent agents that populate the artificial intelligence layer.

Keywords
Virtual humans, Virtual environments, Synthetic Perception, Steering behaviors, Multi-agent systems

1. INTRODUCTION
Virtual environments that are inhabited by agents with a
human embodiment have many practical applications
nowadays in areas such as entertainment, education, psy-
chotherapy, industrial training and reconstitution of his-
torical places. We are engaged in a research project that
aims at building a flexible library for materializing a sys-
tem of multiple intelligent agents into Virtual Humans
(VHs) that inhabit arbitrary virtual environments – the
IViHumans (Intelligent Virtual Humans) platform
[Abreu08].
The IViHumans platform is being developed to accom-
modate VHs that combine a realistic appearance with a
performance that approximates human cognition and
behavior. To pursuit this goal, the platform is composed
of two separate layers: one for Graphical Processing
(GP) and one for Artificial Intelligence (AI) computa-
tion. These layers express the control of agents at differ-
ent detail levels.
The following section summarizes the fundamental re-
lated work, stating the main similarities and differences
of our approach. In section 3 we present the general ar-
chitecture of the IViHumans platform. In section 4 a brief
general description of the GP Layer is presented. In sec-
tion 5 the communication between the two layers is pre-
sented. In section 6 we present the AI Layer, describing
the several types of agents that constitute it. The last sec-
tion summarizes this work and discusses some future
work.

2. RELATED WORK
In the last decade some other authors have presented
work integrating multi-agent systems with graphics com-
ponents. In [Barella06] a game-oriented multi-agent sys-
tem built over the JADE multi-Agent System (MAS)
platform is presented. That approach is similar to ours, in
that the MAS module and the visualization module work
independently of each other. However in their system the
simulation is centralized in the MAS, while the visualiza-
tion module has the sole duty of exhibiting the world
without allowing interaction.
Several other authors have used Belief-Desire-Intention
(BDI) agent platforms together with game engines or
specific visualization platforms. Some of those works
concentrate on particular types of applications and
agents. For instance, in [Magerko04] an environment
based on the Unreal Tournament game engine and the
Soar AI engine is described, concentrating in the devel-
opment of complex AI agents for interactive drama ap-
plications. In [Norling04] BDI agents that model expert
players of Quake 2 are developed.
In [Torres03, Torres04] the BDI model is also used to
control animated characters in virtual worlds. In their
work, 3D articulated characters are controlled in real
time by cognitive agents that are clients of the environ-
ment which, in its turn, acts as a server and is responsible
for managing the information that can be perceived by
the agents. However their architecture is limited in that

Simulação, Animação e Personagens Inteligentes

121

everything an agent can perceive must be listed a priori
in a list of boolean statements.
In [Norling01] the JACK agent language is extended
with a specific perceptual/motor system that allows the
agents to interact with a graphical interface. Our ap-
proach is instead to make the GP layer responsible for the
perception and basic motion of the agents, thus decoup-
ling the perceptual/motor system from the cognitive part
of the agents and making it more independent of the
agents’ implementation.
In [Evertsz07] a military simulation tool, ROE3, is pre-
sented where the agents are also implemented using
JACK. In ROE3, an Integration Layer translates mes-
sages between the agent and the synthetic environment,
being able to aggregate raw percepts into higher level
percepts. In this respect, our platform incorporates a
similar translation mechanism, as part of the AI Layer, in
the form of interface agents.
In what concerns virtual perception and movement, our
approach was strongly influenced by the work of Craig
Reynolds. In 1987 he released a distributed behavioral
model for the simulation of animated flocks, herds, and
schools [Reynolds87], breaking up with traditional ap-
proaches of scripting the movement of virtual actors and
objects and introducing the behavioral animation con-
cept. In the model he built, “boids” decide their routes
autonomously and at runtime. The decision of each indi-
vidual is achieved according to a set of behavioral rules
and using simple models of local perception of a dy-
namic environment. In order to have a consistent behav-
ior, boids act according to a limited awareness of the
surrounding environment, which is obtained through
what is often called synthetic perception.
Vosinakis et al. [Vosinakis01], Noser et al. [Noser95],
and Peters and Sullivan [Peters02], all apply a model of
virtual vision that acts by filtering out the objects that
should not be seen by the characters, granting them ac-
cess to the information that characterizes the ones that
are seen (though sometimes its detail depends on atten-
tion). In the IViHumans platform, we use a model of ray-
casting synthetic vision, like Vosinakis et al. did. We do
so with an original algorithm that tries to maximize pre-
cision without any meaningful impairment of efficiency
and that provides parameters that can be tweaked to find
the correct balance. Like these authors, we also have a
memory model coupled with perception. It is able to re-
member default and custom properties of objects with
three different memory management techniques. Our
memory is capable of recalling the different states an
object goes through along time, rather than just one in-
stantaneous state. This allows the extraction of conclu-
sions about the evolution of the world.
In later work, Craig Reynolds generalized his behavioral
model to imbue different characters with realistic and
spontaneous navigation capabilities [Reynolds99]. The
rules for the movement of the boids were expressed using
Steering Behaviors. Reynolds proposed a conceptual

division of the behaviors of a virtual character in three
separate layers, ranked by degree of abstraction:

� The locomotion layer includes low-level tasks
that carry the movement of the character;

� The steering layer establishes the way to go to
reach an objective;

� The action selection layer defines objectives and
sub-objectives.

According to this hierarchical layout, the aims of the ac-
tion selection layer are achieved through the features that
the steering layer provides, and the same relation holds
between the steering layer and the locomotion layer. In
Reynolds' vision, steering behaviors are a part of the
steering layer.
Steering behaviors stand on the assumption that the un-
derlying layer can be approximated by a simplified con-
cept of vehicle that can equally be applied to planes, cars,
horses, or the legs of a human being (with some abuse of
nomenclature, as the author points out).
We consider Reynolds’ conception of virtual movement
as a grounding base for our approach and we adapt and
implement it in our own way. We pay special attention to
locomotion and our characters display consistent anima-
tions that are automatically chosen according to their
own rules.
Like Vosinakis et al. [Vosinakis01], Rickel et al.
[Rickel97] and Longhi et al. [Longhi04], we also account
for emotions in the IViHumans platform. Emotion will
integrate cognitive models on the AI layer, according to
what is described in [Morgado07]. On the GP layer, it
will be indirectly expressed in the behavior of the charac-
ters and, directly, through their facial expressions. Unlike
these authors, however, we propose a solution for facial
expressions that allows the exhibition of complex expres-
sions and that supports smooth transitions between them.
In the overall perspective, our architecture is also differ-
ent from others. Torres et al. implement agents as indi-
vidual processes. The agents play the role of clients of an
environment that acts like server. Vosinakis et al. have
the AI code supplied by the user through callback func-
tions. The IViHumans platform seeks to evenly distribute
computation tasks between both layers. The GP layer
includes some behavioral features that are sometimes
classified as belonging to the field of artificial intelli-
gence [Buckland05]. This allows reactive behavior to
happen faster, without having to wait for the decisions of
the AI layer.
The IViHumans platform is projected to be generally
applicable, in order to enable different applications to use
and build upon it. Our aim is to allow user applications to
focus and extend either one of the layers, or both. Inter-
action with the user can be included in either side, as
both layers have a determinant influence in the course of
events, unlike what happens in the works of Perlin et al.
[Perlin96], Ulicny et al. [Ulicny01] and Barella et al.
[Barella06]. Also, in the approaches of these authors, the
server is on the artificial intelligence side, while in ours
the server is on the GP layer. Agents operate according to

17º Encontro Português de Computação Gráfica17º Encontro Português de Computação Gráfica

122

the basic services that the graphical layer, which is at a
lower level, provides, instead of having the latter with the
sole responsibility of rendering the effects of agents' op-
erations. In this sense, our view is similar to the one
manifested by Funge et al. [Funge99], in the sense that
cognition is built on top of lower-level functionality.
The IViHumans platform separates the GP layer from the
AI layer, an approach that is already found in works such
as the JGOMAS system [Barella06] and the ROE3 archi-
tecture [Buckland05]. However, our proposal differs
from them by having the amount of responsibility of each
layer well balanced. For instance, in what regards sen-
sory honesty, the physical limits to what can be perceived
by a character are controlled by the GP layer while the
cognitive restrictions reside on the AI layer. Also, the GP
layer is responsible for quickly handling aspects such as
typified steering behaviors, while the AI layer deals with
the more complex cognitive behavior, using symbolic
representations. As a side effect, this architecture also
tends to reduce considerably the communication over-
head.

3. ARCHITECTURE
The IViHumans platform aims at a uniform balance of
responsibility between the two layers. The GP layer is
responsible for quickly handling the low-level aspects
that mainly characterize graphical and physical process-
ing, providing an abstracted interface to the AI layer that
deals with the more complex cognitive behavior, using
symbolic representations.
The GP layer is built on top of the rendering engine
OGRE1. The Multi-Agent system – the core of the AI
layer – is built upon the JADE2 framework.

Figure 1: Content creation and architecture of the platform

1 http://www.ogre3d.org/
2 http://jade.tilab.com/

The main task for which the GP layer is responsible is
the representation of all the elements contained in the
virtual world, among which the VHs are the most impor-
tant, reproducing the appropriate animations that carry
the flow of occurrences and consistently enacting the
evolution of the world and its components. The AI layer,
on the other hand, hosts and manages the minds of the
VHs, so that each one is controlled by one or more
agents that entitle him with intelligent behavior. In the AI
layer there are essentially two types of agents: interface
agents and cognitive agents. The interface agents deal
with the communication, transforming raw data into
meaningful symbolic representations and translating
high-level actions into the appropriate commands. Inter-
facing components are also present in the GP layer.
The communication between the two layers follows the
client/server approach. The GP layer provides the server,
and the AI layer connects to it through a client. Our
server relies heavily on the boost libraries, mainly on
Boost.Asio, an opensource cross-platform C++ library
for network programming that provides developers with
a consistent asynchronous I/O model using a modern
C++ approach3 .
This library is based on the Proactor design pattern,
whose description can be found elsewhere [Schmidt00].
The layers of the IViHumans platform communicate with
a very simple protocol that we built over TCP. The pro-
tocol is extensible because new messages can be added
by any application that uses the platform, provided that
the corresponding parsers and interpreters are included.

4. PERCEPTION, MOVEMENT, AND EMOTION
EXPRESSION
The VHs are the central elements the IViHumans plat-
form has to deal with and we put them at the heart of the
GP layer's implementation. Concretely, the VHs are im-
plemented, in the GP layer, by the class IViHuman. Ob-
jects of this class are particular VHs that can perceive
their environment with synthetic vision, execute steering
behaviors, and exhibit expressions.
4.1 Perception: synthetic vision and memories
Some approaches to games and simulations implement
virtual agents with unrestricted access to the world data,
bestowing them with sensory omnipotence [Buckland05].
These approaches incur in a flaw that originates unnatu-
ral events in the behavior of the intelligent agents. Their
actions demonstrate they have knowledge they should
not have, like being aware of objects in different rooms.
This is not a good approach when believability is sought.
It is essential to hold back from the agents the informa-
tion they should not be capable of accessing, otherwise it
will be apparent that the AI is “cheating”.
A VH perceives its environment through a ray-casting
synthetic vision algorithm [Semião06b, Semião06a]. The
algorithm allows the parameterization of several charac-
teristics, which gives it flexibility. For instance, the right

3 http://www.boost.org/

Software for 3D modeling
and processing

Content
(models, animations, materials,…)

AI Layer

 GP Layer

Graphics Engine Physics Engine

offline
runtime

Simulação, Animação e Personagens Inteligentes

123

equilibrium between accuracy and efficiency for a par-
ticular environment or purpose can be achieved by
tweaking frequency (the rate at which the algorithm iter-
ates), intensity (the number of rays that are cast at each
iteration), or the displacement of rays over successive
time steps. Each VH has a camera that inherits the
movement of his head. This camera is used both as a
means of displaying what the VH sees, and as a reference
for deriving the direction of the rays that are cast into the
scene. Other sensing mechanisms may also be added,
without changing existing code, by implementing a sim-
ple interface.
The class SyntheticRayVision implements the vision
algorithm. Synthetic vision can be explicitly called upon,
to obtain information about the objects that a VH sees at
any given moment. The AI layer can post such requests
on the GP layer any time, and the vision algorithm will
be executed. Memories and beliefs can then be managed
by the intelligent agents. However, we included an alter-
native in the GP layer that releases the AI layer from the
burden of constantly asking the VHs what they see. It
may also be used for reactive behavior directly handled
by the GP layer (e.g. by creating steering behaviors that
use it). This alternative consists on an automatic vision
mode with custom memory associated.
An IViHuman can be told to activate the “auto vision"
mode, so that he periodically executes his vision algo-
rithm on his own.
There would be no point in having the vision algorithm
automatically executed if the results are not used in a
short time period. As it is, the IViHuman class does not
analyze the results of the vision algorithm, as this is as-
sumed to be mainly a responsibility of the AI layer.
So, the auto vision mode cannot be executed unless the
IViHuman has a memory that can record relevant data
and provide it whenever needed. VisionMemory is the
abstract class that represents this memory, as shown in
Figure 2.

Figure 2: Class Diagram – Vision and Memory

Every VisionMemory instance is a listener of a Syn-
theticRayVision object and is notified whenever the vi-
sion algorithm is executed. A VisionMemory can be told
what properties to get from the objects that are seen by
its owner.

VisionMemory is only an abstract class that aggregates
the main features that must be provided by every actual
memory. We implemented three subclasses that store and
manage data in their own way: VisionMemoryBySpace,
VisionMemoryByTime, and VisionMemoryBySteps.
Even though they manage their storage space in distinct
ways, all the implementations have some limit for their
capacity, which is provided upon construction. Thus,
they function only as short or medium term memories. A
more persistent memory model should be built in the AI
layer, possibly storing data after it is processed to a rep-
resentation more adequate for reasoning and cognition.
VisionMemoryBySpace stores information for a certain
number of objects. Its capacity is determined in terms of
the number of object entries that can be stored at any
given time. VisionMemoryByTime stores all the infor-
mation obtained in a certain time span, which is specified
by its capacity. An absolute timer is kept and updated
when the object is notified of new vision results. Vi-
sionMemoryBySteps is very similar to VisionMemory-
ByTime, but it uses relative time instead of absolute time,
as VisionMemoryBySpace does. It stores all the informa-
tion obtained in a certain number of vision iterations.
The contents of the IViHuman's memory can be re-
quested by the AI layer. With this memory model, agents
can ask for the most recent value of some particular
property, for a particular object or for all objects that
were seen. They can trace how a certain property varied
recently for some object or draw conclusions from relat-
ing properties of different objects. They can also request
information, from time to time, to monitor the world
while reasoning, or to build a persistent memory, at the
pace that suits them best.

4.2 Movement
The motion of the VHs is supported by the notion of
steering behavior, as explained before. We adopt Craig
Reynold’s hierarchical categorization of movement in the
three layers of locomotion, steering and action selection.
The former two are under the domain of the GP layer,
while the last and topmost layer can either be included in
the AI layer, which happens for virtual humans, or ab-
sent, so that human users can directly control avatars.
Locomotion corresponds to the choice of the appropriate
animations on the basis of speed and according to the
rules that are unique for each VH model. Some steering
behaviors are already included but, again, many more can
be implemented and immediately used. In what concerns
movement, the action selection layer operates by activat-
ing and parameterizing steering behaviors to achieve the
desired goals, according to agents’ planning.
The most obvious attributes that a VH must have are the
ones that describe its basic physical state, such as posi-
tion, velocity, or orientation. Values for these attributes
can be derived by applying laws of classical physics.
Using these laws, an IViHuman can update its own
physical state if it is given the time that elapsed since the
last state. However, this ability is not exclusive of a VH.
It is part of every entity with physical existence that

VisionMemoryByTime

IViHuman

VisionMemory

VisionMemoryBySpace

VisionMemoryBySteps

SyntheticRayVision

Memorizes with Sees with
0.. 1

1

0.. 1

1

1 *

17º Encontro Português de Computação Gráfica17º Encontro Português de Computação Gráfica

124

moves in the virtual world, be it a ball, a car, or a camera.
Thus, we created a base class that aggregates this func-
tionality, so that every moving entity can inherit from it,
and we called it IViEntity. Its inheritance diagram is
shown in Figure 3.

Figure 3- Class Diagram - IViEntity

The class IViEntity implements only an abstract repre-
sentation of movement. It is not even connected with
OGRE in any way other then by using its basic types
(e.g. vectors). It serves as a base class that provides some
basic movement functionality to other classes that inherit
from it. Its functionality can be identified with part of the
functionality of Reynolds' vehicle model and, once
mapped into rendered motion, it is enough for entities
whose movement is generated by some external force or
will, that is, entities that do not need to appear as being
self powered or as moving on their own.
MovingCharacter is one of the classes that inherit from
IViEntity and it extends its movement functionality to the
point that the vehicle model achieves, completing an ab-
stract interface of the locomotion layer, over which the
steering layer can be built. The MovingCharacter class
also implements the features of the steering layer. It mod-
els a character that can move by producing forces to steer
itself. These forces produce accelerations that are used to
update the MovingCharacter's state. Steering behaviors
determine forces that the character applies on itself,
simulating how a self-powered entity uses energy to
move by itself.
The vehicle model is used so that the steering layer can
operate independently of the actual vehicle it is driving.
In the IViHumans platform, a MovingCharacter can have
one instance of the class SteeringBehavior managing its
motion (Figure 3). This steering behavior can either be a
basic one or what we called a CombineBehavior, which
is actually a composite [Gamma95, Larman98] steering
behavior.
We implemented six basic steering behaviors: SeekBe-
havior, Seek2DBehavior, Arrive2DBehavior,
Walk2DBehavior, Stop2DBehavior, and Follow-
Points2DBehavior.
We decided to distinguish behaviors that operate in three
dimensions from those that operate in two, by including
the term “2D" in their name. Behaviors that operate in
3D are intended for characters that can move freely in the
three dimensions of an environment (e.g. birds that can

fly in the sky; fish that can swim in the sea). On the other
hand, characters whose movement is constrained to one
plane need behaviors that operate in 2D.
Seek2DBehavior is a particularization of SeekBehavior
that functions only in two dimensions. The movement
that this behavior generates is restricted to the horizontal
plane that stands at the same height as the character. As
the previous one, Arrive2DBehavior operates on the
horizontal plane of the character. For most of the time,
this behavior does the same thing as Seek2DBehavior
but, when the character approaches the target, the com-
putation differs. So, we had Arrive2DBehavior as a sub-
class of Seek2DBehavior, in order to reuse the imple-
mentation of this last one. It also drives the character in
the direction of the target, but it makes him slow down
linearly as he approaches it: the deceleration is applied
only until the character's speed reaches some predeter-
mined value, after what the speed is maintained. When
the character comes very close to the target, as defined
by another threshold, the behavior stops the character's
movement and deactivates itself. In our opinion, this ver-
sion produces more realistic results, in what concerns the
movement of VHs.
We also implemented a steering behavior that drives the
character at a given velocity and we called it
Walk2DBehavior. This behavior has a target, like the
previous ones, although this target is a velocity vector
instead of a position. In each iteration, it calculates a
force that will accelerate the character towards a velocity
that can be obtained from the supplied target.
A steering behavior to stop the character-
Stop2DBehavior- was also created. This behavior is a
particularization of Walk2DBehavior, but the target ve-
locity is defined a priori as the null vector. When the
character stops moving, that is, when his velocity drops
bellow a very low threshold, the behavior deactivates and
removes itself from the MovingCharacter.
The last steering behavior we implemented was Follow-
Points2DBehavior. It will drive the character across a
sequence of n target positions and it will stop him once
he comes to the last one. It does so by making the charac-
ter seek the first n-1 targets and arrive at the nth target. In
fact, it aggregates instances of Seek2DBehavior and Ar-
rive2DBehavior to accomplish that goal, but that is com-
pletely transparent to the user.
Besides these basic steering behaviors, many more may
be implemented in the future, simply by extending the
abstract class SteeringBehavior.

4.3 Facial Expressions
In the IViHumans platform, VHs convey emotions
through facial expressions. Any number of basic expres-
sions may be modeled for a virtual human as deforma-
tions of the original model. These can be blended to-
gether to create composite expressions. As far as a VH is
concerned, the distinction between basic and composite
expressions is abstracted, so that he can uniformly ex-
hibit and exchange them whenever needed. For the tran-

IViEntity

MovingCharacter RegularEntity

IViHuman
Steering Behavior

0.. 1

1

Controlled by

Simulação, Animação e Personagens Inteligentes

125

sition between two expressions to happen smoothly, their
state is regulated according to a Finite State Machine
(FSM) that specifies how their intensities vary in each
time step. This FSM also establishes how the VH must
deal with the expressions in specific circumstances (for
instance, telling him to release an expression whose role
has been fulfilled).
Basic expressions are wrapped in animations that last 1s
and that are composed by two key-frames each: one at
the instant 0s, that records no change in the 3D model,
and one at the instant 1s, that records a shape of the
model that corresponds to the expression in its maximum
intensity. To exhibit different intensities of an expres-
sion, the animation is set at the corresponding instant.
When more than one expression animation is manipu-
lated this way, the VH exhibits a composite expression.
A VH can have only one main expression (though it can
be composed). This expression can be activating – in-
creasing its intensity until the desired value – or active –
already with the intended intensity. Once the VH is told
to show a new expression, this becomes the main expres-
sion and replaces the former which is put in a buffer of
deactivating expressions. More than one expression can
be deactivating for any VH. An expression will remain
deactivating until it reaches zero intensity. If a new ex-
pression is provided before full activation of the current
one is reached, the VH will handle it robustly, buffering
several deactivating expressions while activating one,
even if this happens repeatedly and successively.
Otherwise, and as long as transitions last a fixed amount
of time, the main expression will always reach full acti-
vation at the same time that the previous expression fin-
ishes deactivating.

5. AN EXPERIMENTATION SCENARIO
In order to test the implemented features of the platform
we have built an experimentation scenario representing
an office open space, where several virtual humans, men
and women, go about doing their usual tasks at their
desks until they notice the occurrence of a fire in the of-
fice. At that point they must try to escape the office as
soon as possible. Figure 4 is a snapshot of that experi-
mentation scenario, showing 3 fire spots.
The office environment was modeled on Blender4 and the
furniture is composed by models available from Google
SketchUp5. The fire spots were created using an add-on
from Ogre 3D called Particle System6 and they were
wrapped on transparent bounding boxes, which can be
detected by the vision algorithm.

4 http://www.blender.org/
5 http://sketchup.google.com/
6 http://www.game-cat.com/ogre/pe/ParticleEditor_Beta.zip

Figure 4 - Experimentation scenario

The office is inhabited by VHs of two kinds. The follow-
ing paragraphs describe their particular characteristics
and both the modeling and animation processes.
The creation of the female VH began with face modeling
and with the definition of the six basic expressions iden-
tified by Paul Ekman [Abreu07a]. The face was modeled,
using Blender, as a polygon mesh and the deformations
that correspond to the basic expressions were codified as
poses of this mesh. A pose records a set of displacement
vectors for the vertices of the mesh. When the vertices
are translated by the corresponding displacement vectors
that a given pose specifies, the geometry of the mesh
changes so that the intended expression is exhibited. If
one intends to show an expression just partially, it suf-
fices to reduce the length of the vectors that specify the
translation of each vertex. On the other hand, the visuali-
zation of complex expressions can also be easily
achieved by mixing basic expressions with desired inten-
sities.
A tool was created for obtaining complex expressions by
mixing basic ones, observing the effect in real-time. This
tool was called Faces [Abreu07a]. The user can vary the
intensity of each basic expression intuitively by playing
with scroll buttons, and the results are immediately
shown as a deformation of the face and new expressions
can be saved. This way, libraries of facial expressions
can be created for a model.
The body, cloth, and hair of the female VH were derived
from a model we obtained in Poser7 as a polygon mesh.
The geometries of the meshes (body, cloth, hair, and
face) were adjusted so that they would fit together and
could be merged into a single continuous mesh
[Abreu07a] [Abreu07b].
We prototyped only one animation for our virtual
woman: a walk animation. To produce it in Poser, we
used a very common technique: skeletal animation. We
used the skeleton that was predefined for the chosen
model and we defined its motion by parameterizing a
base movement, relying on a set of features provided by

7 http://www.e-frontier.com/go/poser

17º Encontro Português de Computação Gráfica17º Encontro Português de Computação Gráfica

126

Poser. The skeleton, already imbued with the walk ani-
mation, was imported into Blender and associated to the
mesh. This process involved consecutive adjustments of
the mesh, to eliminate any residual inter-penetrations
among body and clothes and among different parts of the
body. The skeleton and the mesh were then exported to
OGRE formats and went through a series of additional
procedures that we conceived to overcome other obsta-
cles [Abreu07].
The male VH was obtained from aXYZ8 design and its
materials are essentially made up of color maps that give
it much more realistic appearance because they are prop-
erly done and include such details as cloth folds and
wrinkles or beard. The association between mesh and
skeleton proved to be quite perfect and we could easily
create several poses without incurring the issues we had
with the female prototype, which we have previously
produced from scratch. We downloaded the model in
Autodesk 3ds Max9 format and readied it in a trial ver-
sion of this software. We imbued the model with three
animations: an idle animation (to use when the VH has to
stand in the same place), a walk animation, and a run
animation. These animations were derived from motion
capture data we got from www.mocapdata.com. We ob-
tained them in a 3ds Max proprietary format that could
directly be applied to the skeleton of the VH- the biped
format.
In both VH prototypes, the animations are composed by a
set of keyframes that record successive postures of the
skeleton. Each keyframe encodes a set of transformations
that, when applied to the bones, put the skeleton in the
corresponding pose. The keyframes are assigned unique
instants of the animation, normally separated by regular
time intervals. The posture of the skeleton in any anima-
tion is then generated by linear interpolation of the two
closest keyframes, chronologically speaking (one that
precedes it and another that comes after it). Each anima-
tion is created in such a way that it would remain coher-
ent if its last frame was placed in the beginning of the
animation and the rest were shifted. So, the animation
can be repeatedly played with the first frame perfectly fit
to succeed the last one. That is, the animations are cyclic
and can be played unlimitedly.

6. THE AI LAYER
As mentioned previously, to allow the control of each
virtual human to be as flexible as possible, software
agents that can be programmed to incorporate as much
complex and intelligent behaviour as needed are assigned
the responsibility of controlling the actions of the VHs.
So, the AI layer of the IViHumans platform corresponds
to a multiagent system including not only the agents that
directly control the virtual characters, the so-called cog-
nitive agents, but also other types of agents.

8http://www.axyz-design.com/
9http://usa.autodesk.com/adsk/servlet/index?id=5659302&siteI

D=123112

The AI layer is being implemented using the JADE mul-
ti-agent system development platform.
For the moment, three types of agents have been imple-
mented: MAS Porter, Interface Agents and Cognitive
Agents. MAS Porter is a simple kind of agent that acts
as a gateway to the CG layer server. It is this agent that
forwards the requests from all the other agents of the AI
layer to the graphical server and that retransmits back the
received answers.
Interface agents are responsible for mediating between
the cognitive agents and the CG layer server. Since cog-
nitive agents can be conceived using different knowledge
representations models and communication protocols,
interface agents specific to each subtype of cognitive
agent may have to be developed in order to allow them to
interact correctly with the CG layer, as shown in Figure
5.

Figure 5 – AI Layer organization

Service agents, as the name suggests, provide extra ser-
vices to the community. They can be shared by various
cognitive agents, providing common facilities, available
to all, instead of having each agent support its own ver-
sion of the commodity. Service agents can, for instance,
provide a path planner service, from which an agent can
request a sequence of actions to reach a desired location,
or external services providing agents with links to out-
side sources, namely input from a web page.
Other types of agents have been conceived, but have yet
to be implemented. One such type of agent is an intro-
spection agent that obtains information from the cogni-
tive agents about their internal state, for instance their
emotional state or their achievement goals, and adapts the
data for external visualization. Other types of special
agents that help control simulations are demonstrators
(that can conduct online demonstrations of the execution
of a certain task, and are able to modify task’s starting
situation and parameters in order to illustrate alternative
courses of execution) and testers (that can conduct large
sets of demonstrations, in different setups, as a way to
test the correctness or the performance of certain task
procedure).
In the following subsections, we will present some addi-
tional details about the cognitive and interface agents.

Simulação, Animação e Personagens Inteligentes

127

6.1 Cognitive Agents
The IViHumans platform does not impose a specific in-
ternal model that the cognitive agents must conform to.
For instance, they may be conceived as BDI agents, or as
reactive agents, or follow any other agent model that may
seem appropriate to control a virtual character. Almost
the only requirement is that any cognitive agent must first
assure the assistance of an appropriate interface agent,
able to convert his requests to those accepted by the CG
layer server in order to control a specific VH.
This allows the reuse of intelligent agents that might
have been developed previously, with small changes to
allow them to control a VH in the platform, with the help
of a specific interface agent.
Until now, we have implemented two types of cognitive
agents that illustrate different development approaches.
Both were used in the experimentation scenario of figure
4.
One type of cognitive agent that we implemented was
specifically developed for this platform and uses internal
representations of what it senses (the virtual objects he
sees, whose identification and properties he must request
from the CG layer) that are identical to those transmitted
by the graphical layer. The atomic actions it considers
while planning the actions of the VH it controls corre-
spond exactly to the steering behaviours that the graphi-
cal layer server is able to activate. It therefore needs no
specific translation services from an interface agent. It
was conceived as a BDI agent and implemented using
JADEX10. It does not however model emotions, so it is
being used in the experimentation scenario to control the
virtual man, whose animations do not yet include the
capability of expressing facial emotions.
The other type of cognitive agent that we implemented,
called EmoCognitiveAgent, is able to express emotions
and so it was modelled based on the Agent Flow Model
[Morgado08], reusing an already implemented agent de-
veloped in the context of another project, called AutoFo-
cus, and whose internal representations of sensory infor-
mation and simple actions differ significantly from those
proper to the IViHuman CG layer server. Also, while in
the IViHuman platform it is usually assumed that sensors
are passive and that cognitive agents must take the initia-
tive of requesting sensory information when needed, in
the AutoFocus [Neves09] platform where this EmoCog-
nitiveAgent was originally developed the approach was
the opposite: It is the environment that takes the initiative
of sending the agent its present observed state and ex-
pects to receive back, as an answer, the action to be per-
formed by the agent and the emotional expression to dis-
play. Therefore, in the case of the EmoCognitiveAgent
there was a need to develop a dedicated type of interface
agent that could initiate and take control of the commu-
nication with the CG layer server, but also that could
translate the sensory information, the actions to be per-

10 http://jadex.informatik.uni-hamburg.de/

formed and the emotions to be expressed between the
two representations.
In the next subsection, we present a general description
of the type of functions that interface agents can perform.
Subtypes of interface agents are being defined and proto-
type implementations developed, to serve the needs of
particular types of cognitive agents.

6.2 Interface Agents
Interface agents can act as a raw connection between
both layers, but they can also have two additional func-
tions: to provide a sensing/acting cycle that further sepa-
rates the communication aspects of the control of the
VHs from the more complex, and possibly slower, cogni-
tive aspects; and to offer a translation/filtering mecha-
nism between crude data and cognitive agents’ adopted
representations.

Figure 6 – Interface and cognitive agents
internal components

Accordingly, as depicted in Figure 6, interface agents can
be decomposed into four main components:
� Sense: requests sensory information from the GP

layer at a defined rate, saving it into a buffer (the
sensor data buffer). This saves the higher cognitive
levels from having to deal with the sensor particulars
(refresh rate and cycling).

� Sensor data translator/filter: translates raw sensor
information into symbolic equivalents or more ab-
stract and constrained representations. Clustering of
similar data or aggregation of correlated data may be
involved in this translation process. For instance, a
color name can be made to correspond to an interval
of values in the rgb gamma or several distinct ob-
served objects can be merged into a single bigger
object.

� Command translator: translates the higher level
commands used by the cognitive agent into the kind
of commands accepted by the GP layer (and saves
them in the command buffer). The translation can be
achieved by using predefined schemas. Another al-
ternative is to incorporate a planner that produces in
real time the desired low level command sequence.

� Act: reads the next command from the command
buffer and sends it to the GP layer. This feature de-
taches the cognitive agent from the physical details

17º Encontro Português de Computação Gráfica17º Encontro Português de Computação Gráfica

128

such as the number of commands that the GP layer is
capable of processing in a time slot.

As a specific case of command translation, we will de-
scribe the translation of emotional information transmit-
ted by the EmoCognitiveAgents above referred into re-
quest for showing a certain facial expression of the
woman virtual character. The EmoCognitiveAgents fol-
low the Agent Flow Model where emotions are repre-
sented by so called emotional dispositions. These are not
discrete emotional labels but rather are represented as
two-dimensional numerical vectors that continuously
change, derived from the speed and acceleration with
which the agent thinks it is progressing towards its own
goals. Those vectors must then be converted into one of
the six basic emotional facial expressions that the virtual
woman in the platform is able to present, or a composi-
tion of such basic expressions. The approach taken to
perform that conversion was based on the fact that al-
ready in the Agent Flow Model the quadrant of the two-
dimensional space where an emotional disposition vector
lays can be used to assign it a discrete label, that very
roughly represents its main emotional tendency: joy, an-
ger, fear or sadness, for vectors laying respectively in the
first to fourth quadrants.

(a)

(b)

 Figure 7: From internal emotional dispositions to facial
expressions

Following that idea, an emotional disposition vector lay-
ing over the bisector vector of one of the quadrants is
translated into the basic emotion associated to that quad-

rant, and any other emotional disposition is translated
into a composition of two basic emotions, the ones asso-
ciated to the quadrant bisector vectors closer to that emo-
tional disposition vector. The intensities of the two ele-
ments of that composition correspond to the correlation
between the bisector vector and the emotional disposition
vector. In Figure 7, part (a) illustrates the translation of
the emotional disposition vector v into a composition of
sadness, with intensity 0.97, and joy, with intensity 0.26,
and part (b) shows the facial expression corresponding to
that translation.

7. CONCLUSIONS
Our goal is to develop a general graphical visualization
platform for multi-agent system execution and to apply it
to the development of realistic and compelling simulation
environments, and to incorporate results obtained in the
area of emotion modeling. We believe that the platform
IViHumans may become a valuable tool for training and
simulation based design purposes.
Recent developments in the AI layer have enabled us to
build a demo, with embodied agents, that explores the
connection between the two layers. Namely, it allows AI
agents to use the services provided by the GP layer. This
demo illustrates that the VHs are capable of perceiving
the environment and, according to this information, they
are able to decide and react.
In the near future it is important to include more models
and scenarios. Besides the animations the models cur-
rently have, several more would be desirable, to enable
actions like sitting, grasping, and moving the head. Addi-
tionally, an IK solver could be included, either to deviate
existing poses or to create new ones on the fly.

8. REFERENCES
[Abreu08] Ricardo Abreu, Ana Paula Cláudio, Maria

Beatriz Carmo, Luís Moniz, Graça Gaspar. Virtual
Humans in the IViHumans Platform. In Proc. of 3IA
2008, International Conference on Computer Graph-
ics and Artificial Intelligence, in cooperation with Eu-
rographics, pages 157-162, Athens, Greece, May
2008.

[Abreu07a] Ricardo Abreu, Ana Paula Cláudio, Maria
Beatriz Carmo. Humanos Virtuais na Plataforma IVi-
Humans: a Odisseia da Integração de Ferramentas. In
Actas do 15º Encontro Português de Computação
Gráfica, 15º EPCG, pages 217-222, October 2007.

[Abreu07b] Ricardo Abreu, Ana Paula Cláudio, Maria
Beatriz Carmo. Desenvolvimento de Humanos Vir-
tuais para a Plataforma IViHumans. Technical Report
DI-FCUL TR-07-32, Departamento de Informática da
Faculdade de Ciências da Universidade de Lisboa,
November 2007.

[Barella06] A. Barella, C. Carrascosa, and V. J. Botti.
JGOMAS: game-oriented multi-agent system based
on JADE. In Adv. in Comp. Entertainment Techno-
logy. ACM, 2006.

-

Simulação, Animação e Personagens Inteligentes

129

[Buckland05] Mat Buckland. Programming Game AI by
Example. Wordware Game Developer's Library.
Wordware Publishing, 2005.

[Evertsz07] R. Evertsz, F. E. Ritter, S. Russell, and D.
Shepherdson. Modeling rules of engagement in com-
puter-generated forces. In Proc. of the 16th Conf. on
Behavior Representation in Modeling and Simulation,
pages 123-134, 2007.

[Funge99] John Funge, Xiaoyuan Tu, and Demetri Ter-
zopoulos. Cognitive Modeling: Knowledge, Reason-
ing and Planning for Intelligent Characters. In Sig-
graph 1999, Computer Graphics Proceedings, pages
29-38, Los Angeles, 1999. Addison Wesley Long-
man.

[Larman98] Graig Larman. Applying UML and Patterns.
An Introduction to Object-Oriented Analysis and De-
sign. Prentice-Hall, 1998.

[Longhi04] Magalí Longhi, Luciana Nedel, Rosa Viccari,
and Margarete Axt. Especificação e Interpretação de
Gestos Faciais em um Agente Inteligente e Comuni-
cativo. In SBC Symposium on Virtual Reality, São
Paulo, 2004.

[Magerko04] Brian Magerko, John E. Laird, Mazin As-
sanie, Alex Kerfoot, and Devvan Stokes. AI Charac-
ters and Directors for Interactive Computer Games. In
16th Innovative Applications of Artificial Intelligence
Conference, pages 877-883, 2004.

[Morgado07] Luís Morgado and Graça Gaspar. Abstrac-
tion Level Regulation of Cognitive Processing
Through Emotion-Based Attention Mechanisms. In
Lucas Paletta and Erich Rome, editors, WAPCV, vol-
ume 4840 of Lecture Notes in Computer Science,
pages 59-74. Springer, 2007.

[Morgado08] Luís Morgado, Graça Gaspar, Towards
Background Emotion Modeling for Embodied Virtual
Agents, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Mueller and Parsons (eds.), Portu-
gal, pp. 175-182, May 2008

[Neves09] Pedro Neves, Graça Gaspar, Luís Morgado,
AutoFocus Framework Documentation, RT-DITR-
09- 1, January 2009

[Norling01] Emma Norling and Frank E. Ritter. Em-
bodying the JACK Agent Architecture. In Brooks M.,
Corbett D., and Stumptner M., editors, AI 2001: Ad-
vances in Artificial Intelligence, volume 2256 of
LNCS, pages 368-377, 2001.

[Norling04] Emma Norling and Liz Sonenberg. Creating
Interactive Characters with BDI Agents. In Australian
Workshop on Interactive Entertainment, 2004.

[Noser95] Hansrudi Noser, Olivier Renault, Daniel
Thalmann, and Nadia Magnenat Thalmann. Naviga-
tion for Digital Actors based on Synthetic Vision,

Memory, and Learning. Computers and Gra-
phics,19(1):7-19, 1995.

[Perlin96] K. Perlin, A. Goldberg. Improv: A System for
Scripting Interactive Actors in Virtual Worlds. Com-
puter Graphics, 30 (Annual Conference Series): 205-
216, 1996.

[Peters02] C. Peters, C. O Sullivan. Synthetic vision and
memory for autonomous virtual humans. In Computer
Graphics Forum, volume 21, pages 743-752. Black-
well Publishing, November 2002.

[Reynolds99] Craig W. Reynolds. Steering Behaviors for
Autonomous Characters. In Game Developers Con-
ference 1999, 1999.

[Reynolds87] Craig W. Reynolds. Flocks, Herds, and
Schools: A Distributed Behavioral Model. Computer
Graphics, 21(4):25-34, 1987.

[Rickel97] J. Rickel and W. Lewis Johnson. Integrating
Pedagogical Capabilities in a Virtual Environment
Agent. In Proc. of the First Int. Conf. on Autonomous
Agents (Agents'97), pages 30-38, New York, 1997.
ACM Press.

[Schmidt00] Douglas Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2, Patterns for Con-
current and Networked Objects. John Wiley & Sons,
2000.

[Semião06b]Pedro Miguel Semião, Maria Beatriz Carmo,
and Ana Paula Cláudio. Algoritmo de Visão para
Humanos Virtuais. In Actas da 2a Conferência
Nacional em Interacção Pessoa-Máquina, Interacção
2006, pages 133-138, Outubro 2006.

[Semião06a] Pedro Miguel Semião, Maria Beatriz Car-
mo, and Ana Paula Cláudio. Implementing Vision in
the IViHumans Platform. In Ibero-American Sympo-
sium on Computer Graphics, SIACG 2006, pages 56-
59, July 2006.

[Torres03] J. A. Torres, L. P. Nedel, and R. H. Bordini.
Using the BDI Architecture to Produce Autonomous
Characters in Virtual Worlds. In IVA, pages 197-201.
Springer, 2003.

[Torres04] J. A. Torres, L. P. Nedel, and R. H. Bordini.
Autonomous Agents with Multiple Foci of Attention
in Virtual Environments. In Int. Conf. on Computer
Animation and Social Agents, pages 197-201, 2004.

 [Ulicny01] B. Ulicny, D. Thalmann. Crowd Simulation
for Interactive Virtual Environments and VR Training
Systems. In Eurographics Workshop of Computer
Animation and Simulation '01, pages 163{170.
Springer-Verlag, 2001.

[Vosinakis01] Spyros Vosinakis and Themis Panayio-
topoulos. SimHuman: A platform for Real-Time Vir-
tual Agents with Planning Capabilities. In IVA 2001
3rd InternationalWorkshop on Intelligent Virtual
Agents, pages 210-223. SpringerVerlag, 2001.

17º Encontro Português de Computação Gráfica17º Encontro Português de Computação Gráfica

130

