

BlobMaker: Free form Modelling with
Variational Implicit Surfaces

Bruno Rodrigues de Araújo
IST/ IMMI INESC-ID

Rua Alves Redol, 1000-029 Lisboa
brar@immi.inesc.pt

Joaquim Armando Pires Jorge
Dep. Engª. Informática, IST

Av. Rovisco Pais, 1000 Lisboa
jorgej@acm.org

ABSTRACT
We present BlobMaker, a program for modelling surfaces using variational implicit surfaces. Our approach uses varia-
tional implicit surfaces as a geometrical representation for free-form shapes. We have implemented new modelling op-
erations to support stroke (pen-based) input. To this end, we have built a complete modeller application using varia-
tional implicit surfaces. Users can create and manipulate shapes using sketches on a perspective or parallel view. The
main operations are inflate, which creates 3D forms from a 2D stroke, merge, which creates a 3D shape from two blobs
and oversketch, which allows users to redefine shapes using a single stroke to change their boundaries or to modify a
surface by an implicit extrusion. We compare these techniques with those of other approaches published. Finally, we
describe their implementation in BlobMaker. We have provided additional features such as copying, picking and drag-
ging to offer a natural user interface suitable free-form modelling.

Keywords
Stroke based modelling application, variational implicit surfaces

1. INTRODUCTION
Modelling applications have become essential tools in the
animation and manufacturing industries and now play a
crucial role in the design workflow. However, CAD in-
terfaces have not evolved much past the WIMP (Win-
dows, Icons, Mouse and Pointing) to match the spectacu-
lar increase in modelling power of these systems. There-
fore, CAD systems have become very complex, needing
high technical knowledge and long learning periods.
These problems have made them difficult to use for tradi-
tional designers. While WIMP interfaces represent a con-
siderable improvement over command line applications,
menu-based interactions do not map naturally to pen-
and-pencil drawing modes. Analysing the actual com-
mand usage in a representative commercial CAD applica-
tion, we can verify that 75% of user time is spent in menu
navigation, picking and selection instead of model input
[Sanchis02]. While this approach was acceptable for in-
put via mouse and keyboard the emergence of pen-based
systems mandates adopting better input methods.
Although pen-based input devices are supported by many
modern applications, they are not used as well as they
could for 3D modelling in contrast to 2D sketching pro-
grams. In the later case paper and pencil metaphor can be
used to leverage both ergonomic and human-learned
skills offering advantages in drawing speed, and rich
expression afforded by pen movements and pressure.
Applications such as Corel Painter [Corel] constitute a
good example of this. However, conventional 3D model-
ling applications restrict pen-based input to entering
point data. Examples of this are 3D Studio

Max [3DMax], Lighwave 3D [Ligthwave3D], Maya
[Maya, SoftImage] and CAD systems such as Dassault
Systems’ Catia [CATIA]. Even though many of these
applications allow some type of free-form modelling,
they require detailed knowledge about the geometric rep-
resentations such as NURBS [Farin99] and the intricacies
of their mathematical formulations, which makes them
difficult to use by traditional designers.
In the next section, we survey previous work in free-
form modelling interfaces. Then we present a description
of variational implicit surfaces. In sections four and five,
we describe in detail our modelling operations based in
sketch input. Then we present an implementation of our
techniques as embodied in BlobMaker. Finally, we draw
conclusions and highlight possible improvements for
future work.

2. GESTURE-BASED MODELLING INTERFACES
Ivan Sutherland’s SketchPad [Sutherland63] was the first
graphical user interface to allow precise drawing using a
calligraphic interface, modelling hierarchy and con-
straints. In the 1970’s, several research works followed
up on these ideas through sketch-based recognition and
tablet systems [Negroponte73, Herot76].
In the early 1990’s, the first generation of pen computer
fostered the emergence of new interfaces based on sketch
input. The SKETCH [Zeleznik96] and SKETCH-N-
MAKE [Bloomenthal98] systems, combined gesture and
geometric recognition to allow creating and modifying
3D models. SKETCH defines a specific gesture grammar
language to allow the creation of simple 3D primitives in

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

17

an orthogonal view; for example, three concurrent lines
define a cube. This gesture language allows the user to
specify CSG operations and to define quasi-free form
shapes (such as ducts) through extrusion.
 Several works have introduced gestures for constructing
complex 3D models based on line reconstruction algo-
rithms. For example, GIDES [Pereira00] allows users to
sketch on an orthogonal view, which combines with a
suggestive interface to reduce the command set. The sys-
tem provides a language similar to SKETCH to create
complex models. It uses specific commands to allow
constrained positioning between elements and construc-
tion lines to define specific locations, to constrain the
output of the recognizer and allow rigorous drawing with
imprecise sketches. CHATEAU [Igarashi01] provides
another good example of a suggestive interface. Like
GIDES and SKETCH COSMO [Michalik02] it uses a
gesture language to specify extrusions. While these sys-
tems offer support for reliable extrusions, we need more
elaborate functions to support “true” free-form model-
ling.
REFER[Contero01] and SKETCHUP [Sketchup3D] pro-
vide other examples of modelling using line drawings for
architectural applications. Both systems feature recogni-
tion and reconstruction of models from straight lines.
One serious problem with line drawings is the Necker
ambiguity [Necker32] characteristic of 3D wire-frame
models. The SKETCHUP system, offers new operations
for interaction such as face and edge dragging that are
much simpler than conventional CSG methods.
The different approaches presented here offer good solu-
tions for the construction of complex models but are lim-
ited to extrusions or their CSG combinations, which offer
a poor substitute for free-form shapes. Thus, they are
unable to model “soft” forms such as a human head or
biological shapes (animals) or surfaces on a car body.

3. SKETCH BASED FREE FORM MODELLING
Brian Wyvill [Wyvill98] introduced the BlobTree, which
is an implicit surface model based on skeleton primitives
to describe soft objects. One prototype system described
in this work uses sketches for defining skeleton primi-
tives. Skeletons define blobs using a specific language,
for example, a line defines a cylinder and a point a
sphere. The interesting point of BlobTree, is the combi-
nation of implicit surfaces with CSG operations, present-
ing a mixture between line-based interaction and a “real”
free form approach. However, this method is still too
similar in both its virtues and limitations to the gesture-
based systems described above.
A more familiar approach for free form editing is to
sketch in 2D the contours of 3D shapes. This is more
natural than using extrusions. The first work using con-
tours for free-form modelling was the Teddy system [Iga-
rashi99]. Teddy presents a very simple interface that
combines extrusions with contour-based shape creation.
The system offers several operations to modify the start-

ing shape, which is normally a blob created by inflation
of a 2D contour. This system had a great impact in the
Computer Graphics community due to its simplicity. It
provides simple primitives to extrude, bend, cut or
smooth shapes. Geometric representations in Teddy use a
triangulated mesh that can be modified through stroke
input. Sketches are projected on the mesh according to
the current view. However, the system is only able to
construct one object and does not support hierarchy.
In recent years, several projects have followed the steps
of Igarashi. One of the most interesting is Kar-
penko’s [Karpenko02], which was the first to adopt a
mathematical implicit representation. Like Igarashi, Kar-
penko presents a simple interface for free form model-
ling. Notably, she models geometrical objects through
variational implicit surfaces [Turk99] instead of polygo-
nal meshes. We present these in detail in the next section.
This application organizes the modelling scene in a tree
hierarchy, allowing constrained move operations between
tree nodes and creating distinct objects in the same scene.
The main operations offered by the interface are merge,
which allows combining two blobs and oversketch for
redefining the boundary of a blob. Karpenko’s modeller
presents simple navigation facilities to allow users to
rotate and translate objects. Teddy did not support these
features since the whole scene contains a single object.
Another interesting aspect is the use of guidance strokes
to help the merging process. However, guidance strokes
are a symptom that the merging operation could be im-
proved and further simplified towards a more natural
interaction.

4. VARIATIONAL IMPLICIT SURFACES
Variational implicit surfaces (VIS) were introduced by
Turk [Turk99, Turk01, Turk02]. VIS are smooth and
respect a set of constraint points. VIS are always closed
and can have arbitrary topology. They are implicitly
defined by a mathematical function f, where the surface
is the set of 3D points which verify f(X)=0. Their main
difference to other implicit models such as meta-balls
[Nishimura85] and BlobTree, lies in that the surface has
to obey constraint points specified by the user. VIS are
not algebraic surfaces and are based in a problem similar
to the thin-plate interpolation. This approach interpolates
a cloud of points. To find the implicit function that re-
spects all the constraint points with a minimum of curva-
ture, f(x) is defined such as to minimize (1):

 dXXfXfXfE yyxyxx∫
Ω

++=)()(2)(""" (1)

There are several approaches to solve this problem. Turk
decomposes f(x) into a linear combination of radial basis
functions φ centred on the constraints, using φ(X) =|X|3.
The interpolated function, which satisfies the condition
presented in (1) and defines the variational implicit sur-
face, is presented in (2):

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

18

)()()(
1

XPcXdXf j

n

j
j +−= ∑

=

φ (2)

Where cj are the locations of the constraints on the sur-
face, dj are the weight of each constraint, P(X) is a one-
degree polynomial which can be omitted if the number of
constraints is greater than eight [TURK01].
For the calculation of the weights dj, we know the value
hj of the height field for each constraint such as f(cj)= hj.
Based on Equation (2), the following linear system is
defined in (3):
 HDM =. (3)

 In (3), D= [dj] are the unknowns, H= [hj] are the height
field values and M, a matrix defined as a function of φ, P
and cj. While the linear system can be solved using LU
decomposition in O (k3) steps where k is the number of
constraints, iterative methods can solve large-scale sys-
tems in O (k2).
To simplify creating VIS, Turk proposes a method based
on four different types of constraints:
• Boundary constraints cj that are placed in the bound-
ary of the surface verifying f(cj)=hj with hj=0
• Normal constraints cj that are located outside the
surface at a tiny distance of the boundary using the nor-
mal of the surface. These constraints verify f(cj)= hj with
hj=1
• Interior constraints cj that are located arbitrary inside
the surface verifying f(cj)= hj with hj<0
• Exterior constraints cj that are located arbitrary out-
side the surface verifying f(cj)= hj with hj≥1
It is possible to create variational implicit surfaces by
specifying only boundary and normal constraints as
shown in Figure 1. We can also use this principle for
converting polygonal meshes into VIS [Yngve02].
The flexibility of this representation allows modelling
complex and smooth models with arbitrary topology. We
use it in our modeller, since it provides a compact and
mathematically simple means of describing a surface
using constraints, weights and a first order polynomial. It
affords flexibility for the computation of normal and cur-
vature information, while ensuring C2 continuity.

5. FROM 2D TO 3D: INFLATION
In this section, we propose our method for the creation of
3D VIS based on user 2D stroke input, using an inflation
process similar to [Karpenko02]. We present an overview
of the algorithm, followed by the description of the rele-
vant steps.
The inflation process takes a set of 2D points input by the
user (stroke) and creates a 3D object matching the con-
tour drawn by the user. The following list presents the
different steps of the process:
• Filtering the 2D stroke : this step receives the input
set of 2D points from the user and simplifies it
• Verification of filtered stroke : this step rejects incor-
rect parts of the stroke such as self-intersections
• Skeletonization of the 2D stroke: this step analyzes
the entire stroke and creates a 2D skeleton with all the
relevant topological information. The skeleton allows the
reconstruction of the input stroke and the information
about the thinness of the enclosed region in order to per-
form depth inflation
• Mapping the 2D stroke into a 3D contour: this step
transforms the 2D stroke and skeleton information to a
3D virtual plane according to the actual definition of
viewport and view parameters, computing both normal
and depth information
• Creation of 3D implicit surface and its visualization:
this step creates a VIS, representing the blob, which
matches the contour’s skeleton. The polygonization proc-
ess creates a triangulated mesh together with surface
normals at each vertex, which is suitable for rendering

5.1 Main contributions of our work
In the previous section, we have presented two different
methods from Igarashi and Karpenko to create 3D sur-
faces from 2D strokes. Both approaches have advantages
and limitations. In Teddy, the inflation process is ori-
ented to the triangulated mesh. This approach restricts the
possible operations on objects to local mesh modifica-
tions. This makes it difficult to merge two meshes. Fur-
thermore, triangular meshes make it difficult to model
arbitrarily smooth shapes. To overcome this limitation,
Igarashi introduced a smoothing operator that applies
local subdivision algorithms to the mesh. Even though
we use similar methods for skeletonization, Teddy takes
a different approach to inflation. While both Igarashi and
Karpenko follow the same approach for filtering and
mapping the 2D stroke, which is dependent on screen
resolution. They reject consecutive 2D points closer than
a specified number (15) of pixels. This can result in im-
portant details being dropped from the resulting surface.
While our approach to inflation is similar to Karpenko’s
her method might present incorrect results due to her
screen-dependent filtering method and incorrect tech-
nique for depth classification. Her approach only defines
two constraints on the VIS to define shape thickness.
This brings about several limitations. One of them is that
the merging operator needs a re-sampling of the triangu-

Figure 1: Example of boundary (o) and normal
(+) constraints in variational implicit surfaces

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

19

lated mesh. This increases the number of constraints on
the VIS dramatically, thus incurring in additional compu-
tational costs for matrix solving. Another consequence is
that the merge between a big blob and a very small one
will be impossible without loss of detail. In our approach,
all modelling operators use only the mathematic repre-
sentation and skeleton information. The next sections
describe in more detail our inflation process.

5.2 Filtering the input stroke
Since the sampling of stroke points from an electronic
digitizer depends of the interrupt processing capability of
the operating system, points on an input stroke are not
evenly spaced. For example, some points can be repeated
or their number can be unnecessarily large depending on
the speed at which the stroke was drawn.
As discussed before, Igarashi and Karpenko folloz *pdf
w an approach for stroke filtering which is dependent on
screen resolution. In our approach, we implement a
greedy algorithm similar to Douglas-Peucker filter-
ing [Douglas73].
Figure 2 presents an input stroke and the result (red
points) of the filtering; the input stroke on the left is com-
pound by 2081 points and reduces to 92 points after the
filtering step.
Finally, we analyze the filtered stroke, rejecting self-
intersection parts. This step is necessary because the
boundary of a shape cannot become self-intersecting
when we project the stroke on a 3D virtual plane. In our
approach, we retain the first non-intersecting loop found
in the filtered stroke and drop the rest of the stroke as
shown in Figure 2.

5.3 Skeletonization of 2D Strokes
The skeletonization step transforms the filtered stroke to
reveal all the information of the stroke. We adopt the
Chordal Axis Transform presented in [Prasad97] to ac-
complish this. This step applies a Constrained Delaunay
Triangulation, using as constraints the edges of the fil-
tered stroke. We generate three kinds of connectivity
information for the triangulated polygon as illustrated in
Figure 3, where triangles fall into one of three categories:

• Terminal Triangle: triangles with one neighbour
adjacent in the polygon (small outside triangles shown in
green)
• Seed Triangles: two neighbours are adjacent to these
triangles in the polygon (depicted in blue)
• Joint Triangles: triangles with three neighbours in
the polygon (painted in red)
Then we transform the triangulated polygon into a skele-
ton where terminal triangles terminate limbs and joint
triangles are connections in the hierarchy. Figure 4 pre-
sents an example of skeleton of a stroke that is similar to
a hand. We can verify that the skeleton respects the
shape; the red edges result from joint triangles. For each
node in the skeleton, we save the distance between it and
the border as depth information. The skeletonization pro-
cedure may generate some irrelevant branches (these
appear in yellow in the figure). Since these are meaning-
less for the topology of the shape, they are rejected by a
post-processing step of the skeletonization process.
Our process is similar to that followed by Igarashi except
for the last step, where he derives a 3D mesh from the 2D
triangulation, while we create a VIS from the skeleton
information.

5.4 Projecting 2D points onto 3D virtual plane
At the end of the 2D analysis, the inflation proceeds with
a mapping step. The goal of which is to map all 2D
points into 3D scene coordinates. Since 3D Blobs are
conceptually drawn on a 3D virtual plane, which is paral-
lel to the planar drawing surface and their visualization
uses a perspective projection, we need to apply the “in-

Figure 2: Example of filtering step, centre and
right figures show self-intersecting strokes.

Figure 3: Chordal Axis Transform for skeletoniza-
tion based on Constrained Delaunay Triangulation

Figure 4: Example skeletonization of a
stroke with depth information

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

20

verse projection” defined by the virtual camera to each
2D point in the filtered stroke. We map the skeleton onto
the 3D virtual plane using the view camera projection
and update depth information accordingly.
Figure 5 shows how we perform this mapping. As a re-
sult of this step, we obtain a 3D outline that defines the
boundary of the blob and a mapped 3D skeleton in scene
coordinates. This mapping step yields all information
required for the implicit surface representation.

5.5 Creating Variational Implicit Surfaces
For the creation of the implicit representation, we use the
variational implicit surface model, based on boundary
and normal constraints as presented by Turk. Our ap-
proach uses the 3D mapped stroke as boundary con-
straints. Other boundary constraints use the depth infor-
mation from the skeleton as shown in Figure 6 both to
the left and to the right of the mapped stroke. The look-at
vector of the 3D virtual camera defines the left and right
direction. For each boundary constraint, we create a nor-
mal constraint by shifting the boundary by 0.05 in the
normal direction.
After defining all constraint points and types, we have a
linear system as presented in section 3. This is then
solved, using a matrix resolution method such as LU fac-
torization, to obtain a complete definition of a VIS. At
the end of the inflation process, the implicit function is
polygonized for visualization as shown in Figure 6.

6. MANIPULATION OF IMPLICIT SURFACES
This section describes possible modification operators on
implicit surfaces for use in a modelling application. First,
we present an overview of possible operators and discuss
the limitations of implicit representation. The following
sections describe solutions for the implementation of the
merging and oversketching operators, which have been
implemented in our demonstrator.

6.1 Operations between Implicit Surfaces
Our approach considers that the natural way of emulating
paper and paper drawings is through oversketching.
Similarly to Karpenko, we define two main operators,
oversketching and merging. When we analyze the way in
which designers specify free form surfaces, we verify
easily that the main action to redefine the shape is by
sketching over the boundary of the shape repeatedly until

the desired form is obtained. For this reason, our main
modification operator is based on the oversketching con-
cept.
The merge operator is an useful extended tool because it
allows designers to work on partially defined shapes,
which can later be combined to form a unique 3D shape.
While the merge operator seems superficially similar to
the traditional Boolean union, it actually has different
semantics, since it uses the notion of blending blobs. The
result remains smooth, thus guaranteeing C2 continuity to
the shape. Of course, this approach brings about some
limitations, since sharp edges cannot be created through
this method. However, we have to live with such a limi-
tation since the mathematical representation of implicit
surfaces is C2 continuous by definition, which makes it
impossible to represent non-continuous features such as
sharp edges.
Mathematically, it is simple to define a model supporting
Boolean operations using implicit surfaces. However, the
C2 continuity of the VIS model invalidates this issue. The
following list presents the most common Boolean opera-
tions using implicit surfaces:
Precondition: F1 and F2 are mathematical functions that
define an implicit surface
• Union :F1 ∪ F2 = min (F1, F2)
• Intersection :F1 ∩ F2 = max (F1, F2)
• Difference :F1 / F2 = max (F1 , -F2)
We can verify that the major obstacle for this representa-
tion is the use of non-continuous mathematical functions,
such as the maximum and minimum. It is possible to sup-
port these operators through hybrid representations as
Wyvill did in BlobTree [Wyvill99, Galin99]. However,
these operations are not familiar for designers that follow
a paper and pencil metaphor.

6.2 Using Skeleton Information
The key issue of our approach is to use the skeleton in-
formation generated during the inflation process of a
blob. We extend this to allow manipulation of blobs. The
main advantage is to forgo the use of visualization
(mesh) representation for the implementation of the op-
erators, which is one of the main shortcomings in [Kar-
penko02]. As seen in the previous section, the merge
operator could be specified using purely mathematical

Figure 6: A skeleton and its corresponding poly-
gonized implicit surface

Figure 5: Projecting 2D stroke into 3D virtual
plane based on virtual camera definition

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

21

means. However, this solution requires complete knowl-
edge of all mathematical information such as the location
of the critical points of the function. This requires us to
identify the local, global minimum, maximum or saddle
points of the implicit function. [Stander97] presents an
approach for this. Using Morse Theory, he is able to ex-
tract all the topological information of the shape from the
mathematic definition. However, this is both very diffi-
cult to implement and costly in computational processing
time to guarantee that all the information has been ex-
tracted. This approach is not suitable for a real time mod-
eller.
Karpenko presents a suitable solution, which combines
the expressiveness of a mathematical formulation of sur-
faces with the flexibility of the triangulated mesh for
visualization. However, this solution is only suitable for
few steps. Repeated application of merge or oversketch-
ing operating, adds many unnecessary constraint points
due to this resampling. This may easily scale to thou-
sands of constraints after a few operations. Generating a
VIS anew from these constraints becomes impractical
with current hardware. Thus, this approach is not appro-
priate for interaction at real time rates. Another limitation
is that this resampling automatically erases all features of
the shape smaller than the sampling interval.
To overcome the limitation identified in her approach, we
base our solution on the surface skeleton, its associated
depth information and its VIS. Since skeletons can be
merged or modified without using the mesh information
and the VIS is recreated at each step, this guarantees that
small features will be preserved by the modification op-
erators without our needing to use the triangulated mesh.
While the merge operator blends two skeletons, over-
sketching modifies or appends new data to the original
skeleton. The interesting feature of this approach is that
all strokes input for oversketching define a new skeleton,
which we then merge to the original. After merging
strokes, we drop all points that lie inside the merged
stroke.
The following sections present a detailed description of
the algorithms for merging and oversketching. After this
step, we generate all the constraints for the new shape.
These are enough to define all the characteristics of each
shape. Then we perform a step to know which constraints
will remain valid after merging. This is presented in Fig-

ure 8. Using inflation, we create a new blob. The skele-
tons of both the new and old blobs are merged. The re-
sulting skeleton is then attached to the result blob.

6.3 Merging blobs
For the merging operator, let us consider the variational
implicit functions to merge, where FA and skeleton SA
define the first blob and FB, SB the second one. Both use
constraint points inferred from their respective skeletons.
While the results obtained by our implementation are
visually similar to Karpenko’s, we can handle situations
not supported by her method. However, the resulting
mathematical function of the merged blob uses less con-
straints points, then interactivity is better for modelling
application since the cost of computation for implicit
calculation is smaller. The main problem with Kar-
penko’s approach lies in that it uses only two constraints
to define depth during inflation. This requires sampling
the triangular mesh to perform the merge, which limits
the guarantee of fidelity of finer features of both blobs in
the resulting shape. Moreover, her sampling method uses
the vertices resulting from a Marching Cubes polygoni-
zation [Lorensen87, Bloomenthal94], which depends on
the size of the subdivision and yields too many con-
straints on the merged shape. While our approach uses
more constraints to define the object in the inflation proc-
ess, the merged blob has fewer constraints. Figure 9

Figure 9: Example of merging operations
with resulting skeleton and meshes

Figure 7: Example of skeleton resulting
from several merge operations

Construction of constraint set for merging
(FA, SA, FB, SB) {
 Initialize the result set to empty
 For each CA (boundary constraint) of FA {
 if (FB(CA)>= 0)
 then CA and the respective normal is
 inserted in the result set
 else CA and the respective normal
 constraints are rejected
 }
 For each CB (boundary constraint) of FB {
 if (FA(CB)>= 0)
 then CB and the respective normal is
 inserted in the result set
 else CB and the respective normal
 constraints are rejected
 }
 return the result set
}

Figure 8: Pseudo-code for merging two blobs

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

22

shows some examples of the merging operation present-
ing in both shaded and wire frame views.

6.4 Oversketching blobs
Another possibility is to create extrusions. These are the
main modelling operator in Teddy. Two input strokes
define the extrusion, the first defines the base area af-
fected by the extrusion. The second one, defines the pro-
file of the extrusion. The implementation of this solution
presented some limitations in Teddy, corrected recently
by [Wang03]. We will show that using the skeleton in-
formation for the profile stroke of the extrusion and its
area for the base allows specifying the extrusion with
only one stroke. Our approach applies skeletonization to
the oversketching stroke. The volume defined by the
skeleton specifies the base of the extrusion. This infor-
mation helps to distinguish a boundary redefinition from
an extrusion. The oversketching operation involves six
different steps. First, we apply stroke filtering, followed
by 2D skeletonization as in the inflation process. Then
we project the stroke and its 2D skeleton on a plane cut-
ting the surface perpendicularly to the look-at vector of
the 3D virtual camera. Next, we identify and reject all
constraints of the blob located inside the oversketching
area. After, we insert the new constraints defined by the
oversketching skeleton. Finally, we use the resulting
skeleton to create the new blob.

6.4.1 Projecting oversketch strokes
After filtering the input stroke and creating its skeleton,
2D input points need to be transformed to 3D coordi-
nates. This process is different from the initial step of the

inflation, since the stroke must be projected on the con-
tour plane of the target surface, as shown in Figure 11.
The 3D virtual plane is defined using the first and last
point of the input stroke. Both points are projected using
a function, which computes the intersection between a
ray defined using the 2D endpoint coordinate and the
position of the 3D virtual camera. The 2D coordinates in
the viewport represent the position of the stroke endpoint
in the near plane of the camera. We calculate the 3D co-
ordinates of the near plane of the camera according to the
size of windows, the fov of the camera and the distance
of the near plane to the camera position.
The ray intersections yield the start and end points of the
stroke as projected in the surface on the contour plane.
We define the 3D contour plane by the middle point be-
tween these two and it is perpendicular to the camera
look-at vector. We then project the points of the filtered
stroke and its skeleton onto this plane. Another possible
approach is to define the 3D plane normal to the surface.
We tried this approach and computed this plane, using a
vector perpendicular to the true normal of the surface at
the middle point. This solution is used by [Wang03] as a
correction to the Teddy system for the projection of the
profile stroke of the extrusion. However, this can lead to
incorrect results as users conceptually draw on a plane
perpendicular to the view direction.

6.4.2 Constructing the oversketched blob
For the construction of the new blob, we have to define
its corresponding set of constraints. First, we start by
verifying each constraint of the original blob, by check-
ing to see if they are inside the bounding box of the pro-

Figure 10: Example of oversketching operation
Figure 12: Example of boundary redefini-

tion with oversketching

Figure 11: Mapping 2D stroke for oversketching
Figure 13: Example of implicit extrusion using over-

sketching

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

23

jected skeleton. We reject constraints located inside the
bounding box. All others will remain in the resulting
blob. This test is very simple since we only need to verify
whether a given 3D point is inside an oriented bounding
box.
The skeleton of the oversketching stroke generates new
constraints for the blob, following a different strategy
depending on whether we are in creating an extrusion or
redefining the boundary of a shape. In case of boundary
redefinition, the stroke does not generate any new depth
constraints. Only boundary constraints are defined from
the input stroke. The extrusion operation creates bound-
ary constraints from both the stroke and the original
skeleton. For each boundary constraint, we create a nor-
mal constraint using the normal vector of the projected
stroke in the 3D virtual plane. This is then combined with
the real normal to the surface computed at the first and
last point of stroke as projected over the surface.
Figures 12 and 13 show two examples of oversketching;
the first presents a boundary redefinition and the second
an extrusion.
We can verify that the skeleton associated the boundary
redefinition does not generate any constraints in depth
(red points near black branch of the skeleton in the fig-
ures). However, in the case of extrusion, we insert addi-
tional constraints to define the depth. The case for this
distinction is simple to state. If the depth constraints for
extrusion were to disappear, the depth of the blob in the
oversketched volume would only be influenced by the
depth constraints of the original blob. This would be in-
correct, because the result of oversketching a shape
boundary may yield different topology features, thus de-
fining an implied extrusion as seen in Figure 13.
We assess the need for additional constraints for extru-
sion operator by looking at the characteristics of the input
stroke. We measure the importance of the stroke by com-
puting the ratio of the distance between its first and last
points to the height of the volume it influences. In Fig-
ure 12, the base of the stroke is larger than the length of
its skeleton; the resulting operation will be a boundary
redefinition. On the other hand, in Figure 13, since the
base is smaller than its length, the operation will be an
extrusion.

Finally, we define the constraints for the oversketched
blob. Then we generate the new blob and attach the
merged skeleton to it.

7. BLOBMAKER
BlobMaker is an application for free form modelling
based on variational implicit surfaces. It allows the user
to create 3D blobs using the inflation process described
in section 5. The modeller allows the user to modify
shapes using the merging and oversketching operators
presented in section 6. Visualization and rendering of
implicit surfaces are based on OpenGL API using trian-
gular meshes.
 Our approach provides different tools to support creating
and editing blobs. Users can translate, rotate and copy
objects, with support for unlimited Undo and Redo. It is
possible to save and retrieve Blobs to/from STL
[3DSystems88] and VRML [VRML97] formats. Users
can visualize Blobs in several different modes such as
Wireframe, Polygonal with Gouraud shading using
OpenGL, or more faithful rendering modes such as Ray
Tracing and Phong Shading. Users can also control mesh
quality either through our approach or through Marching
Tetrahedra [Bloomenthal94].

7.1 Interface
The BlobMaker interface divides the screen into two ar-
eas as shown in Figure 14. The first area, on the top of
the window, is a toolbar that allows the user to select the
following tools: drawing, merging, oversketching, trans-
lation, rotation, copy, undo/redo functionality and wire-
frame rendering mode. The second area represents the
working space where the user can draw, manipulate and
visualize the 3D free form shapes. The working space
offers a perspective view of the modelling scene. The
virtual camera defines the user point of view, which is
centred in the zero-plane XY. To ease the depth percep-
tion and positioning relationship between blobs, the zero-
plane XZ is drawn as the ground of the scene in a rose
colour. This virtual camera is used for the projection of
the 2D viewport based input inserted by the user.

Figure 15: Stroke types in BlobMaker Figure 14: BlobMaker interface

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

24

7.2 Stroke-based interaction
Figure 15 presents the different kinds of user input possi-
ble during interaction with the modeller. All operations
are selected using the toolbar area, which removes any
ambiguity from stroke semantics; i.e. the distinction be-
tween a merging, inflation or oversketch stroke is made
explicitly through menu selection.
When the user selects the drawing operation, subsequent
2D input will be interpreted as the boundary of a 3D
shape. Of course, some strokes are invalid in this context,
such as straight lines. Input strokes can be closed or
open. However, open curves must converge to a well-
defined closed boundary. To detect this feature, begin
and end segments of an input stroke must define inter-
secting straight lines that “close” the stroke. For the
merge operation, the user needs to draw an arbitrary
curve, linking two distinct blobs. The system uses begin
and end points to pick each blob. Similarly, we use end-
point to picking and select objects as targets for over-
sketching, translation, rotation and copy operations.
Since points are specified on a planar viewport, depth
positioning can be ambiguous. Our modeller solves this
problem using the “ground” visualization. The user can
select a blob by its shadow, which is the planar projec-
tion of the blob onto the ground. This feature makes it
easy to do relative positioning of shapes and offers two
different ways to select a blob: either by clicking on the
rendered projection of the blob or on its shadow.

7.3 Improving interaction using stroke analysis
By using skeleton and stroke information, we can im-
prove interactions and avoid using the toolbar. We have
found from experience that users prefer to draw, since
this matches best the affordances of the stylus. Conse-
quently, they sometimes forget to select the “right” com-
mand beforehand. This is the most common source of
errors when using the interface. We have implemented a
second mode in the application where the toolbar only
offers undo/redo functionality and switching between
wireframe and shaded views.
In this mode, some strokes are ambiguous, for example
oversketching gestures can sometimes initiate inflation.
To solve this, we use dynamic expectation lists as intro-

duced by [Pereira00] to present all possible interpreta-
tions of an ambiguous stroke to the user as exemplified
by Figure 16. If the stroke is not ambiguous, the opera-
tion takes effect immediately. Thus, simple actions can
yield different semantics. A click on a blob selects that
object. Subsequent clicks create copies of the selected
object. In addition, a straight line or an arc joining two
blobs define a merge operation. A stroke whose end-
points lie on the same blob defines an oversketch opera-
tion on that blob. A closed stroke or a similar curve cre-
ates a new shape. In this manner, all the main interactions
can be sketch-based. This mechanism can also avoid use-
less undo/redo commands due to erroneous use of but-
tons in the toolbar.

8. CONCLUSIONS AND FUTURE WORK
The proposed interface and operations are suitable for a
complete free form modelling system. We feel that our
sketch-based approach provides a natural interface for
traditional designers not familiar with either geometrical
constraints or the internal representation details of
NURBS. In this work, variational implicit surfaces limit
free forms to closed surfaces and smooth shapes. In the
future, we would like to extend our system using hierar-
chical CSG combinations of VIS and support discontinu-
ous representations using cuts as in Teddy. Another in-
teresting development is to add primitives for NURBS
creation and manipulation, since these are the more com-
monly used geometric representation in CAD and
manufacturing. However, this is a non-trivial task, espe-
cially if we are to derive compact constrained representa-
tions from free-form primitives. Following Igarashi, we
would also like to add non-photorrealistic rendering of
objects to better match the pencil-and-paper sketching
metaphor. Work is already underway on this front.
In this paper, we have presented a stroke based modeller
application for 3D free form modelling using variational
implicit surfaces. The different operations proposed for
free-form manipulation have shown oversketching to be
a powerful and suitable tool for 3D modelling. Informal
evaluations show great promise for this tool as being
more adequate for traditional designers, who are familiar
to the pencil and paper metaphor. This too, should be
assessed by extensive usability evaluations in the future.

ACKNOWLEDGMENTS
This work was supported in part by European Commis-
sion through grant # IST-2000-28169 (SmartSketches)
and by the Portuguese Science Foundation under grant
POSI/34672/SRI/2000.

REFERENCES
[3DMax] www.discreet.com
[3DSystems88] Stereolithography Interface Specifica-

tion, 3D Systems Inc., 1988.
[Bloomenthal94] J. Bloomenthal, An Implicit Surface

Polygonizer, Graphics Gems IV (P. Heckbert, ed.),
Academic Press, New York, 1994.

Figure 16: Expectation list for an ambiguous stroke

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

25

[Bloomenthal98] K. Bloomenthal, R.C. Zeleznik et al.:
SKETCH-N-MAKE: Automated machining of CAD
sketches. Proc. of ASME DETC'98, 1-11, 1998.

[CATIA] www.catia.com
[Contero01] M. Contero, F. Naya et al., Calligraphic In-

terfaces and Geometric Reconstruction", 12th ADM
International Conference on Design Tools, Septem-
ber 2001.

[Corel] www.corel.com
[Douglas73] D. Douglas and T. Peucker. Algorithms for

the reduction of the number of points required to rep-
resent a digitized line or its caricature. Canadian Car-
tographer 10, 2, 112--122, 1973.

[Farin99] G. Farin, Curves and Surfaces for CAGD, A
Practical Guide, Academic Press, New York, 5th Edi-
tion p. 227,1999.

 [Galin99] E. Galin, A. Leclercq and S. Akkouche, Blob-
Tree Metamorphosis, Implicit Surfaces'99 Confer-
ence, 4: 9-16, Bordeaux, France, September 1999.

[Herot76] C. Herot, Graphical input through machine
recognition of sketches, ACM SIGGRAPH Computer
Graphics, vol. 10, n 2, 97-102, 1976.

[Igarashi01] T. Igarashi , J. F. Hughes ,3D drawing: A
suggestive interface for 3D drawing, Proc. of the 14th
annual ACM symposium on User interface software
and technology, Orlando, Florida, November 2001.

[Igarashi99] T. Igarashi, S. Matsuoka et. al. Teddy: A
sketching interface for 3D freeform design. Proc. of
SIGGRAPH 99, 409–416, August 1999,

[Karpenko02] O. Karpenko, J. F. Hughes, R. Raskar,
Free form sketching with variational implicit sur-
faces. Eurographics 2002.

[Ligthwave3D] www.newtek.com
[Lorensen87] W. E. Lorensen and H. E. Cline. Marching

Cubes: A high resolution 3D surface construction al-
gorithm.Computer Graphics. 21, 4(1987) 163-
169,1987

[Maya] www.aliaswavefront.com
[Michalik02] P. Michalik, D. Kim, B. Bruderlin: Sketch-

and Constraint-based Design of B-spline Surfaces. In
Proceedings of International Conference on Solid
Modelling 2002.

[Necker32] L. A. Necker , Observations on some Re-
markable Phenomena seen in Switzerland: and an Op-
tical Phenomenon which Occurs on Viewing of a
Crystal or Geometrical Solid, in Philosophical Maga-
zine, 3rd series; 1:329-343, 1832.

[Negroponte73] N. Negroponte, Recent advances in
sketch recognition, Proceedings of the AFIPS 1973,
National Computer Conference, 663-675, 1973.

[Nishimura85] H. Nishimura, M. Hirai et al. Object mod-
elling by distribution function and a method of image
generation, Trans. IEICEJ. , 68:718, 1985.

[Pereira00] J. P. Pereira, J. Jorge, V Branco and F.
Nunes Ferreira, Towards Calligraphic Interfaces:
Sketching 3D Scenes with Gestures and Context
Icons, WSCG2000, Czech Republic, February 2000.

[Prasad97] L. Prasad. Morphological analysis of shapes.
CNLS Newsletter,n° 139, 1-18, July 1997.

[Sanchis02] F Naya Sanchis, J. A Jorge et al, Direct
Modelling: from Sketches to 3D Models”, 1st Ibero-
American Symposium on Computer Graphics, Gui-
marães (SIACG02), July 2002.

[Sketchup3D] www.sketchup.com
[SoftImage] www.softimage.com
[Stander97] B. Stander, J. C. Hart. Guaranteeing the to-

pology of an implicit surface polygonization, Proc.
SIGGRAPH97, 279-286, August 1997.

[Sutherland63] I.E. Sutherland, Sketchpad: a man-
machine graphical communication system, Proc.
Spring Join Computer Conference, AFIPS, 329-346,
1963.

[Turk99] G. Turk, J. O'Brien, Shape Transformation Us-
ing Variational Implicit Functions, SIGGRAPH 99,
335-342, August 1999.

 [Turk01]G. Turk, H. Quynh Dinh, J. O'Brien et al., Im-
plicit Surfaces that Interpolate, Shape Modelling In-
ternational 2001, Genova, Italy,62-71,May 2001.

[Turk02] G. Turk, J. F. O'Brien, Modelling with Implicit
Surfaces that Interpolate, ACM Transactions on
Graphics, Vol. 21, No. 4, 855-873, October 2002.

 [VRML97] The Virtual Reality Modeling Language,
International Standard ISO/IEC 14772-1:1997

[Wang03] C. C. L. Wang, M. M. F. Yuen, Freeform ex-
trusion by sketched input, Computers & Graphics,
vol. 27, no. 2, 255-263, April 2003.

[Wyvill98] B. Wyvill, A. Guy and E. Galin, The Blob-
Tree warping, blending and Boolean operations in an
implicit surface modelling system, Computer Science
Technical Reports,1998-618-09, March 1998.

[Wyvill99] B. Wyvill, A. Guy and E. Galin, Extending
the CSG Tree (Warping, Blending and Boolean Op-
erations in an Implicit Surface Modelling System),
Computer Graphics Forum, 18(2), 149-158, June
1999.

[Yngve02] G. Yngve, G. Turk, Robust Creation of Im-
plicit Surfaces from Polygonal Meshes, IEEE Trans-
actions on Vizualization and Computer Graphics, vol.
8, no. 4, 346-359,October-December 2002.

[Zeleznik96] R.C. Zeleznik, K. Herndon et. al. SKETCH:
An interface for sketching 3D scenes. SIGGRAPH 96
Conference Proceeding, 163-170, 1996.

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

26

