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Visibility determination is a requirement to navigate through complex scenes. Occluder fusion algorithms 
generate convex occluders that are contained in the umbra cast by a group of objects given an area light. Hoops 
are non-convex, but view-dependent convex, non-planar closed polylines that can be used to compute occlusion 
for objects that not necessarily have large interior convex sets. ln this paper we present an efficient, robust, and 
incremental octree-based algorithm to synthesize hoops for a set of objects and to compute the hoopís umbra. 
Experimental results demonstrate the techniqueís effectiveness to compute occluder fusion of non-convex objects. 
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1. INTRODUCTION 
Despite the continuous improvement in the bandwidth of 
graphics hardware, navigation of very complex models 
remains an open problem of interest to graphics 
researchers. 

Occlusion culling techniques focus on ways to compute 
conservatively whether a set of objects are hidden by one 
single object called the occluder. Cell visibility algo­
rithms subdivide the navigational space into convex cells 
and estirnate the set of visible objects for each cell by 
sampling visibility at its comers [Cohen-Orí98] [Saona­
Vazquezí99]. For the computational efficiency of cell 
visibility algorithms, the occluders must usually be 
convex. Recently, severa! researchers proposed to use 
synthesized convex shapes which can safely substitute the 
original non-convex occluders and that can be combined 
to synthesize a larger occluder [Zhang98], [Law99], 
[SchauflerOO], [AndujarOO]. 

ln [BrunetOl] hoops were proposed as synthesized view­
dependent occluders. Hoops are non-planar, non-convex 
polylines inside the original occluders that are seen 
convex from a view-cell (see fig. 1). Though concave 
these hoops retain the main properties of convex 
occluders regarding visibility: occlusion speed and cell 
visibility computability. Moreover, hoops can be 
synthesized from non-convex sets that do not contain any 
large convex set. ln this way the family of objects, that 
can be tested to compute the potential visible set from a 
given view-cell, can be increased. lt is also shown that in 
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arder to obtain a best estimation of the visibility, severa! 
hoops (usually less than 5) are needed to substitute a 
general point set. 

a) b) e) 

q 

d) 

Fig.l: a), b) and c) show a non convex object from 
different viewpoints. d) shows the hoop of the object seen 
convex from the viewpoint. ln e) the hoop is not seen 
convex from view-cell q. 

ln many cases, objects are hidden due to the combination 
of many, not necessarily convex, occluders. Thus much 
of the recent research in visibility pre-computation has 
been focused on combining (fusion) the effect of multiple 
and arbitrary occluders. Occluder fusion algorithms 
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compute Jarger occluders in the union of the umbra 
region cast by a set of individual convex occluders. ln 
[Brunetül] it is just stated that hoops satisfy the 
requirements to be easily fused. 

This paper proposes a novel hoop fusion algorithm to 
compute the integrated occlusion of a set of objects. Each 
individual object is substituted by its synthesized hoop 
[Brunetül]. Then the hoop fusion takes place in the 
umbra of them, and a set of larger hoops are obtained as 
global occluders. The algorithm is based on a new octree­
based technique to obtain the umbra cast by an individual 
hoop from a view-cell (volume light). These umbra 
regions are combined with an efficient, robust and 
incremental algorithm that is also based on an octree 
representation. Finally the hoops of the integrated umbra 
regions are computed using the algorithm proposed in 
[Brunetül]. 

Section 2 reviews current approaches in occlusion fusion, 
hoops definition and related algorithms. The basis of our 
proposed algorithm is presented in section 3. Section 4 
describes the implemented hoop fusion algorithm in 
detail. Finally, séctions 5 and 6 show empiric results and 
discuss conclusions and future work. 

2. PREVIOUS WORK 
Until very recently visibility computations were limited 
to occlusions dueto a connected convex occluder. That is 
to say, an object that was occluded by the joined action of 
two blockers but not by neither of them alone were 
always classified as visible (see an example in figure 2). 
Fusion of occluders may be achieved by extending 
occluders inside previously computed umbra. If an 
occluder 0 2 intersects the umbra U1 of an occluder 0 1, 

then extending 0 2 into U1 yields a fusioned occluder that 
culls geometry occluded by 0 1 and 0 2 together. This 
procedure can be repeated iteratively with other 
occluders. 

\ 
\ 
\ 

02 

Fig. 2: Object 03 is classified as visible if shadows are 
treated separately. 
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ln [KoltunOO] a technique is proposed that fuses 
occluders in 2D and 2.5D scenes. Their 2D approach is 
based on the concept of a virtual occluder, a synthesized 
convex object that is shielded from a view-cell and thus 
may be used as an occluder. The basic principie was 
using the separating and supporting lines between the 
line-cell (view-cell in 2D) and the current virtual 
occluder. According to the classification of the new 
candidate respect those constrains: it is fused and extends 
that umbra, it is discarded for fusion or it is used to 
modify some of the constrains. The fusion is done by 
substituting the current virtual occluders by another 
behind them that extend the umbra. 

[ScahuflerOO] perform occluder fusion using an octree 
subdivision and a discretization of the scene and by 
computing rectangular occluders in the umbra of the 
original occluders. Then, they fuse these blocks when one 
intersects the umbra of another one. They use cell-to­
object visibility by testing if the discretization of the 
object bounding box is covered by the accumulated 
umbra. The most efficient implementation is in 2D and 
2.5D scenes and it is constrained tofat-occluders. 

ln a different fashion, [DurandOO] project occluders into 
image space and accomplish occluder fusion by 
reprojecting on severa! planes. It is the only cell visibility 
algorithm that can cope with concave sets although with 
some limitations. Namely, a plane has to be found whose 
intersection with the occluder is a single connected 
surface. Concave occlusion is much slower than convex 
one. 

[WonkaOO] method is based on the novel principie that 
shrinking an occluder by epsilon provides a smaller 
umbra with an unique property : an object classified as 
occluded by the shrunk occluder remain occluded with 
respect to the original occluder when moving the 
viewpoint no more than epsilon from its original position. 
For each view-cell a sufficient number of sample points 
is determined, the visibility is computed for each of them 
and the occluder fusion is perfomed by shadow aggre­
gation of the umbra cast by the occluders from each 
sample-point. The implementation is constrained to 2.5D 
urban scenes and it can be implemented by using hard­
ware graphics cards. 

ln [BrunetO l] is shown that convexity of the umbra from 
a cell is enough to compute the potential visible set of a 
cell. Then, by extending the notion of umbra to non­
planar polylines, the hoop concept is introduced. Hoops 
are non-convex, non-planar polylines that cast a shadow 
that is seen convex from the view-cell (see figure 1). So 
they can substitute the real occluder to compute 
conservative (underestimate because they are inside the 
object) occlusion culling by sampling visibility from the 
corners of the view-cell. Hoops have a small number of 
edges and the occlusion culling can be computed in linear 
time. Efficient tests to check umbra convexity, hoops 
conditions in linear time and to compute a hoop for a 
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given, non necessarily convex, 3D object are provided. lt 
was shown that for some objects severa) hoops (usually 
less than 5) are required to obtain a best occlusion 
estimation Finally, it is discussed that an algorithm 
similar to [SchauflerOO] and [KoltunOO] could be used to 
compute hoop fusion. The hoop construction algorithm is 
based on a discretization of the occluder by a classical 
octree (only black and white terminal nodes). 

ln the following sections, hoop fusion algorithm is 
completely developed and justified and some simulations 
are provided that shows its goodness for synthesizing 
occluders of a set of objects (region of space). 

3. DEFINITIONS ANO HOOPS FUSION 
OVERVIEW 
ln this section, we will introduce some definitions and the 
general outline of the algorithm we propose. Given a 
view-cell C and a set of occluders {O;}, the shadows of 
which intersect, we want to establish a minimal set of 
hoops. These hoops substitute the set of occluders in 
order to compute the visibility from C. The underline 
principie is the following: from the set of occluders {O;}, 
an initial occluder 0 1 is selected and its hoop 
synthesized. The octree of its umbra Ou1 from C is 
computed using an efficient and incremental algorithm. 
Then, a second object 0 2 the hoop of which intersects the 
umbra U1 , is selected from {O;} and the octree Ou1 is 
updated using the hoop of 0 2 to represent the union of the 
the umbras U1 and U2• Finally, the hoop of the union is 
computed using the algorithm presented in [BrunetOl]. 
(See fig . 3). 

~ 

Fig. 3: Note that U1 u U2 occludes more than U1 and U2 

separately, as explained in section 2. 

The following function outline the process. 
P'unct ion fusion(Ol,02:object; C:cell): hoop; 
Var 

l'var 

OUl:octree //Umbra of the hoop of 01 
OCl, OC2, SO:octree 
hl, h2, h:hoop; 
BB:box; 

OCl:=octree(Ol); hl:=hoop(OCl, C); 
OC2:=octree(02); h2:=hoop(OC2, C); 

1 BB:=compute_bounding_box(C, hl, h2); 
2 OUl:=compute_octree_umbra(BB, hl); 
3 SO:=update_octree(OUl, h2); 
4 compress(SO); 

h=hoop(SO, C); 
lleturn h 
Pfunction 

Algorithm 1: hoop fusion of 2 objects. 
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Given two objects and knowing that 0 2 intersects the 
shadow of 0 1 from the view-cell C, the hoop function 
synthesizes a hoop for each object (in fact from the 
classical octree, OCJ and OC2, of each object). As seen 
in [BrunetOl] every object should be substituted by a set 
of hoops in order to get a high conservative rate of 
visibility. Experimentally we have found that the 
shadows of a set of 5 hoops covers as much as 90% of the 
shadow of the object. For simplicity, in the following 
explanations, we consider only one hoop for each object 
which provides us with the sarne position as if we were 
executing the algorithrn 1 for ali the hoops for each 
object. 

The functions compute_octree_umbra and update_octree 
compute the octree of the umbra of the initial hoop and 
the hoop fusion respectively. The octree of the union of 
the umbras has black nodes inside the umbras of any of 
the two objects and white nodes outside. We call this 
octree the Shadow Octree (SO). Due to the construction 
algorithm, the SO is over-subdivided, so before use it to 
compute the returned hoop of the fusion, it should be 
compressed in order to optimize the hoop construction 
algorithm. 

4. HOOPS FUSION ALGORITHM 
ln this section we explain in detail the processes involved 
in our proposed algorithm. Given a view-cell C to 
compute the octrees Ou1 and SO, we take advantage of 
!he fact that the hoops and their umbrae are seen convex 
from the cell (see fig. 1 and 4) 
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Fig 4. (a) Three hoops and the viÇ!w:cell. (b) The sarne 
hoops seen from the view-cell. The umbrae from the cell 
will also be convex. 
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We will see that this condition allows us to compute the 
octree of the umbra incrementally. 

To compute the Shadow Octree we follow four basic 
steps: 

1. Compute the bounding box of the SO. 
2. Compute the octree of the shadow for the first hoop 

(OUJ) 
3. Update the octree Ou1 with the umbra of the second 

hoop. 
4. Compress the Shadow Octree. 

4.1 Computing the Bounding Box 
The bounding box is needed to find the universe 
associated to the root of the octree: the region of the 
space that will contain the shadow region. It is calculated 
in the following way (see fig 5): first project the shadow 
of ali the selected hoops onto a plane located behind the 
hoops and the view-cell, then calculate the bounding box 
that contains the hoops and the projected shadows. The 
projection plane selected is perpendicular to the line 
defined by the center point of the view-cell and the center 
point of the bounding box of the two initial hoops (fig. 
5.a and 5.b). The projected shadow is computed by 
obtaining the intersection of the separating planes defined 
by the hoop and the view-cell (see next section) with the 
projection plane (fig 5.c). The final bounding box 
contains the hoops and their projected shadows (fig 5.d). 
This process is done before computing any octree. 

4.2 Octree of the Shadow for the First Hoop 
To compute the shadow octree for the first hoop we take 
advantage of two facts: that the hoop is seen convex from 
the cell and that the cell is also convex. It is possible, 
then to define the separating planes of the cell and the 
hoop: planes that leave the hoop and the cell at the sarne 
half-space and are defined by a vertex of the cell and two 
consecutive vertices of the hoop. The shadow of the hoop 
from the cell is a cone bounded by the separating planes 
of the cell and the hoop. For each edge of the hoop there 
is at least one vertex of the cell that define a separating 
plane. The set of separating planes can be computed by a 
linear test. 

Previous Current Final 
classification classification Classification 

WHITE OUTSIDE WHITE 
WHITE INSIDE WHITE 
BLACK OUTSIDE WHITE 
BLACK INSIDE BLACK 

- TRAVERSED GREY 

Table 1: Classification of the nodes for the first hoop. 
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Fig. 5: The computing of the bounding box. 

Once the root of the octree and the separating planes of 
the first hoop are computed, we proceed to subdivide the 
octree using those planes. The nodes of the octree that are 
in the positive half-space of ali the planes are inside the 
shadow and are classified as black nodes; the nodes that 
are outside the shadow are classified as white. The 
algorithm processes incrementally each separating plane 
(update_octree function) using a recursive top-down 
octree traversal. 

For the initial plane, an octree node (the octree's root 
initially) is classified respect to the separating plane, if it 
is traversed by the plane then it is classified as grey. Grey 
nodes are subdivided and its eight children classified 
recursively. When the maximum depth of the octree is 
reached, the grey nodes are conservatively classified as 
white. If a node is inside the positive half-space of the 
plane, it is classify as black, and white in the opposite 
case. 

The additional separating planes are processed in a 
similar way: a new octree traversal is needed and to 
define the node's type (update_node function) it is 
mandatory to take into account the current classification 
of the node against the plane and its previous type, 
according to the criteria shown in table 1. Whatever the 
previous classification of a node was, if the current 
classification is TRA VERSED, then the node is finally 
classified as GREY. 
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Images (a), (b), (e) in figure 6 show in 2D the first steps 
of the algorithm for the first separating planes. Images (d) 
and (e) show the resulting octree for two planes labeled 1 
and 2. Image (f) show the final result once all the 
separating planes have been processed. 

(d) 

Fig. 6: The computing of the octree of the shadow of the 
first hoop. The lined side of each plane represents its 
positive half-space. 

Every time a previously WHITE or BLACK node is 
subdivided its final classification becomes GREY, and its 
eight children get an indeterrnined classification, 
represented by the label INDET_O. The algorithm detects 
if a node does not have a classification and it assigns the 
current classification of the node against the plane to the 
node. Note that at the end of the algorithm, all the nodes 
that were classified as INDET_O have a classification of 
WHITE, BLACK or GREY. 

Procedure update_octree(O:octree; p:plane; 
maxdepth:integer) 
var root:node; 
begin 

end; 

root:=get_root(O); // the boundig box 
//1 is the depth of the root 
/ /maxdepth is the maximum depth of 
//subdivisions 
update_node(O, root, p, 1, maxdepth); 
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procedure update_node(O:octree; n:node; p:plane; 
depth, maxdepth:integer) 

var cl: integer; k:node; 
begin 
if node_has_children(n) then 
begin 
for each son k of n do 

update_node(O, k, p, depth+l, maxdepth); 
end 
els e 
begin 

cl:=classify_node(n,p); 
case (cl) of 

OUTSIDE: 
if get_prev_class(n)='INDET_O' or 
get_prev_class(n)='BLACK' then 

set_final_class(n, 'WHITE'); 
INSIDE: 

if get_prev_class(n)='INDET_O' then 
set_final_class(n, 'BLACK') 

TRAVERSED: 
if depth<maxdepth then 
begin 
set_final_class(n, 'GREY'); 
subdivide_node(O, n); 
for each son k of n do 
begin 

set_final_class(k, 'INDET_O'); 
update_node(O,k,p,depth+l,maxdepth); 

end; 
end 
else 
set_final_class(n, 'OUTSIDE'); 

end; 
end; 

end; 
Algorithm 2: Construction of the octree for 
the first hoop. 

The algorithm is easy and efficient due to the low number 
of hoop's edges. The shadow octree of this first hoop can 
also be used to select the hoops that must be fused with 
it, i.e., the hoops that intersect this shadow octree. 

4.3 Update the Octree with the Second Hoop. 

The result of the previous algorithm is the octree of the 
shadow of the initial hoop, the nodes of which have been 
classified as BLACK, WHITE or GREY. The proposal of 
the updating function is to fusion this octree with the 
shadow cast by another hoop to obtain the shadow octree 
of the union of the shadow. The proposed algorithm 
updates the nodes of the first octree in order to get, in the 
end, black nodes where the region of the space is inside 
either the shadow of the first hoop or the second hoop, 
white nodes where the region of the space is outside both 
shadows and grey nodes at the shadow boundary of the 
umon. 

We proceed as follows: the separating planes of the 
second hoop from the view-cell are computed and, for 
each of them, the octree is traversed (update_octree2) in 
a pre-order traversal. The nodes are classified 
(update_node2) taking into account the previous and the 
current classification of the node. We compute the final 
classification according to table 2. 
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Previous Current classif. Final Classif. 
classif. 
WHITE OUTSIDE WHITE 
WHITE INSIDE INSIDE 
WHITE TRAVERSED GREY 
BLACK OUTSIDE BLACK 
BLACK INSIDE BLACK 
BLACK TRAVERSED BLACK 
INSIDE OUTSIDE WHITE 
INSIDE TRAVERSED GREY 

Table 2: Classification of the nodes for the second 
hoop. 

ln ihe case of a GREY node being found, nothing is done 
with it, just its children are updated recursively. 

ln the case of a previously classified BLACK node, its 
final classification is BLACK whatever the current 
classification against the plane is. 

As the shadow of the second hoop is computed 
incrementally using the separating planes, special care 
must be taken when the nodes previously classified as 
WHITE are classified as INSIDE against the current 
plane. These nodes are provisionally classified as 
INSIDE. To consider these nodes inside the shadow, they 
must be classified INSIDE against ali the separating 
planes. 

ln the case of a node being traversed by the current 
separating plane, then, whatever the previous 
classification was WHITE or INSIDE, if the maximum 
depth has not been reached, the node is subdivided, 
labeled as GREY and its eight children classified 
recursively. If the maximum depth has been reached, the 
node is conservatively classified as WHITE. The children 
of a subdivided previous terminal node get an 
indetermined classification represented by the label 
INDET_l. The algorithm detects if a node does not have 
a previous classification and the current classification is 
assigned directly to it. Note that in the end of the 
algorithm, ali the nodes that were classified as INDET_l 
have a classification of WHITE, BLACK or GREY. 

The final BLACK nodes will be nodes classified as 
BLACK for the hoopl and nodes classify INSIDE of the 
hoop2. This is taken into account in the compression 
process. If there are more than two hoops to fuse, then for 
each new hoop, we have to use diferent INSIDE codes 
and consider the previously classifide INSIDE nodes as 
BLACK. 

Fig. 7 shows a 2D example of the updating of lhe octree. 
Black nodes are the ones that were classified BLACK 
with the previous algorithm, grey nodes are inside the 
shadow of the second hoop. 
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Procedure update_octree2(0:octree; 
maxdepth:integer) 
var root:node; 
begin 

root:=get_root(O); 

p:plane; 

update_node2(0, root, p, l, maxdepth); 
end; 

procedure update_node2 (O:octree; 
p:plane; depth, maxdepth:integer) 
var cl, prev_class: integer; k:node; 
begin 
if node_has_children(n) then 
for each son k of n do 

n:node; 

update_node2(0, k, p, depth+l, maxdepth); 
els e 
begin 

cl:=classify_node(n,p); /lcurrent class. 
prev_class:=get_prev_class(n); llprevious 

li classification. 
case (cl) of 

OUTSIDE: 
If (prev_class = 'WHITE') or (prev_class 
= 'INSIDE') or (prev_class = 'INDET_l') 
then 

set_final_class(n, 'WHITE'); 
INSIDE: 

if prev_class='WHITE' then 
set_final_class(n, 'INSIDE'); 

if prev_class='INDET_l' then 
set_final_class(n, 'BLACK'); 

TRAVERSED: 
if depth<maxdepth then 
begin 

if (prev_class 'INSIDE') or 
(prev_class = 'WHITE') then 

set_final_class (n, 'GREY'); 
subdivide_node(O, n); 
for each son k of n do 
begin 

set_final_class(k, 'INDET_l'); 
update_node2(0,k,p,depth+l,maxdepth); 

end; 
end 
else 

end; 
end; 

end; 

set_final_class(n, 'OUTSIDE'); 

Algorithm 3: Construction of the octree for 
the second hoop. 

Fig. 7: The updating of the octree with hoop 2. Black and 
grey areas represent the union of the octrees of the 
shadows. 
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4.4 Compression 
As can be easily noticed, the separating planes always 
produce the subdivision of the nodes that they cross if the 
octree maximum depth is not reached. So both inside and 
outside nodes can be over-subdivided. ln order to make 
hoop extraction more efficient and save memory, the 
octree is compressed using a bottom-up traversal. For 
each node, we check the classification of its eight 
children. If ali of them are WHITE, then the node turns 
its classifications from GREY to WHITE and its eight 
children destroyed. The sarne if its children are BLACK. 
ln case one or more of its children is classified as GREY, 
then nothing is done and the algorithm continues. 

We have found experimentally that it is not efficient to 
apply the octree compression after each separating plane 
updating. Compression becomes necessary when the 
umbra is computed for more than four hoops (the number 
of hoop edges is usually less than 10); and it is 
mandatory the compression previously to compute the 
final hoop (because the hoop construction algorithm 
takes advantage of having large black nodes). 

5. EVALUATION ANO RESULTS 
The implemented algorithm works with any kind of 30 
object whose hoop has been previously synthesized by 
[Brunetül]. The only auxiliary data structure used is an 
octree to represent the shadow of the hoop (note that it 
was also needed an octree to compute a hoop for a given 
object). There are only two geometrical tests: the 
classification of a point anda box respect to a plane. Note 
that it is not necessary to compute the intersections, only 
to detect them. So the algorithm is robust and simple. 

The synthetic data used to test the algorithm was the St. 
Paul's Cathedral 1 model from where the octree and its 
hoop were extracted using [Brunetül] algorithm. The 
scene was fonned by two cathedrals located one behind 
the other as shown in fig.8 and fig. 9. Ali the algorithms 
were programed in C++ and tested on a Pentium II 
400Mhz. 

Vic:wiD!J Cc:ll 

Fig. 8 Initial Scene. 

1 Publicly available at h11p://www.3dcafe.com 
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Fig. 9 Initial scene from the view-cell (in grey) 

Table 3 shows the number of nodes for the shadow octree 
of the union of two hoops (one for each cathedral) given 
a view-cell (see figure 8). The statistics have been 
computed for different depths of the octree and before 
and after the compression process. InHO and InHl are the 
nodes classified as BLACK respect to the first and 
second hoops respectively: they are considered as simple 
BLACK nodes after the compression. InHO includes the 
nodes inside the first hoop and in the intersection of the 
two shadows. Note that the degree of compression is 
notable and that less terminal nodes are obtained. 
Nevertheless, we have found that for the efficiency of the 
global algorithm, the compression must be done after a 
number of fusions (usually 10). Also note that more 
compression is obtained for WHITE nodes, that 
corresponds with the algorithm's design. 

Table 4 shows the number of nodes of the shadow octree 
for a hoop obtained as a result of the fusion of the 
previous ones. From the shadow octree of the fusion, a 
hoop was obtained with the algorithm in [Brunetül] and 
its shadow octree has been computed usin_g the sarne 
octree bounding box and view-cell. Note that the 
compression of the resulting octree does not affect the 
number of internai nodes. This is due to the algorithm 
design and that the hoop is seen convex from the cell. 
Also note that the final number of nodes is similar to the 
number of nodes of the shadow octree obtained by the 
fusion algorithm. If the size of the nodes is taken into 
account, then it can be concluded that the resulting hoop 
covers neraly the sarne that the fusion shadows. This fact 
is shown in fig. 9. Each hoop has been projected from 
each vertex of the view-cell onto a plane located behind 
the cathedrals. The intersection of ali the projections for 
one hoop is, in fact, the projected shadow of the hoop. 
These projections show the projected shadows of the 
original hoops labeled as 1 and 2 and the projected 
shadow of the final hoop in magenta. As can be seen the 
resulting hoop of the union (labeled as R) covers as much 
as the other two. This means that the shadow of the 
resulting hoop is as big as the shadows of the original 
hoops together, so the two hoops can be substituted by 
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the resulting one with a good conservative visibility 
occlusion. 

The bigger the resolution of the octree, the more accurate 
is the resulting hoop. Note how the shadow R covers the 
corners of the other shadows as the resolution of the 
octree grows. 

The processing times for the fusion algorithm are 
reasonable (interactive rates) taken into account that the 
hoop fusion will be a pre-process for an algorithm of cell 
to cell visibility or for the computation of the potential 
visible set [Saona-Vazquez99]. 

6. CONCLUSIONS ANO FUTURE WORK 
We have presented an efficient method to compute the 
hoop fusion of a set of hoops. It allows to substitute a set 
of objects the shadows of which overlap from a view-cell 
by a single occluder for visibility computations fro~ a 
view-cell. The resulted occluder has better occlus1on 
performances than the individual hoops of the initial 
occluders. 

The algorithm is based on a simple and robust algorithm 
that compute incrementally the shadow octree of a set of 
hoops. From this octree it is possible to obtain the fusion 
hoop by applying a previously published construction 
process [BrunetOl]. 

The experimental results demonstrate the goodness of the 
proposed technique. As seen in the examples the hoop of 
the shadow union covers as much as the hoops of the 
shadow of the two objects together, solving then the 
visibility problem. 

Our future work is related to integrate the fusion to our 
cell-to-cell visibility test to compute pre-process visibility 
[Saona-Vazquez99]. Moreover, we would like to analyze 
the effect of considering the terminal grey nodes as black 
nodes instead of white ones. A priory this moves the 
algorithm from conservative (underestimate) to 
approximate (overestimate) respect to the occluder 
visibility computations [AndujarOOb], but it could be 
useful to fuse occluders that are far enough from the 
view-cell so it is not possible to see between them. Note 
that in this case, it could also be possible to reduce the 
octree resolution so improve the algorithm efficiency. 
Also note that the initial hoops are always inner to the 
object so the degree of approximation could be relatively 
low. 
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Fig 9. From left to right and top to bottom: projected 
shadows for maximum depth 4, 5, 6 and 7 
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Deoth Octree of the union 
Before Comp. AfterComp. 

InHO InHl Tot Out Grey Tot w B G Tot 
4 29 108 137 277 59 473 137 102 34 273 
5 257 700 957 1263 317 2537 577 600 168 1345 
6 1200 3206 4406 5731 1448 11585 2455 2642 728 5825 
7 5094 13223 18317 27408 6532 52257 10447 10743 3027 24217 

Table 3: Nodes of the octree of the union of 2 hoops 

Depth Resulting octree 
Before AfterComp. 
Como 

B w G Tot B w G Tot 
4 64 378 63 505 64 154 31 249 
5 565 1907 353 2825 565 731 185 1481 
6 2027 11225 1893 15145 2027 3042 724 5793 
7 7877 21930 4258 34065 7877 8889 2395 19161 

Table 4: Nodes of the octree of the resulting hoop 
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