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ABSTRACT 
We present BlobMaker, a program for modelling surfaces using variational implicit surfaces. Our approach uses varia-
tional implicit surfaces as a geometrical representation for free-form shapes. We have implemented new modelling op-
erations to support stroke (pen-based) input. To this end, we have built a complete modeller application using varia-
tional implicit surfaces. Users can create and manipulate shapes using sketches on a perspective or parallel view. The 
main operations are inflate, which creates 3D forms from a 2D stroke, merge, which creates a 3D shape from two blobs 
and oversketch, which allows users to redefine shapes using a single stroke to change their boundaries or to modify a 
surface by an implicit extrusion. We compare these techniques with those of other approaches published. Finally, we 
describe their implementation in BlobMaker.  We have provided additional features such as copying, picking and drag-
ging to offer a natural user interface suitable free-form modelling.  

Keywords 
Stroke based modelling application, variational implicit surfaces 

 

1. INTRODUCTION 
Modelling applications have become essential tools in the 
animation and manufacturing industries and now play a 
crucial role in the design workflow. However, CAD in-
terfaces have not evolved much past the WIMP (Win-
dows, Icons, Mouse and Pointing) to match the spectacu-
lar increase in modelling power of these systems. There-
fore, CAD systems have become very complex, needing 
high technical knowledge and long learning periods. 
These problems have made them difficult to use for tradi-
tional designers. While WIMP interfaces represent a con-
siderable improvement over command line applications, 
menu-based interactions do not map naturally to pen-
and-pencil drawing modes. Analysing the actual com-
mand usage in a representative commercial CAD applica-
tion, we can verify that 75% of user time is spent in menu 
navigation, picking and selection instead of model input 
[Sanchis02]. While this approach was acceptable for in-
put via mouse and keyboard the emergence of pen-based 
systems mandates adopting better input methods. 
Although pen-based input devices are supported by many 
modern applications, they are not used as well as they 
could for 3D modelling in contrast to 2D sketching pro-
grams. In the later case paper and pencil metaphor can be 
used to leverage both ergonomic and human-learned 
skills offering advantages in drawing speed, and rich 
expression afforded by pen movements and pressure. 
Applications such as Corel Painter [Corel] constitute a 
good example of this. However, conventional 3D model-
ling applications restrict pen-based input to entering 
point data. Examples of this are 3D Studio 

Max [3DMax], Lighwave 3D [Ligthwave3D], Maya 
[Maya, SoftImage] and CAD systems such as Dassault 
Systems’ Catia [CATIA]. Even though many of these 
applications allow some type of free-form modelling, 
they require detailed knowledge about the geometric rep-
resentations such as NURBS [Farin99] and the intricacies 
of their mathematical formulations, which makes them 
difficult to use by traditional designers.        
In the next section, we survey previous work in free- 
form modelling interfaces. Then we present a description 
of variational implicit surfaces. In sections four and five, 
we describe in detail our modelling operations based in 
sketch input. Then we present an implementation of our 
techniques as embodied in BlobMaker. Finally, we draw 
conclusions and highlight possible improvements for 
future work. 

2. GESTURE-BASED MODELLING INTERFACES 
Ivan Sutherland’s SketchPad [Sutherland63] was the first 
graphical user interface to allow precise drawing using a 
calligraphic interface, modelling hierarchy and con-
straints. In the 1970’s, several research works followed 
up on these ideas through sketch-based recognition and 
tablet systems [Negroponte73, Herot76].  
In the early 1990’s, the first generation of pen computer 
fostered the emergence of new interfaces based on sketch 
input. The SKETCH [Zeleznik96] and SKETCH-N-
MAKE [Bloomenthal98] systems, combined gesture and 
geometric recognition to allow creating and modifying 
3D models. SKETCH defines a specific gesture grammar 
language to allow the creation of simple 3D primitives in 
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an orthogonal view; for example, three concurrent lines 
define a cube. This gesture language allows the user to 
specify CSG operations and to define quasi-free form 
shapes (such as ducts) through extrusion. 
 Several works have introduced gestures for constructing 
complex 3D models based on line reconstruction algo-
rithms. For example, GIDES [Pereira00] allows users to 
sketch on an orthogonal view, which combines with a 
suggestive interface to reduce the command set. The sys-
tem provides a language similar to SKETCH to create 
complex models. It uses specific commands to allow 
constrained positioning between elements and construc-
tion lines to define specific locations, to constrain the 
output of the recognizer and allow rigorous drawing with 
imprecise sketches. CHATEAU [Igarashi01] provides 
another good example of a suggestive interface. Like 
GIDES and SKETCH COSMO [Michalik02] it uses a 
gesture language to specify extrusions. While these sys-
tems offer support for reliable extrusions, we need more 
elaborate functions to support “true” free-form model-
ling.  
REFER[Contero01] and SKETCHUP [Sketchup3D] pro-
vide other examples of modelling using line drawings for 
architectural applications. Both systems feature recogni-
tion and reconstruction of models from straight lines. 
One serious problem with line drawings is the Necker 
ambiguity [Necker32] characteristic of 3D wire-frame 
models. The SKETCHUP system, offers new operations 
for interaction such as face and edge dragging that are 
much simpler than conventional CSG methods. 
The different approaches presented here offer good solu-
tions for the construction of complex models but are lim-
ited to extrusions or their CSG combinations, which offer 
a poor substitute for free-form shapes. Thus, they are 
unable to model “soft” forms such as a human head or 
biological shapes (animals) or surfaces on a car body. 

3.  SKETCH BASED FREE FORM MODELLING 
Brian Wyvill [Wyvill98] introduced the BlobTree, which 
is an implicit surface model based on skeleton primitives 
to describe soft objects. One prototype system described 
in this work uses sketches for defining skeleton primi-
tives. Skeletons define blobs using a specific language, 
for example, a line defines a cylinder and a point a 
sphere. The interesting point of BlobTree, is the combi-
nation of implicit surfaces with CSG operations, present-
ing a mixture between line-based interaction and a “real” 
free form approach. However, this method is still too 
similar in both its virtues and limitations to the gesture-
based systems described above.     
A more familiar approach for free form editing is to 
sketch in 2D the contours of 3D shapes. This is more 
natural than using extrusions. The first work using con-
tours for free-form modelling was the Teddy system [Iga-
rashi99]. Teddy presents a very simple interface that 
combines extrusions with contour-based shape creation. 
The system offers several operations to modify the start-

ing shape, which is normally a blob created by inflation 
of a 2D contour. This system had a great impact in the 
Computer Graphics community due to its simplicity. It 
provides simple primitives to extrude, bend, cut or 
smooth shapes. Geometric representations in Teddy use a 
triangulated mesh that can be modified through stroke 
input. Sketches are projected on the mesh according to 
the current view. However, the system is only able to 
construct one object and does not support hierarchy.  
In recent years, several projects have followed the steps 
of Igarashi. One of the most interesting is Kar-
penko’s [Karpenko02], which was the first to adopt a 
mathematical implicit representation. Like Igarashi, Kar-
penko presents a simple interface for free form model-
ling. Notably, she models geometrical objects through 
variational implicit surfaces [Turk99] instead of polygo-
nal meshes. We present these in detail in the next section. 
This application organizes the modelling scene in a tree 
hierarchy, allowing constrained move operations between 
tree nodes and creating distinct objects in the same scene. 
The main operations offered by the interface are merge, 
which allows combining two blobs and oversketch for 
redefining the boundary of a blob. Karpenko’s modeller 
presents simple navigation facilities to allow users to 
rotate and translate objects. Teddy did not support these 
features since the whole scene contains a single object. 
Another interesting aspect is the use of guidance strokes 
to help the merging process. However, guidance strokes 
are a symptom that the merging operation could be im-
proved and further simplified towards a more natural 
interaction.  

4. VARIATIONAL IMPLICIT SURFACES 
Variational implicit surfaces (VIS) were introduced by 
Turk [Turk99, Turk01, Turk02]. VIS are smooth and 
respect a set of constraint points. VIS are always closed 
and can have arbitrary topology.  They are implicitly 
defined by a mathematical function f, where the surface 
is the set of 3D points which verify f(X)=0. Their main 
difference to other implicit models such as meta-balls 
[Nishimura85] and BlobTree, lies in that the surface has 
to obey constraint points specified by the user. VIS are 
not algebraic surfaces and are based in a problem similar 
to the thin-plate interpolation. This approach interpolates 
a cloud of points. To find the implicit function that re-
spects all the constraint points with a minimum of curva-
ture, f(x) is defined such as to minimize (1): 

 dXXfXfXfE yyxyxx∫
Ω

++= )()(2)( """        (1) 

There are several approaches to solve this problem. Turk 
decomposes f(x) into a linear combination of radial basis 
functions φ centred on the constraints, using φ(X) =|X|3. 
The interpolated function, which satisfies the condition 
presented in (1) and defines the variational implicit sur-
face, is presented in (2): 
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Where cj are the locations of the constraints on the sur-
face, dj  are the weight of each constraint, P(X) is a one-
degree polynomial which can be omitted if the number of 
constraints is greater than eight [TURK01]. 
For the calculation of the weights dj, we know the value 
hj of the height field for each constraint such as f(cj)= hj. 
Based on Equation (2), the following linear system is 
defined in (3): 
   HDM =.    (3) 

 In (3), D= [dj] are the unknowns, H= [hj] are the height 
field values and M, a matrix defined as a function of φ, P 
and cj. While the linear system can be solved using LU 
decomposition in O (k3) steps where k is the number of 
constraints, iterative methods can solve large-scale sys-
tems in O (k2). 
To simplify creating VIS, Turk proposes a method based 
on four different types of constraints: 
• Boundary constraints cj that are placed in the bound-
ary of the surface verifying f(cj)=hj  with hj=0  
• Normal constraints cj that are located outside the 
surface at a tiny distance of the boundary using the nor-
mal of the surface. These constraints verify f(cj)= hj with  
hj=1 
• Interior constraints cj that are located arbitrary inside 
the surface verifying f(cj)= hj with  hj<0  
• Exterior constraints cj that are located arbitrary out-
side the surface verifying  f(cj)= hj with  hj≥1 
It is possible to create variational implicit surfaces by 
specifying only boundary and normal constraints as 
shown in Figure 1. We can also use this principle for 
converting polygonal meshes into VIS [Yngve02].  
The flexibility of this representation allows modelling 
complex and smooth models with arbitrary topology. We 
use it in our modeller, since it provides a compact and 
mathematically simple means of describing a surface 
using constraints, weights and a first order polynomial. It 
affords flexibility for the computation of normal and cur-
vature information, while ensuring C2 continuity. 

5. FROM 2D TO 3D: INFLATION  
In this section, we propose our method for the creation of 
3D VIS based on user 2D stroke input, using an inflation 
process similar to [Karpenko02]. We present an overview 
of the algorithm, followed by the description of the rele-
vant steps.  
The inflation process takes a set of 2D points input by the 
user (stroke) and creates a 3D object matching the con-
tour drawn by the user. The following list presents the 
different steps of the process: 
• Filtering the 2D stroke : this step receives the input 
set of 2D points from the user and simplifies it 
• Verification of filtered stroke : this step rejects incor-
rect parts of the stroke such as self-intersections 
• Skeletonization of the 2D stroke: this step analyzes 
the entire stroke and creates a 2D skeleton with all the 
relevant topological information. The skeleton allows the 
reconstruction of the input stroke and the information 
about the thinness of the enclosed region in order to per-
form depth inflation 
• Mapping the 2D stroke into a 3D contour: this step 
transforms the 2D stroke and skeleton information to a 
3D virtual plane according to the actual definition of 
viewport and view parameters, computing both normal 
and depth information  
• Creation of 3D implicit surface and its visualization: 
this step creates a VIS, representing the blob, which 
matches the contour’s skeleton. The polygonization proc-
ess creates a triangulated mesh together with surface 
normals at each vertex, which is suitable for rendering 

5.1 Main contributions of our work 
In the previous section, we have presented two different 
methods from Igarashi and Karpenko to create 3D sur-
faces from 2D strokes. Both approaches have advantages 
and limitations. In Teddy, the inflation process is ori-
ented to the triangulated mesh. This approach restricts the 
possible operations on objects to local mesh modifica-
tions. This makes it difficult to merge two meshes. Fur-
thermore, triangular meshes make it difficult to model 
arbitrarily smooth shapes. To overcome this limitation, 
Igarashi introduced a smoothing operator that applies 
local subdivision algorithms to the mesh. Even though 
we use similar methods for skeletonization, Teddy takes 
a different approach to inflation. While both Igarashi and 
Karpenko follow the same approach for filtering and 
mapping the 2D stroke, which is dependent on screen 
resolution. They reject consecutive 2D points closer than 
a specified number (15) of pixels. This can result in im-
portant details being dropped from the resulting surface. 
While our approach to inflation is similar to Karpenko’s 
her method might present incorrect results due to her 
screen-dependent filtering method and incorrect tech-
nique for depth classification. Her approach only defines 
two constraints on the VIS to define shape thickness. 
This brings about several limitations. One of them is that 
the merging operator needs a re-sampling of the triangu-

Figure 1: Example of boundary (o) and normal 
(+) constraints in variational implicit surfaces

12º Encontro Português de Computação Gráfica

8 - 10 Outubro 2003

19



 

 

lated mesh. This increases the number of constraints on 
the VIS dramatically, thus incurring in additional compu-
tational costs for matrix solving. Another consequence is 
that the merge between a big blob and a very small one 
will be impossible without loss of detail. In our approach, 
all modelling operators use only the mathematic repre-
sentation and skeleton information. The next sections 
describe in more detail our inflation process. 

5.2 Filtering the input stroke  
Since the sampling of stroke points from an electronic 
digitizer depends of the interrupt processing capability of 
the operating system, points on an input stroke are not 
evenly spaced. For example, some points can be repeated 
or their number can be unnecessarily large depending on 
the speed at which the stroke was drawn. 
As discussed before, Igarashi and Karpenko folloz *pdf 
w an approach for stroke filtering which is dependent on 
screen resolution. In our approach, we implement a 
greedy algorithm similar to Douglas-Peucker filter-
ing [Douglas73].  
Figure 2 presents an input stroke and the result (red 
points) of the filtering; the input stroke on the left is com-
pound by 2081 points and reduces to 92 points after the 
filtering step.  
Finally, we analyze the filtered stroke, rejecting self-
intersection parts. This step is necessary because the 
boundary of a shape cannot become self-intersecting 
when we project the stroke on a 3D virtual plane. In our 
approach, we retain the first non-intersecting loop found 
in the filtered stroke and drop the rest of the stroke as 
shown in Figure 2.  

5.3 Skeletonization of 2D Strokes 
The skeletonization step transforms the filtered stroke to 
reveal all the information of the stroke. We adopt the 
Chordal Axis Transform presented in [Prasad97] to ac-
complish this. This step applies a Constrained Delaunay 
Triangulation, using as constraints the edges of the fil-
tered stroke. We generate three kinds of connectivity 
information for the triangulated polygon as illustrated in 
Figure 3, where triangles fall into one of three categories: 

•  Terminal Triangle: triangles with one neighbour 
adjacent in the polygon (small outside triangles shown in 
green) 
• Seed Triangles: two neighbours are adjacent to these 
triangles in the polygon (depicted in blue) 
• Joint Triangles: triangles with three neighbours in 
the polygon (painted in red) 
Then we transform the triangulated polygon into a skele-
ton where terminal triangles terminate limbs and joint 
triangles are connections in the hierarchy. Figure 4 pre-
sents an example of skeleton of a stroke that is similar to 
a hand. We can verify that the skeleton respects the 
shape; the red edges result from joint triangles. For each 
node in the skeleton, we save the distance between it and 
the border as depth information. The skeletonization pro-
cedure may generate some irrelevant branches (these 
appear in yellow in the figure). Since these are meaning-
less for the topology of the shape, they are rejected by a 
post-processing step of the skeletonization process.  
Our process is similar to that followed by Igarashi except 
for the last step, where he derives a 3D mesh from the 2D 
triangulation, while we create a VIS from the skeleton 
information. 

5.4 Projecting 2D points onto 3D virtual plane 
At the end of the 2D analysis, the inflation proceeds with 
a mapping step. The goal of which is to map all 2D 
points into 3D scene coordinates. Since 3D Blobs are 
conceptually drawn on a 3D virtual plane, which is paral-
lel to the planar drawing surface and their visualization 
uses a perspective projection, we need to apply the “in-

Figure 2: Example of filtering step, centre and 
right figures show self-intersecting strokes. 

Figure 3: Chordal Axis Transform for skeletoniza-
tion based on Constrained Delaunay Triangulation

Figure 4: Example skeletonization of a 
stroke with depth information 
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verse projection” defined by the virtual camera to each 
2D point in the filtered stroke. We map the skeleton onto 
the 3D virtual plane using the view camera projection 
and update depth information accordingly.  
Figure 5 shows how we perform this mapping. As a re-
sult of this step, we obtain a 3D outline that defines the 
boundary of the blob and a mapped 3D skeleton in scene 
coordinates. This mapping step yields all information 
required for the implicit surface representation.  

5.5 Creating Variational Implicit Surfaces  
For the creation of the implicit representation, we use the 
variational implicit surface model, based on boundary 
and normal constraints as presented by Turk. Our ap-
proach uses the 3D mapped stroke as boundary con-
straints. Other boundary constraints use the depth infor-
mation from the skeleton as shown in Figure 6 both to 
the left and to the right of the mapped stroke. The look-at 
vector of the 3D virtual camera defines the left and right 
direction. For each boundary constraint, we create a nor-
mal constraint by shifting the boundary by 0.05 in the 
normal direction. 
After defining all constraint points and types, we have a 
linear system as presented in section 3. This is then 
solved, using a matrix resolution method such as LU fac-
torization, to obtain a complete definition of a VIS. At 
the end of the inflation process, the implicit function is 
polygonized for visualization as shown in Figure 6.  

6. MANIPULATION OF IMPLICIT SURFACES 
This section describes possible modification operators on 
implicit surfaces for use in a modelling application. First, 
we present an overview of possible operators and discuss 
the limitations of implicit representation. The following 
sections describe solutions for the implementation of the 
merging and oversketching operators, which have been 
implemented in our demonstrator.  

6.1 Operations between Implicit Surfaces 
Our approach considers that the natural way of emulating 
paper and paper drawings is through oversketching. 
Similarly to Karpenko, we define two main operators, 
oversketching and merging. When we analyze the way in 
which designers specify free form surfaces, we verify 
easily that the main action to redefine the shape is by 
sketching over the boundary of the shape repeatedly until 

the desired form is obtained. For this reason, our main 
modification operator is based on the oversketching con-
cept. 
The merge operator is an useful extended tool because it 
allows designers to work on partially defined shapes, 
which can later be combined to form a unique 3D shape. 
While the merge operator seems superficially similar to 
the traditional Boolean union, it actually has different 
semantics, since it uses the notion of blending blobs. The 
result remains smooth, thus guaranteeing C2 continuity to 
the shape. Of course, this approach brings about some 
limitations, since sharp edges cannot be created through 
this method. However, we have to live with such a limi-
tation since the mathematical representation of implicit 
surfaces is C2 continuous by definition, which makes it 
impossible to represent non-continuous features such as 
sharp edges. 
Mathematically, it is simple to define a model supporting 
Boolean operations using implicit surfaces. However, the 
C2 continuity of the VIS model invalidates this issue. The 
following list presents the most common Boolean opera-
tions using implicit surfaces: 
Precondition: F1 and F2 are mathematical functions that 
define an implicit surface 
• Union  :F1 ∪  F2 = min  ( F1, F2 ) 
• Intersection  :F1  ∩ F2  = max  ( F1, F2 ) 
• Difference :F1  /  F2  = max ( F1 , -F2 ) 
We can verify that the major obstacle for this representa-
tion is the use of non-continuous mathematical functions, 
such as the maximum and minimum. It is possible to sup-
port these operators through hybrid representations as 
Wyvill did in BlobTree [Wyvill99, Galin99]. However, 
these operations are not familiar for designers that follow 
a paper and pencil metaphor. 

6.2 Using Skeleton Information  
The key issue of our approach is to use the skeleton in-
formation generated during the inflation process of a 
blob. We extend this to allow manipulation of blobs. The 
main advantage is to forgo the use of visualization 
(mesh) representation for the implementation of the op-
erators, which is one of the main shortcomings in [Kar-
penko02]. As seen in the previous section, the merge 
operator could be specified using purely mathematical 

Figure 6: A skeleton and its corresponding poly-
gonized implicit surface 

Figure 5: Projecting 2D stroke into 3D virtual 
plane based on virtual camera definition 
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means. However, this solution requires complete knowl-
edge of all mathematical information such as the location 
of the critical points of the function. This requires us to 
identify the local, global minimum, maximum or saddle 
points of the implicit function. [Stander97] presents an 
approach for this. Using Morse Theory, he is able to ex-
tract all the topological information of the shape from the 
mathematic definition. However, this is both very diffi-
cult to implement and costly in computational processing 
time to guarantee that all the information has been ex-
tracted. This approach is not suitable for a real time mod-
eller.  
Karpenko presents a suitable solution, which combines 
the expressiveness of a mathematical formulation of sur-
faces with the flexibility of the triangulated mesh for 
visualization. However, this solution is only suitable for 
few steps. Repeated application of merge or oversketch-
ing operating, adds many unnecessary constraint points 
due to this resampling. This may easily scale to thou-
sands of constraints after a few operations. Generating a 
VIS anew from these constraints becomes impractical 
with current hardware. Thus, this approach is not appro-
priate for interaction at real time rates. Another limitation 
is that this resampling automatically erases all features of 
the shape smaller than the sampling interval. 
To overcome the limitation identified in her approach, we 
base our solution on the surface skeleton, its associated 
depth information and its VIS. Since skeletons can be 
merged or modified without using the mesh information 
and the VIS is recreated at each step, this guarantees that 
small features will be preserved by the modification op-
erators without our needing to use the triangulated mesh. 
While the merge operator blends two skeletons, over-
sketching modifies or appends new data to the original 
skeleton. The interesting feature of this approach is that 
all strokes input for oversketching define a new skeleton, 
which we then merge to the original. After merging 
strokes, we drop all points that lie inside the merged 
stroke.  
The following sections present a detailed description of 
the algorithms for merging and oversketching. After this 
step, we generate all the constraints for the new shape. 
These are enough to define all the characteristics of each 
shape. Then we perform a step to know which constraints 
will remain valid after merging. This is presented in Fig-

ure 8. Using inflation, we create a new blob. The skele-
tons of both the new and old blobs are merged. The re-
sulting skeleton is then attached to the result blob. 

6.3 Merging blobs 
For the merging operator, let us consider the variational 
implicit functions to merge, where FA and skeleton SA 
define the first blob and FB, SB the second one. Both use 
constraint points inferred from their respective skeletons.  
While the results obtained by our implementation are 
visually similar to Karpenko’s, we can handle situations 
not supported by her method. However, the resulting 
mathematical function of the merged blob uses less con-
straints points, then interactivity is better for modelling 
application since the cost of computation for implicit 
calculation is smaller. The main problem with Kar-
penko’s approach lies in that it uses only two constraints 
to define depth during inflation. This requires sampling 
the triangular mesh to perform the merge, which limits 
the guarantee of fidelity of finer features of both blobs in 
the resulting shape. Moreover, her sampling method uses 
the vertices resulting from a Marching Cubes polygoni-
zation [Lorensen87, Bloomenthal94], which depends on 
the size of the subdivision and yields too many con-
straints on the merged shape. While our approach uses 
more constraints to define the object in the inflation proc-
ess, the merged blob has fewer constraints. Figure 9 

Figure 9: Example of merging operations 
with resulting skeleton and meshes  

Figure 7: Example of skeleton resulting 
from several merge operations 

Construction of constraint set for merging 
(FA, SA, FB, SB) { 
  Initialize the result set to empty 
  For each CA (boundary constraint) of FA { 
     if ( FB(CA)>= 0 ) 
     then CA and the respective normal is     
          inserted in the result set  
     else CA and the respective normal  
          constraints are rejected 
   } 
   For each CB (boundary constraint) of FB { 
      if ( FA(CB)>= 0 ) 
      then CB and the respective normal is 
           inserted in the result set  
      else CB and the respective normal  
           constraints are rejected 
   } 
  return the result set 
} 

Figure 8: Pseudo-code for merging two blobs 
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shows some examples of the merging operation present-
ing in both shaded and wire frame views. 

6.4 Oversketching blobs 
Another possibility is to create extrusions. These are the 
main modelling operator in Teddy. Two input strokes 
define the extrusion, the first defines the base area af-
fected by the extrusion. The second one, defines the pro-
file of the extrusion. The implementation of this solution 
presented some limitations in Teddy, corrected recently 
by [Wang03]. We will show that using the skeleton in-
formation for the profile stroke of the extrusion and its 
area for the base allows specifying the extrusion with 
only one stroke. Our approach applies skeletonization to 
the oversketching stroke. The volume defined by the 
skeleton specifies the base of the extrusion. This infor-
mation helps to distinguish a boundary redefinition from 
an extrusion. The oversketching operation involves six 
different steps. First, we apply stroke filtering, followed 
by 2D skeletonization as in the inflation process. Then 
we project the stroke and its 2D skeleton on a plane cut-
ting the surface perpendicularly to the look-at vector of 
the 3D virtual camera. Next, we identify and reject all 
constraints of the blob located inside the oversketching 
area. After, we insert the new constraints defined by the 
oversketching skeleton. Finally, we use the resulting 
skeleton to create the new blob. 

6.4.1 Projecting oversketch strokes 
After filtering the input stroke and creating its skeleton, 
2D input points need to be transformed to 3D coordi-
nates. This process is different from the initial step of the 

inflation, since the stroke must be projected on the con-
tour plane of the target surface, as shown in Figure 11. 
The 3D virtual plane is defined using the first and last 
point of the input stroke. Both points are projected using 
a function, which computes the intersection between a 
ray defined using the 2D endpoint coordinate and the 
position of the 3D virtual camera. The 2D coordinates in 
the viewport represent the position of the stroke endpoint 
in the near plane of the camera. We calculate the 3D co-
ordinates of the near plane of the camera according to the 
size of windows, the fov of the camera and the distance 
of the near plane to the camera position.  
The ray intersections yield the start and end points of the 
stroke as projected in the surface on the contour plane. 
We define the 3D contour plane by the middle point be-
tween these two and it is perpendicular to the camera 
look-at vector. We then project the points of the filtered 
stroke and its skeleton onto this plane. Another possible 
approach is to define the 3D plane normal to the surface. 
We tried this approach and computed this plane, using a 
vector perpendicular to the true normal of the surface at 
the middle point. This solution is used by [Wang03] as a 
correction to the Teddy system for the projection of the 
profile stroke of the extrusion. However, this can lead to 
incorrect results as users conceptually draw on a plane 
perpendicular to the view direction.  

6.4.2 Constructing the oversketched blob 
For the construction of the new blob, we have to define 
its corresponding set of constraints. First, we start by 
verifying each constraint of the original blob, by check-
ing to see if they are inside the bounding box of the pro-

Figure 10: Example of oversketching operation 
Figure 12: Example of boundary redefini-

tion with oversketching 

Figure 11: Mapping 2D stroke for oversketching
Figure 13: Example of implicit extrusion using over-

sketching 
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jected skeleton. We reject constraints located inside the 
bounding box. All others will remain in the resulting 
blob. This test is very simple since we only need to verify 
whether a given 3D point is inside an oriented bounding 
box.  
The skeleton of the oversketching stroke generates new 
constraints for the blob, following a different strategy 
depending on whether we are in creating an extrusion or 
redefining the boundary of a shape. In case of boundary 
redefinition, the stroke does not generate any new depth 
constraints. Only boundary constraints are defined from 
the input stroke. The extrusion operation creates bound-
ary constraints from both the stroke and the original 
skeleton. For each boundary constraint, we create a nor-
mal constraint using the normal vector of the projected 
stroke in the 3D virtual plane. This is then combined with 
the real normal to the surface computed at the first and 
last point of stroke as projected over the surface.  
Figures 12 and 13 show two examples of oversketching; 
the first presents a boundary redefinition and the second 
an extrusion. 
We can verify that the skeleton associated the boundary 
redefinition does not generate any constraints in depth 
(red points near black branch of the skeleton in the fig-
ures). However, in the case of extrusion, we insert addi-
tional constraints to define the depth. The case for this 
distinction is simple to state. If the depth constraints for 
extrusion were to disappear, the depth of the blob in the 
oversketched volume would only be influenced by the 
depth constraints of the original blob. This would be in-
correct, because the result of oversketching a shape 
boundary may yield different topology features, thus de-
fining an implied extrusion as seen in Figure 13.  
We assess the need for additional constraints for extru-
sion operator by looking at the characteristics of the input 
stroke. We measure the importance of the stroke by com-
puting the ratio of the distance between its first and last 
points to the height of the volume it influences. In Fig-
ure 12, the base of the stroke is larger than the length of 
its skeleton; the resulting operation will be a boundary 
redefinition. On the other hand, in Figure 13, since the 
base is smaller than its length, the operation will be an 
extrusion. 

Finally, we define the constraints for the oversketched 
blob. Then we generate the new blob and attach the 
merged skeleton to it.   

7. BLOBMAKER 
BlobMaker is an application for free form modelling 
based on variational implicit surfaces. It allows the user 
to create 3D blobs using the inflation process described 
in section 5. The modeller allows the user to modify 
shapes using the merging and oversketching operators 
presented in section 6. Visualization and rendering of 
implicit surfaces are based on OpenGL API using trian-
gular meshes. 
 Our approach provides different tools to support creating 
and editing blobs. Users can translate, rotate and copy 
objects, with support for unlimited Undo and Redo. It is 
possible to save and retrieve Blobs to/from STL 
[3DSystems88] and VRML [VRML97] formats. Users 
can visualize Blobs in several different modes such as 
Wireframe, Polygonal with Gouraud shading using 
OpenGL, or more faithful rendering modes such as Ray 
Tracing and Phong Shading. Users can also control mesh 
quality either through our approach or through Marching 
Tetrahedra [Bloomenthal94]. 

7.1 Interface 
The BlobMaker interface divides the screen into two ar-
eas as shown in Figure 14. The first area, on the top of 
the window, is a toolbar that allows the user to select the 
following tools: drawing, merging, oversketching, trans-
lation, rotation, copy, undo/redo functionality and wire-
frame rendering mode. The second area represents the 
working space where the user can draw, manipulate and 
visualize the 3D free form shapes. The working space 
offers a perspective view of the modelling scene. The 
virtual camera defines the user point of view, which is 
centred in the zero-plane XY. To ease the depth percep-
tion and positioning relationship between blobs, the zero-
plane XZ is drawn as the ground of the scene in a rose 
colour. This virtual camera is used for the projection of 
the 2D viewport based input inserted by the user.  

Figure 15: Stroke types in BlobMaker  Figure 14: BlobMaker interface 
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7.2 Stroke-based interaction 
Figure 15 presents the different kinds of user input possi-
ble during interaction with the modeller. All operations 
are selected using the toolbar area, which removes any 
ambiguity from stroke semantics; i.e. the distinction be-
tween a merging, inflation or oversketch stroke is made 
explicitly through menu selection. 
When the user selects the drawing operation, subsequent 
2D input will be interpreted as the boundary of a 3D 
shape. Of course, some strokes are invalid in this context, 
such as straight lines. Input strokes can be closed or 
open. However, open curves must converge to a well-
defined closed boundary. To detect this feature, begin 
and end segments of an input stroke must define inter-
secting straight lines that “close” the stroke. For the 
merge operation, the user needs to draw an arbitrary 
curve, linking two distinct blobs. The system uses begin 
and end points to pick each blob. Similarly, we use end-
point to picking and select objects as targets for over-
sketching, translation, rotation and copy operations. 
Since points are specified on a planar viewport, depth 
positioning can be ambiguous. Our modeller solves this 
problem using the “ground” visualization. The user can 
select a blob by its shadow, which is the planar projec-
tion of the blob onto the ground. This feature makes it 
easy to do relative positioning of shapes and offers two 
different ways to select a blob: either by clicking on the 
rendered projection of the blob or on its shadow. 

7.3 Improving interaction using stroke analysis 
By using skeleton and stroke information, we can im-
prove interactions and avoid using the toolbar. We have 
found from experience that users prefer to draw, since 
this matches best the affordances of the stylus. Conse-
quently, they sometimes forget to select the “right” com-
mand beforehand. This is the most common source of 
errors when using the interface. We have implemented a 
second mode in the application where the toolbar only 
offers undo/redo functionality and switching between 
wireframe and shaded views.  
In this mode, some strokes are ambiguous, for example 
oversketching gestures can sometimes initiate inflation. 
To solve this, we use dynamic expectation lists as intro-

duced by [Pereira00] to present all possible interpreta-
tions of an ambiguous stroke to the user as exemplified 
by Figure 16. If the stroke is not ambiguous, the opera-
tion takes effect immediately. Thus, simple actions can 
yield different semantics. A click on a blob selects that 
object. Subsequent clicks create copies of the selected 
object. In addition, a straight line or an arc joining two 
blobs define a merge operation. A stroke whose end-
points lie on the same blob defines an oversketch opera-
tion on that blob. A closed stroke or a similar curve cre-
ates a new shape. In this manner, all the main interactions 
can be sketch-based. This mechanism can also avoid use-
less undo/redo commands due to erroneous use of but-
tons in the toolbar.  

8. CONCLUSIONS AND FUTURE WORK 
The proposed interface and operations are suitable for a 
complete free form modelling system. We feel that our 
sketch-based approach provides a natural interface for 
traditional designers not familiar with either geometrical 
constraints or the internal representation details of 
NURBS. In this work, variational implicit surfaces limit 
free forms to closed surfaces and smooth shapes. In the 
future, we would like to extend our system using hierar-
chical CSG combinations of VIS and support discontinu-
ous representations using cuts as in Teddy. Another in-
teresting development is to add primitives for NURBS 
creation and manipulation, since these are the more com-
monly used geometric representation in CAD and 
manufacturing. However, this is a non-trivial task, espe-
cially if we are to derive compact constrained representa-
tions from free-form primitives. Following Igarashi, we 
would also like to add non-photorrealistic rendering of 
objects to better match the pencil-and-paper sketching 
metaphor. Work is already underway on this front. 
In this paper, we have presented a stroke based modeller 
application for 3D free form modelling using variational 
implicit surfaces. The different operations proposed for 
free-form manipulation have shown oversketching to be 
a powerful and suitable tool for 3D modelling. Informal 
evaluations show great promise for this tool as being 
more adequate for traditional designers, who are familiar 
to the pencil and paper metaphor. This too, should be 
assessed by extensive usability evaluations in the future.  
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