
A Graph-Matching Approach to Sketch-Based Modelling

Filipe Marques Dias Joaquim A. Jorge
Department of Information Systems and Computer Science

INESC-ID/IST/Technical University of Lisbon
R. Alves Redol, 9, 1000-029 Lisboa, Portugal

fil@immi.inesc-id.pt, jorgej@acm.org

Abstract
Automobile designers, when creatively designing a vehicle, have to bind by several shape constraints while also
exploring new concepts. A natural and unhindered modelling environment for a designer to start modelling in is
thus desired. We present our ongoing modelling system, AutoMake, that enables calligraphic modelling of a
simple 3D object that resembles the body shape of a car. Our system provides an innovative way to recognize
3D objects by matching sketches against templates stored in a database, indexed by multiple edge graphs based
on various views. Our approach enables users to specify a bounding box providing perspective and size infor-
mation about model. The user next sketches a model that is matched against a template, using a multidimen-
sional indexing structure.

Keywords
Sketch-based Modelling, Graph Matching.

1. INTRODUCTION
Modelling three-dimensional objects from sketch input
has gained importance in the modelling field recently.
This fact was motivated by the lack of user-centred con-
cerns in modelling systems, preventing users from pour-
ing their creative power directly upon 3D models without
fiddling with bureaucratic modelling interaction concerns.
This hampering of creative use forces the separation of
tasks. In the industry, this translates into modelling ex-
perts working together with designers, causing a need for
comprehensive and delaying communication due to mis-
interpretation and other physical impossibility issues
[Dias03]. In order to solve this, the designer needs to
build an early stage 3D model that can afterwards be re-
fined and worked from by the modeller. Furthermore, in
those early stages of product design, designers sketch
creative drawings to explore ideas and produce rough
sketches of objects that are usually bound to some general
constrained specifications. This led us to the problem of
providing a natural and unhindered modelling environ-
ment for a designer to start modelling in. We propose a
calligraphic approach, based on 3DSketch [Mitani00,
Mitani02, Varlet04], where the user sketches a visible-
edge representation of one of several possible template
models, and is able to manipulate, and edit it by re-
sketching over edges as if correcting their curvature. Our
approach allows the designer to draw with stylus and tab-
let or directly on screen, with a digitizing monitor, in a
similar fashion as sketching on paper. Our approach ap-
plies fewer restrictions to models since unknown informa-
tion is assumed to be specified by the template stored on
the database.

The following section takes a look at other approaches in
this area and points out their difficulties in completely
solving this problem. The next section describes our ap-
proach, explaining how our approach sees the template
drawing as a graph, and retrieves it from a data structure.
The remaining section refers final considerations, ongo-
ing work aspects, and directions to take for future devel-
opment.

2. RELATED WORK
The topic of modelling 3D objects interactively from 2D
calligraphic input is becoming a more common in the
modelling context.

In 1994, IdeS [Branco94] appeared with a modelling
scheme based on reconstruction and gesture recognition,
for use in a mechanical engineering context. The user was
able to draw the solids’ visible edges and issue some
modelling commands by means of gestures, like extru-
sions, cuts, and other operations involving more objects.
Later, this work saw vast improvements, when context-
based modelling aid was introduced in its successor,
GIdeS [Pereira00]. GIdeS improved on the previous work
in many key areas, the main of which: the user interface,
and the addition of context-based functionality to cope
with the ambiguity natural to reconstruction. The latter is
achieved by an ingenious expectation list that presents
several previews of the final result depending on the ap-
plicability of operations. The modelling approach present
in that system reflects the concerns with user interaction,
corresponding to a constructive way of modelling.

SKETCH [Zelesnik96] introduced another gesture-based
interface for approximate 3D modelling, with some added

161

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

support for animation. With this system, the user follows
a few rules to draw specific features of supported primi-
tives. The system then instantiates them in 3D space ap-
propriately. Its modelling methodology is slightly differ-
ent from the previous GIdeS work, as the model is con-
structed from separate objects (parts) that are grouped
together automatically.

Chateau [Igarashi01] is a system that enables the defini-
tion of polygonal shapes and objects, and suggests results
of candidate operations based on hints – a similar ap-
proach to the aforementioned expectation lists. Chateau
highlights entities drawn, to indicate the hints that will be
used for suggesting operations. It is up to the user to tog-
gle the highlight status of the entities, to appropriately
tailor the scope of possible operations to his desire. Sug-
gestions are generated each time entities change highlight
status.

RIBALD [Varley00, Varley04] is a system that is able to
produce a boundary representation model from an imper-
fect line sketch of a manifold polyhedral object. Its ap-
proach is based on interpretation, to create solid objects.
It starts by labelling lines (concave, convex, or occluding)
and junctions; later produces visible geometry, assigning
provisory depth values to vertices; and identifies local
symmetry features. Additionally, the system tries to clas-
sify objects to attempt at speeding the reconstruction us-
ing specific case methods. Objects produced are a variety
of solid models that can be made from non-perfect line
input.

3DSketch [Mitani00, Mitani02, Varley04] reconstructs
and renders particular models based on sketch input using
non-photorealistic rendering techniques maintaining a
sketchy appearance. It works by generating an edge graph
from a set of input sketches, reconstructing a model from
that graph and some assumptions, and finally rendering it.
The system is focused on reconstructing only objects that
have 3 perpendicular faces visible, have a flat based and
back faces, and possess mirror symmetry. Some of these
constraints are necessary for estimating camera parame-
ters due to drawing in perspective. This system also en-
ables de definition of curved edges and surfaces.

These approaches tackle the problem of constructing rela-
tively simple 3D geometry from 2D sketch input, either
using a set of commands the user must issue by means of
a gesture, or by interpreting the model from a starting set
of constraints or existing template. The gesture approach
has the drawback of forcing the user to know the com-
mands to issue, and often these do not correspond to the
most obvious pen movements. This way of creating faces
and surfaces is not appropriate for sketching creative
drawings, as interruption is undesired. On one hand, in-
terpretation provides a higher sketched fidelity for visu-
ally representing objects. On the other hand, templates,
allow restricting the domain of objects to a controllable
scope, simplifying reconstruction, and enabling the addi-
tion of curvature to an otherwise difficult to reconstruct

drawing. However, in Mitani’s 3DSketch approach, this
scope is limited to a single template.

Our system is based on 3DSketch, in a way that the start-
ing point for modelling is well defined by a template, but
allows the existence of a vast number of different tem-
plates. Each templates is stored in a database using edge
graphs produced from several views of it, so it can be
retrieved when a users draws it.

In a context of image-based similarity of models,
[Chen03] calculate several views of objects in a database.
They use these views to do image-based indexing using
Zernike moments and retrieve similar objects. That ap-
proach is based in that if 3D models are similar, then they
have similar views. They use the vertices’ positions of a
dodecahedron around the object for placing a camera
pointing at it, and render the various views. In our ap-
proach we also position a “camera” on a dodecahedron’s
vertices, but with the difference: we build an edge graph
instead of rendering an image. A single template model is
stored in an NBTree data structure [Fonseca04] using
those graphs as indexes.

3. OUR APPROACH
Our system is based on work by [Mitani00, Mitani02,
Varley04] for matching perspective, and the model to
graph. However, that approach takes into account a single
fixed object template. This drastically limits the useful-
ness of a modelling application to cope only with an ob-
ject of a single topology. Among car body shapes, the
number of visible vertices on a template can vary depend-
ing on the type of vehicle, and this led us to consider
more templates in our approach. Our system also has an
increased simplicity dealing with more complex tem-
plates.

3.1 Overview
A template is a simplified linear-edged model that not
only represents the connectivity of vertices on the desired
object, but also specifies its rough desired shape, dimen-
sions and some other constraints. A template can be seen
as a simplified model, with its key characteristic features
specified. Figure 2 shows a template, on the left.

Using our system, the user starts by sketching, in perspec-
tive, a bounding box of the object he wishes to draw. This
simple step has many uses, as mentioned in the next sub-
section.

The user then draws the object he intends to represent, by
sketching its visible edges. The system sees these edges
as edges on a 2D graph, and builds that representation
internally. This graph corresponds to the 3D object as
viewed from the viewpoint it was drawn in.

This graph is then used for building a numerical vector to
query a database, through its adjacency matrix representa-
tion [Fonseca04], as described next. This query will be
executed on a database to retrieve a set of templates that
most resemble the drawn graph. Then the right one is
chosen and the user can take part in that choice.

162

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

From this point onwards the user should be able to edit
and refine the model interactively.

3.1.1 Bounding box
The simple step of drawing a bounding box has many
uses. Its key function is based on the designers’ own
methodology of drawing, making the user confident and
comfortable. Not only will the user be specifying a self
guiding method for more accurately express his intent, he
will also be less prone to fall into disproportion errors,
non-parallel lines, and other unwanted distortions.

As a second advantage, the user will also be revealing
certain aspects of the object that the system may use, in a
posterior phase, to help cope with ambiguity. Such clues
are perspective information and rough proportions. To
determine these clues, the system calculates the intersec-
tions of line segments for bounding box’s edges and their
lengths. For perspective information, the linear extensions
of the bounding box’s edges are used. The intersection of
these enables estimation of vanishing points. With these
points determined, camera parameters are calculated. The
estimation of vanishing points and camera parameters is
similar to that described in [Varley00].

A third use is extracted from this bounding box, as well,
which is the expected size of the graph, useful for know-
ing when the drawing is nearing completion. At a later
phase, the system must build the graph representation and
issue a query with it to a database, to retrieve the template
for posterior modelling. The system must either be explic-
itly issued by the user to do this, or it must estimate the
correct time for it. In order to estimate it the system looks
for a closed graph, without degenerate edges, that roughly
spans the extension visible faces of the bounding box.

3.1.2 Graph Representation
As mentioned, the sketch drawn by the user is stored as
an edge graph representing the 2D projection of the 3D
object for the given view. Each graph node corresponds
to a visible vertex in the object, and each edge to an edge
of an object’s visible face. The list of edges a graph node
has is ordered in a way that edges appear in a clockwise
order, as shown in Figure 1.

The purpose of ordering edges is twofold: to make sure
the graph is traversed simply in a coherent manner, and to
make edges belonging to a same face adjacent in the rep-

resentation. Consequently, the graph needs only a pre-
processing phase to order the edges, enabling all subse-
quent traversals to be made simpler and faster. However,
this also means the graph may require partial re-ordering
if the view is changed substantially, in such a way that
new edges become visible or invisible, or when a new
starting node needs to be calculated for the graph.

3.1.3 Template Indexation and Retrieval
In order to store and retrieve template objects, a numeri-
cal vector needs to be computed. These vectors index
template models, stored along with camera position in-
formation, in a multidimensional indexing structure
(NBTree [Fonseca04]). A vector is composed of the ei-
genvalues for the adjacency matrix representation of the
drawn edge graph, and the retrieval of such vectors, is a
stable problem [Fonseca04]. This means that small varia-
tions in the graph used for searching will retrieve results
in a vicinity of the original graph.

After a retrieving a set of templates, the system has to
choose the best one among them. Our approach allows
something similar to an expectation list, like GIdeS
[Pereira00] or Chateau [Igarashi01], to be used, enabling
the user to take part in more specifically opt for the de-
sired template. Nonetheless, rating possibilities should be
made possible using proportion measures based on the
drawn edge graph, and perspective hints from the bound-
ing box as well. Though, it is possible that the graph
drawn does not correspond to a template stored. In such a
case the template returned is the one that is most closely
matched. At present, our system assumes that only one
best fitting template is returned by the query made to the
indexing structure, and that it topologically resembles the
drawn graph.

3.1.4 Graph Matching
With a candidate graph selected, the system traverses it,
and the graph is built from the user’s drawn input, in the
same order establishing correspondences between verti-
ces, edges, and faces.

To start traversal, a leading vertex must be chosen for the
graph’s starting node. Because we assume the object is
drawn from an “informative” point of view, and that 3

Figure 1 - Order of a node’s edges

Figure 2 - Vertex numbering and correct match be-
tween object graph and template

163

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

faces of the bounding box are visible, we simply chose
the first vertex to be the leftmost lower vertex (vertex 0 in
Figure 2). The system pays more attention to non-dihedral
vertices, as these vertices only have two edges. This gives
higher flexibility to deal with graphs of slightly different
topology, weakening the constraint on both graphs having
the same starting node. This means the starting node must
be on the same face, instead.

Having picked the starting node, the matching traversal
progresses normally, comparing the number of edges for
each non-dihedral node and each face. In the end the di-
hedral nodes are matched. If that match is not possible,
the vertex information on the template prevails, if both
graphs are successfully matched.

We do not reconstruct an object in the same way
3DSketch or RIBALD do. Instead we use the information
stored in the database for specifying the edges. In the
future our system will allow the user to change them on
the next modelling phase.

3.2 Sketched entities
RIBALD [Varley00, Varley04] assumes the object is
drawn from “most informative viewpoint”. In our ap-
proach, this assumption is replaced by a less restrictive
one: a viewpoint that produces an edge graph of the same
topology. This is because the user is able to change view-
ing position after drawing the bounding box. Though, like
them, we also assume no through holes are present, and

that edges form a single graph. Like [Mitani00] for de-
termining perspective, we assume the bounding box is
drawn with 3 perpendicular faces visible. 3DSketch must
assume the back face is planar because no invisible vertex
or edge is represented. However, with our approach that
information comes from the retrieved template object.
The user can also navigate around the object and refine it.

Regarding curvature, our system does not currently sup-
port it. However, we are planning to follow the same
principles described in [Varley04]. As mentioned there,
the information needed to define curvature from a single
view involves specification of symmetry or other con-
straints. That information is accounted for inside our
template. This would mean curve edges would be esti-
mated at the time of matching, similarly to [Mitani00]. In
such cases when curvature estimation is not possible due
to lack of information (a symmetrical edge is not visible)
our approach will revert to the default edge information
saved on the template.

3.3 System Architecture
Our system is organized in modules that wait their turn
before acting upon a stroke drawn by the user, depending
on context. Figure 3 illustrates this organization.

When the user draws a stroke, it goes through a basic
filtering (re-sampling) process to reduce the high number
of points. Drawn strokes are then stored in memory to
allow posterior access to them, for changes to be made.

Next the filtered stroke is passed to an “interpretation”
module assigned by a controller based on context. The
module that processes the first strokes is the one respon-
sible for creating the bounding box. This module inter-
prets strokes as linear edges forming a box. This module
also estimates de camera parameters mentioned earlier.

When the bounding box is completed and perspective
information has been determined, the controller switches
the active stroke interpretation module to the Template
Module, responsible for building the graph.

After a template has been retrieved from the database, the
system can then switch interpretation control over to an-
other module that can interpret strokes differently; for
instance, a module for changing curvature of edges.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented our ongoing calligraphic ob-
ject modelling approach that matches a drawn graph
against a template stored on a database. The user first
draws a bounding box for the model, and then sketched
the object inside it. Matching these allows the generation
of a 3D model that can later be refined.

We showed that the use of the information extracted from
the bounding box at the beginning of modelling can be
useful for the modelling approach, as it is to the user
drawing it and the modelled result. The modelled object
is no longer confined to being of a single “boxy” nature,
and the user sketches his sketch using his learned drawing
techniques.

Figure 3 - Modular system architecture for interpret-
ing a stroke depending on modelling context

164

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

Regarding the ability to deal with several templates –
provided by the use of an indexing structure – we men-
tioned the stability of retrieving vectors computed from
eigenvalues of adjacency matrixes. This encourages us to
continue pursuing our approach, improving its modelling
capabilities.

We should also find rating solutions for selecting graph
similarity based on edge length, dimensions and other
features in order to better sort the possibilities returned by
a query to the indexing structure.

Our approach allows the user to interact with the model
between estimation of camera parameters and definition
of the object. This allows us to cope with “not-so-
informative” points of view, which RIBALD and
3DSketch are unable to model in. This is an advantage.
Having the number of possibilities stored in the database
as the limiting factor, our approach has the potential for
being more robust. However, this still requires substantial
practical testing to confirm.

Another topic to research is the possibility of users speci-
fying invisible edges by using pressure or a lower number
of overlapping strokes. Extra information provided by
hidden-curve specification may override the default be-
haviour of depending on the template, and allows for
more freedom in choosing a point of view to draw the
model – as some invisible faces may be specified.

The curvature in edges is ignored in the current imple-
mentation of our system, but it can be added in a similar
fashion as in 3DSketch.

When the database is filled with more templates, we be-
lieve that we will achieve our goal of allowing a designer
to explore his creativity unhindered, using the calli-
graphic techniques natural to his skills.

5. REFERENCES
[Branco94] Branco, V; Ferreira, F N; Costa, A: ”Towards

an Intuitive 3D Interaction”, Third Luso-German
Computer Graphics Meeting (Conference Proceed-
ings), Coimbra, Portugal, 1994.

[Chen03] Chen, Ding; Tian, Xiao; Shen, Yu; Ouhyoung,
Ming; “On Visual Similarity Based 3D Model Re-
trieval”, In Proc. Eurographics, 2003.

[Dias03] Dias, Filipe; Jorge, Joaquim A. “Task Analysis
and Scenario-Based Design of Calligraphic Inter-
faces”, 12º EPCG, Porto, Portugal, Oct 2003.

[Fonseca04] Manuel J. Fonseca. “Sketch-Based Retrieval
in Large Sets of Drawings”. PhD thesis, IST/UTL,
Lisboa, Portugal, July 2004.

[Igarashi01] Takeo Igarashi and John F. Hughes, "A sug-
gestive interface for 3D drawing", UIST, 173-181,
2001.

[Mitani00] Jun Mitani, Hiromasa Suzuki, Fumihiko Ki-
mura, “3D Sketch: Sketch based Model Reconstruc-
tion and Rendering”, IFIP Workshop Series on Geo-
metric Modeling: Fundamentals and Applications,
IFIP Working Group 5.2, Seventh Workshop GEO-7,
University of Parma, Parma, Italy, October 2-4,
pp.85-112 (2000).

[Mitani02] Jun Mitani , Hiromasa Suzuki , Fumihiko Ki-
mura, “3D sketch: sketch-based model reconstruction
and rendering”, From geometric modeling to shape
modeling, Kluwer Academic Publishers, Norwell,
MA, 2002.

[Pereira00] Pereira, J. P.; Jorge, J. A.; Branco, V. A.;
Ferreira, F. N.; “Towards Calligraphic Interfaces:
Sketching 3D Scenes with Gestures and Context
Icons”, WSCG - International Conference in Central
Europe on Computer Graphics, Visualization and
Computer Vision, Feb. 2000.

[Varley00] P. A. C. Varley, H. Suzuki, J. Mitani, R.R.
Martin: “Interpretation of Single Sketch Input for
Mesh and Solid Models”, International Journal of
Shape Modelling 6(2), 207-241, 2000.

[Varley04] P. A. C. Varley, Y. Takahashi, J. Mitani, H.
Suzuki: “A Two-Stage Approach for Interpreting Line
Drawings of Curved Objects”, EUROGRAPHICS
Workshop on Stekch-Based Interfaces and Modelling
2004, Grenoble, France, 2004.

[Zelesnik96] Zeleznik, Robert C., Kenneth P. Herndon
and John F. Hughes.; “Sketch: An interface for
sketching 3d scenes,” Computer Graphics,
SIGGRAPH 96 Proceedings, August 1996, pp. 163-
170.

165

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

