
SlACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Hoops Fusion:
Synthesis of View-dependent Convex Occluders

from a Set of Objects

Àlex Ríos
Dept. Llenguatges i Sistemes lnformàtics

Universitat Politêcnica de Catalunya
alex@lsi.upc.es

Abstract

Isabel Na vazo
Dept. Llenguatges i Sistemes lnformàtics

Universitat Politêcnica de Catalunya
isabel@lsi.upc.es

Visibility determination is a requirement to navigate through complex scenes. Occluder fusion algorithms
generate convex occluders that are contained in the umbra cast by a group of objects given an area light. Hoops
are non-convex, but view-dependent convex, non-planar closed polylines that can be used to compute occlusion
for objects that not necessarily have large interior convex sets. ln this paper we present an efficient, robust, and
incremental octree-based algorithm to synthesize hoops for a set of objects and to compute the hoopís umbra.
Experimental results demonstrate the techniqueís effectiveness to compute occluder fusion of non-convex objects.

Keywords
Visibility Culling, occluder synthesis, occluder fusion, octree representation.

1. INTRODUCTION
Despite the continuous improvement in the bandwidth of
graphics hardware, navigation of very complex models
remains an open problem of interest to graphics
researchers.

Occlusion culling techniques focus on ways to compute
conservatively whether a set of objects are hidden by one
single object called the occluder. Cell visibility algo­
rithms subdivide the navigational space into convex cells
and estirnate the set of visible objects for each cell by
sampling visibility at its comers [Cohen-Orí98] [Saona­
Vazquezí99]. For the computational efficiency of cell
visibility algorithms, the occluders must usually be
convex. Recently, severa! researchers proposed to use
synthesized convex shapes which can safely substitute the
original non-convex occluders and that can be combined
to synthesize a larger occluder [Zhang98], [Law99],
[SchauflerOO], [AndujarOO].

ln [BrunetOl] hoops were proposed as synthesized view­
dependent occluders. Hoops are non-planar, non-convex
polylines inside the original occluders that are seen
convex from a view-cell (see fig. 1). Though concave
these hoops retain the main properties of convex
occluders regarding visibility: occlusion speed and cell
visibility computability. Moreover, hoops can be
synthesized from non-convex sets that do not contain any
large convex set. ln this way the family of objects, that
can be tested to compute the potential visible set from a
given view-cell, can be increased. lt is also shown that in

225

arder to obtain a best estimation of the visibility, severa!
hoops (usually less than 5) are needed to substitute a
general point set.

a) b) e)

q

d)

Fig.l: a), b) and c) show a non convex object from
different viewpoints. d) shows the hoop of the object seen
convex from the viewpoint. ln e) the hoop is not seen
convex from view-cell q.

ln many cases, objects are hidden due to the combination
of many, not necessarily convex, occluders. Thus much
of the recent research in visibility pre-computation has
been focused on combining (fusion) the effect of multiple
and arbitrary occluders. Occluder fusion algorithms

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

compute Jarger occluders in the union of the umbra
region cast by a set of individual convex occluders. ln
[Brunetül] it is just stated that hoops satisfy the
requirements to be easily fused.

This paper proposes a novel hoop fusion algorithm to
compute the integrated occlusion of a set of objects. Each
individual object is substituted by its synthesized hoop
[Brunetül]. Then the hoop fusion takes place in the
umbra of them, and a set of larger hoops are obtained as
global occluders. The algorithm is based on a new octree­
based technique to obtain the umbra cast by an individual
hoop from a view-cell (volume light). These umbra
regions are combined with an efficient, robust and
incremental algorithm that is also based on an octree
representation. Finally the hoops of the integrated umbra
regions are computed using the algorithm proposed in
[Brunetül].

Section 2 reviews current approaches in occlusion fusion,
hoops definition and related algorithms. The basis of our
proposed algorithm is presented in section 3. Section 4
describes the implemented hoop fusion algorithm in
detail. Finally, séctions 5 and 6 show empiric results and
discuss conclusions and future work.

2. PREVIOUS WORK
Until very recently visibility computations were limited
to occlusions dueto a connected convex occluder. That is
to say, an object that was occluded by the joined action of
two blockers but not by neither of them alone were
always classified as visible (see an example in figure 2).
Fusion of occluders may be achieved by extending
occluders inside previously computed umbra. If an
occluder 0 2 intersects the umbra U1 of an occluder 0 1,

then extending 0 2 into U1 yields a fusioned occluder that
culls geometry occluded by 0 1 and 0 2 together. This
procedure can be repeated iteratively with other
occluders.

\
\
\

02

Fig. 2: Object 03 is classified as visible if shadows are
treated separately.

226

ln [KoltunOO] a technique is proposed that fuses
occluders in 2D and 2.5D scenes. Their 2D approach is
based on the concept of a virtual occluder, a synthesized
convex object that is shielded from a view-cell and thus
may be used as an occluder. The basic principie was
using the separating and supporting lines between the
line-cell (view-cell in 2D) and the current virtual
occluder. According to the classification of the new
candidate respect those constrains: it is fused and extends
that umbra, it is discarded for fusion or it is used to
modify some of the constrains. The fusion is done by
substituting the current virtual occluders by another
behind them that extend the umbra.

[ScahuflerOO] perform occluder fusion using an octree
subdivision and a discretization of the scene and by
computing rectangular occluders in the umbra of the
original occluders. Then, they fuse these blocks when one
intersects the umbra of another one. They use cell-to­
object visibility by testing if the discretization of the
object bounding box is covered by the accumulated
umbra. The most efficient implementation is in 2D and
2.5D scenes and it is constrained tofat-occluders.

ln a different fashion, [DurandOO] project occluders into
image space and accomplish occluder fusion by
reprojecting on severa! planes. It is the only cell visibility
algorithm that can cope with concave sets although with
some limitations. Namely, a plane has to be found whose
intersection with the occluder is a single connected
surface. Concave occlusion is much slower than convex
one.

[WonkaOO] method is based on the novel principie that
shrinking an occluder by epsilon provides a smaller
umbra with an unique property : an object classified as
occluded by the shrunk occluder remain occluded with
respect to the original occluder when moving the
viewpoint no more than epsilon from its original position.
For each view-cell a sufficient number of sample points
is determined, the visibility is computed for each of them
and the occluder fusion is perfomed by shadow aggre­
gation of the umbra cast by the occluders from each
sample-point. The implementation is constrained to 2.5D
urban scenes and it can be implemented by using hard­
ware graphics cards.

ln [BrunetO l] is shown that convexity of the umbra from
a cell is enough to compute the potential visible set of a
cell. Then, by extending the notion of umbra to non­
planar polylines, the hoop concept is introduced. Hoops
are non-convex, non-planar polylines that cast a shadow
that is seen convex from the view-cell (see figure 1). So
they can substitute the real occluder to compute
conservative (underestimate because they are inside the
object) occlusion culling by sampling visibility from the
corners of the view-cell. Hoops have a small number of
edges and the occlusion culling can be computed in linear
time. Efficient tests to check umbra convexity, hoops
conditions in linear time and to compute a hoop for a

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

given, non necessarily convex, 3D object are provided. lt
was shown that for some objects severa) hoops (usually
less than 5) are required to obtain a best occlusion
estimation Finally, it is discussed that an algorithm
similar to [SchauflerOO] and [KoltunOO] could be used to
compute hoop fusion. The hoop construction algorithm is
based on a discretization of the occluder by a classical
octree (only black and white terminal nodes).

ln the following sections, hoop fusion algorithm is
completely developed and justified and some simulations
are provided that shows its goodness for synthesizing
occluders of a set of objects (region of space).

3. DEFINITIONS ANO HOOPS FUSION
OVERVIEW
ln this section, we will introduce some definitions and the
general outline of the algorithm we propose. Given a
view-cell C and a set of occluders {O;}, the shadows of
which intersect, we want to establish a minimal set of
hoops. These hoops substitute the set of occluders in
order to compute the visibility from C. The underline
principie is the following: from the set of occluders {O;},
an initial occluder 0 1 is selected and its hoop
synthesized. The octree of its umbra Ou1 from C is
computed using an efficient and incremental algorithm.
Then, a second object 0 2 the hoop of which intersects the
umbra U1 , is selected from {O;} and the octree Ou1 is
updated using the hoop of 0 2 to represent the union of the
the umbras U1 and U2• Finally, the hoop of the union is
computed using the algorithm presented in [BrunetOl].
(See fig . 3).

~

Fig. 3: Note that U1 u U2 occludes more than U1 and U2

separately, as explained in section 2.

The following function outline the process.
P'unct ion fusion(Ol,02:object; C:cell): hoop;
Var

l'var

OUl:octree //Umbra of the hoop of 01
OCl, OC2, SO:octree
hl, h2, h:hoop;
BB:box;

OCl:=octree(Ol); hl:=hoop(OCl, C);
OC2:=octree(02); h2:=hoop(OC2, C);

1 BB:=compute_bounding_box(C, hl, h2);
2 OUl:=compute_octree_umbra(BB, hl);
3 SO:=update_octree(OUl, h2);
4 compress(SO);

h=hoop(SO, C);
lleturn h
Pfunction

Algorithm 1: hoop fusion of 2 objects.

227

Given two objects and knowing that 0 2 intersects the
shadow of 0 1 from the view-cell C, the hoop function
synthesizes a hoop for each object (in fact from the
classical octree, OCJ and OC2, of each object). As seen
in [BrunetOl] every object should be substituted by a set
of hoops in order to get a high conservative rate of
visibility. Experimentally we have found that the
shadows of a set of 5 hoops covers as much as 90% of the
shadow of the object. For simplicity, in the following
explanations, we consider only one hoop for each object
which provides us with the sarne position as if we were
executing the algorithrn 1 for ali the hoops for each
object.

The functions compute_octree_umbra and update_octree
compute the octree of the umbra of the initial hoop and
the hoop fusion respectively. The octree of the union of
the umbras has black nodes inside the umbras of any of
the two objects and white nodes outside. We call this
octree the Shadow Octree (SO). Due to the construction
algorithm, the SO is over-subdivided, so before use it to
compute the returned hoop of the fusion, it should be
compressed in order to optimize the hoop construction
algorithm.

4. HOOPS FUSION ALGORITHM
ln this section we explain in detail the processes involved
in our proposed algorithm. Given a view-cell C to
compute the octrees Ou1 and SO, we take advantage of
!he fact that the hoops and their umbrae are seen convex
from the cell (see fig. 1 and 4)

- -- -----_-.:><..i
i \ ----- ------ 1\
\ ,,..--\ ------·- 1'

... f' \.--\ .1.----.. (. J
--:-:_)\; - :k:::.

(a)

(b)

'--.1--. ---=-
~ --;,--~- ~....,---

1 / --~-
\ ---;;~ f' !_-- .,,,.

-r ---~ ../.

fJJJ

Fig 4. (a) Three hoops and the viÇ!w:cell. (b) The sarne
hoops seen from the view-cell. The umbrae from the cell
will also be convex.

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

We will see that this condition allows us to compute the
octree of the umbra incrementally.

To compute the Shadow Octree we follow four basic
steps:

1. Compute the bounding box of the SO.
2. Compute the octree of the shadow for the first hoop

(OUJ)
3. Update the octree Ou1 with the umbra of the second

hoop.
4. Compress the Shadow Octree.

4.1 Computing the Bounding Box
The bounding box is needed to find the universe
associated to the root of the octree: the region of the
space that will contain the shadow region. It is calculated
in the following way (see fig 5): first project the shadow
of ali the selected hoops onto a plane located behind the
hoops and the view-cell, then calculate the bounding box
that contains the hoops and the projected shadows. The
projection plane selected is perpendicular to the line
defined by the center point of the view-cell and the center
point of the bounding box of the two initial hoops (fig.
5.a and 5.b). The projected shadow is computed by
obtaining the intersection of the separating planes defined
by the hoop and the view-cell (see next section) with the
projection plane (fig 5.c). The final bounding box
contains the hoops and their projected shadows (fig 5.d).
This process is done before computing any octree.

4.2 Octree of the Shadow for the First Hoop
To compute the shadow octree for the first hoop we take
advantage of two facts: that the hoop is seen convex from
the cell and that the cell is also convex. It is possible,
then to define the separating planes of the cell and the
hoop: planes that leave the hoop and the cell at the sarne
half-space and are defined by a vertex of the cell and two
consecutive vertices of the hoop. The shadow of the hoop
from the cell is a cone bounded by the separating planes
of the cell and the hoop. For each edge of the hoop there
is at least one vertex of the cell that define a separating
plane. The set of separating planes can be computed by a
linear test.

Previous Current Final
classification classification Classification

WHITE OUTSIDE WHITE
WHITE INSIDE WHITE
BLACK OUTSIDE WHITE
BLACK INSIDE BLACK

- TRAVERSED GREY

Table 1: Classification of the nodes for the first hoop.

228

Fig. 5: The computing of the bounding box.

Once the root of the octree and the separating planes of
the first hoop are computed, we proceed to subdivide the
octree using those planes. The nodes of the octree that are
in the positive half-space of ali the planes are inside the
shadow and are classified as black nodes; the nodes that
are outside the shadow are classified as white. The
algorithm processes incrementally each separating plane
(update_octree function) using a recursive top-down
octree traversal.

For the initial plane, an octree node (the octree's root
initially) is classified respect to the separating plane, if it
is traversed by the plane then it is classified as grey. Grey
nodes are subdivided and its eight children classified
recursively. When the maximum depth of the octree is
reached, the grey nodes are conservatively classified as
white. If a node is inside the positive half-space of the
plane, it is classify as black, and white in the opposite
case.

The additional separating planes are processed in a
similar way: a new octree traversal is needed and to
define the node's type (update_node function) it is
mandatory to take into account the current classification
of the node against the plane and its previous type,
according to the criteria shown in table 1. Whatever the
previous classification of a node was, if the current
classification is TRA VERSED, then the node is finally
classified as GREY.

SIACG 2002 - 1 st Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Images (a), (b), (e) in figure 6 show in 2D the first steps
of the algorithm for the first separating planes. Images (d)
and (e) show the resulting octree for two planes labeled 1
and 2. Image (f) show the final result once all the
separating planes have been processed.

(d)

Fig. 6: The computing of the octree of the shadow of the
first hoop. The lined side of each plane represents its
positive half-space.

Every time a previously WHITE or BLACK node is
subdivided its final classification becomes GREY, and its
eight children get an indeterrnined classification,
represented by the label INDET_O. The algorithm detects
if a node does not have a classification and it assigns the
current classification of the node against the plane to the
node. Note that at the end of the algorithm, all the nodes
that were classified as INDET_O have a classification of
WHITE, BLACK or GREY.

Procedure update_octree(O:octree; p:plane;
maxdepth:integer)
var root:node;
begin

end;

root:=get_root(O); // the boundig box
//1 is the depth of the root
/ /maxdepth is the maximum depth of
//subdivisions
update_node(O, root, p, 1, maxdepth);

229

procedure update_node(O:octree; n:node; p:plane;
depth, maxdepth:integer)

var cl: integer; k:node;
begin
if node_has_children(n) then
begin
for each son k of n do

update_node(O, k, p, depth+l, maxdepth);
end
els e
begin

cl:=classify_node(n,p);
case (cl) of

OUTSIDE:
if get_prev_class(n)='INDET_O' or
get_prev_class(n)='BLACK' then

set_final_class(n, 'WHITE');
INSIDE:

if get_prev_class(n)='INDET_O' then
set_final_class(n, 'BLACK')

TRAVERSED:
if depth<maxdepth then
begin
set_final_class(n, 'GREY');
subdivide_node(O, n);
for each son k of n do
begin

set_final_class(k, 'INDET_O');
update_node(O,k,p,depth+l,maxdepth);

end;
end
else
set_final_class(n, 'OUTSIDE');

end;
end;

end;
Algorithm 2: Construction of the octree for
the first hoop.

The algorithm is easy and efficient due to the low number
of hoop's edges. The shadow octree of this first hoop can
also be used to select the hoops that must be fused with
it, i.e., the hoops that intersect this shadow octree.

4.3 Update the Octree with the Second Hoop.

The result of the previous algorithm is the octree of the
shadow of the initial hoop, the nodes of which have been
classified as BLACK, WHITE or GREY. The proposal of
the updating function is to fusion this octree with the
shadow cast by another hoop to obtain the shadow octree
of the union of the shadow. The proposed algorithm
updates the nodes of the first octree in order to get, in the
end, black nodes where the region of the space is inside
either the shadow of the first hoop or the second hoop,
white nodes where the region of the space is outside both
shadows and grey nodes at the shadow boundary of the
umon.

We proceed as follows: the separating planes of the
second hoop from the view-cell are computed and, for
each of them, the octree is traversed (update_octree2) in
a pre-order traversal. The nodes are classified
(update_node2) taking into account the previous and the
current classification of the node. We compute the final
classification according to table 2.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Previous Current classif. Final Classif.
classif.
WHITE OUTSIDE WHITE
WHITE INSIDE INSIDE
WHITE TRAVERSED GREY
BLACK OUTSIDE BLACK
BLACK INSIDE BLACK
BLACK TRAVERSED BLACK
INSIDE OUTSIDE WHITE
INSIDE TRAVERSED GREY

Table 2: Classification of the nodes for the second
hoop.

ln ihe case of a GREY node being found, nothing is done
with it, just its children are updated recursively.

ln the case of a previously classified BLACK node, its
final classification is BLACK whatever the current
classification against the plane is.

As the shadow of the second hoop is computed
incrementally using the separating planes, special care
must be taken when the nodes previously classified as
WHITE are classified as INSIDE against the current
plane. These nodes are provisionally classified as
INSIDE. To consider these nodes inside the shadow, they
must be classified INSIDE against ali the separating
planes.

ln the case of a node being traversed by the current
separating plane, then, whatever the previous
classification was WHITE or INSIDE, if the maximum
depth has not been reached, the node is subdivided,
labeled as GREY and its eight children classified
recursively. If the maximum depth has been reached, the
node is conservatively classified as WHITE. The children
of a subdivided previous terminal node get an
indetermined classification represented by the label
INDET_l. The algorithm detects if a node does not have
a previous classification and the current classification is
assigned directly to it. Note that in the end of the
algorithm, ali the nodes that were classified as INDET_l
have a classification of WHITE, BLACK or GREY.

The final BLACK nodes will be nodes classified as
BLACK for the hoopl and nodes classify INSIDE of the
hoop2. This is taken into account in the compression
process. If there are more than two hoops to fuse, then for
each new hoop, we have to use diferent INSIDE codes
and consider the previously classifide INSIDE nodes as
BLACK.

Fig. 7 shows a 2D example of the updating of lhe octree.
Black nodes are the ones that were classified BLACK
with the previous algorithm, grey nodes are inside the
shadow of the second hoop.

230

Procedure update_octree2(0:octree;
maxdepth:integer)
var root:node;
begin

root:=get_root(O);

p:plane;

update_node2(0, root, p, l, maxdepth);
end;

procedure update_node2 (O:octree;
p:plane; depth, maxdepth:integer)
var cl, prev_class: integer; k:node;
begin
if node_has_children(n) then
for each son k of n do

n:node;

update_node2(0, k, p, depth+l, maxdepth);
els e
begin

cl:=classify_node(n,p); /lcurrent class.
prev_class:=get_prev_class(n); llprevious

li classification.
case (cl) of

OUTSIDE:
If (prev_class = 'WHITE') or (prev_class
= 'INSIDE') or (prev_class = 'INDET_l')
then

set_final_class(n, 'WHITE');
INSIDE:

if prev_class='WHITE' then
set_final_class(n, 'INSIDE');

if prev_class='INDET_l' then
set_final_class(n, 'BLACK');

TRAVERSED:
if depth<maxdepth then
begin

if (prev_class 'INSIDE') or
(prev_class = 'WHITE') then

set_final_class (n, 'GREY');
subdivide_node(O, n);
for each son k of n do
begin

set_final_class(k, 'INDET_l');
update_node2(0,k,p,depth+l,maxdepth);

end;
end
else

end;
end;

end;

set_final_class(n, 'OUTSIDE');

Algorithm 3: Construction of the octree for
the second hoop.

Fig. 7: The updating of the octree with hoop 2. Black and
grey areas represent the union of the octrees of the
shadows.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

4.4 Compression
As can be easily noticed, the separating planes always
produce the subdivision of the nodes that they cross if the
octree maximum depth is not reached. So both inside and
outside nodes can be over-subdivided. ln order to make
hoop extraction more efficient and save memory, the
octree is compressed using a bottom-up traversal. For
each node, we check the classification of its eight
children. If ali of them are WHITE, then the node turns
its classifications from GREY to WHITE and its eight
children destroyed. The sarne if its children are BLACK.
ln case one or more of its children is classified as GREY,
then nothing is done and the algorithm continues.

We have found experimentally that it is not efficient to
apply the octree compression after each separating plane
updating. Compression becomes necessary when the
umbra is computed for more than four hoops (the number
of hoop edges is usually less than 10); and it is
mandatory the compression previously to compute the
final hoop (because the hoop construction algorithm
takes advantage of having large black nodes).

5. EVALUATION ANO RESULTS
The implemented algorithm works with any kind of 30
object whose hoop has been previously synthesized by
[Brunetül]. The only auxiliary data structure used is an
octree to represent the shadow of the hoop (note that it
was also needed an octree to compute a hoop for a given
object). There are only two geometrical tests: the
classification of a point anda box respect to a plane. Note
that it is not necessary to compute the intersections, only
to detect them. So the algorithm is robust and simple.

The synthetic data used to test the algorithm was the St.
Paul's Cathedral 1 model from where the octree and its
hoop were extracted using [Brunetül] algorithm. The
scene was fonned by two cathedrals located one behind
the other as shown in fig.8 and fig. 9. Ali the algorithms
were programed in C++ and tested on a Pentium II
400Mhz.

Vic:wiD!J Cc:ll

Fig. 8 Initial Scene.

1 Publicly available at h11p://www.3dcafe.com

231

Fig. 9 Initial scene from the view-cell (in grey)

Table 3 shows the number of nodes for the shadow octree
of the union of two hoops (one for each cathedral) given
a view-cell (see figure 8). The statistics have been
computed for different depths of the octree and before
and after the compression process. InHO and InHl are the
nodes classified as BLACK respect to the first and
second hoops respectively: they are considered as simple
BLACK nodes after the compression. InHO includes the
nodes inside the first hoop and in the intersection of the
two shadows. Note that the degree of compression is
notable and that less terminal nodes are obtained.
Nevertheless, we have found that for the efficiency of the
global algorithm, the compression must be done after a
number of fusions (usually 10). Also note that more
compression is obtained for WHITE nodes, that
corresponds with the algorithm's design.

Table 4 shows the number of nodes of the shadow octree
for a hoop obtained as a result of the fusion of the
previous ones. From the shadow octree of the fusion, a
hoop was obtained with the algorithm in [Brunetül] and
its shadow octree has been computed usin_g the sarne
octree bounding box and view-cell. Note that the
compression of the resulting octree does not affect the
number of internai nodes. This is due to the algorithm
design and that the hoop is seen convex from the cell.
Also note that the final number of nodes is similar to the
number of nodes of the shadow octree obtained by the
fusion algorithm. If the size of the nodes is taken into
account, then it can be concluded that the resulting hoop
covers neraly the sarne that the fusion shadows. This fact
is shown in fig. 9. Each hoop has been projected from
each vertex of the view-cell onto a plane located behind
the cathedrals. The intersection of ali the projections for
one hoop is, in fact, the projected shadow of the hoop.
These projections show the projected shadows of the
original hoops labeled as 1 and 2 and the projected
shadow of the final hoop in magenta. As can be seen the
resulting hoop of the union (labeled as R) covers as much
as the other two. This means that the shadow of the
resulting hoop is as big as the shadows of the original
hoops together, so the two hoops can be substituted by

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

the resulting one with a good conservative visibility
occlusion.

The bigger the resolution of the octree, the more accurate
is the resulting hoop. Note how the shadow R covers the
corners of the other shadows as the resolution of the
octree grows.

The processing times for the fusion algorithm are
reasonable (interactive rates) taken into account that the
hoop fusion will be a pre-process for an algorithm of cell
to cell visibility or for the computation of the potential
visible set [Saona-Vazquez99].

6. CONCLUSIONS ANO FUTURE WORK
We have presented an efficient method to compute the
hoop fusion of a set of hoops. It allows to substitute a set
of objects the shadows of which overlap from a view-cell
by a single occluder for visibility computations fro~ a
view-cell. The resulted occluder has better occlus1on
performances than the individual hoops of the initial
occluders.

The algorithm is based on a simple and robust algorithm
that compute incrementally the shadow octree of a set of
hoops. From this octree it is possible to obtain the fusion
hoop by applying a previously published construction
process [BrunetOl].

The experimental results demonstrate the goodness of the
proposed technique. As seen in the examples the hoop of
the shadow union covers as much as the hoops of the
shadow of the two objects together, solving then the
visibility problem.

Our future work is related to integrate the fusion to our
cell-to-cell visibility test to compute pre-process visibility
[Saona-Vazquez99]. Moreover, we would like to analyze
the effect of considering the terminal grey nodes as black
nodes instead of white ones. A priory this moves the
algorithm from conservative (underestimate) to
approximate (overestimate) respect to the occluder
visibility computations [AndujarOOb], but it could be
useful to fuse occluders that are far enough from the
view-cell so it is not possible to see between them. Note
that in this case, it could also be possible to reduce the
octree resolution so improve the algorithm efficiency.
Also note that the initial hoops are always inner to the
object so the degree of approximation could be relatively
low.

7. ACKNOWLEDGEMENTS
The authors would like to thank C. Saona-Vazquez and J.
Jou for their previous research and implementations on
hoops. This work has been partially supported by the
Spanish Ministry of Science and Technology (grant
TIC200J-2226-C02-01).

232

Fig 9. From left to right and top to bottom: projected
shadows for maximum depth 4, 5, 6 and 7

8. REFERENCES
[AndujarOO] Carlos Andujar, Carlos Saona-Vázquez and
Isabel Navazo. LOD visibility culling and occluder
synthesis. Computer-Aided Design, 32(13):773-783,
November 2000.

[AndujarOOb] Carlos Andujar, Carlos Saona-Vázqu.ez,
Isabel Navazo and Pere Brunet. Integrating occlus10n
culling with leveis of detail through hardly-visible sets.
Computer Graphics Forum (Eurographics'OO),
19(3):499-506, August 2000.

[BrunetOl] Pere Brunet, Isabel Navazo, Jarek Rossignac
and Carlos Saona-Vázquez. Hoops.3D Curves as
Conserva tive Occluders for Cell-Visibility. Computer
Graphics Forum 20(3) pp 431-442, September 2001.

[Cohen-Or98] Daniel Cohen-Or, Gadi Fibich, Dan
Halperin and Eyal Zadicario, Conservative visibility and
strong occlusion for viewspace partitioning of densely
occluded scenes. Computer Graphics Forum, 17(3):243-
253, 1998

SIACG 2002 - lst Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

[DurandOO] Frédo Durand, george Drettakis, Joelle
Thollor and Claude Puech. Conservative visibility
preprocessing using extended projections. ln SIGGRAPH
2000 Proceedings, pages 239-248, July 2000.

[KoltunOO] Vladlen Koltun, Yiorgos Chrysanthou and
Daniel Cohen-Or. Virtual occluders: An efficient
interrnediate PVS representation. ln Eurographics
Workshop on Rendering, pages 59-70, June 2000.

[Law99] Fei-Ah Law and Tiow-Seng Tan. Preprocessing
occlusion for real-time selective refinement. ln
Proceedings of the 1999 Symposium on Interactive 3D
Graphics, pages 47-53, 1999.

[Saona-Vazquez99] Carlos Saona-Vázquez, Isabel
Navazo and Pere Brunet. The visibility octree. A data
structure for 3D navigation. Computer & Graphics,
23(5):635-643, 1999.

[SchauflerOO] Gemot Schaufler, Julie Dorsey, Xavier
Decoret and François X. Sillion. Conservative
volumentric visibility with occluder fusion. ln
S/GGRAPH 2000 Proceedings, pages 229-238, July
2000.

[W onkaOO] Peter W onka, Michael Wimmer, and Dieter
Schmalstieg. Visibility Preprocessing with Occluder
Fusion for Urban Walkthroughs. Rendering Techniques
2000 (Proceedings of the Eurographics Workshop on
Rendering 2000). pages 71-82. June 2000.

[Zhang98] Hansong Zhang, Effective occlusion culling
for the interactive display of arbitrary models. PhD
thesis, University of North Carolina at Chapei Hill, 1998.

Deoth Octree of the union
Before Comp. AfterComp.

InHO InHl Tot Out Grey Tot w B G Tot
4 29 108 137 277 59 473 137 102 34 273
5 257 700 957 1263 317 2537 577 600 168 1345
6 1200 3206 4406 5731 1448 11585 2455 2642 728 5825
7 5094 13223 18317 27408 6532 52257 10447 10743 3027 24217

Table 3: Nodes of the octree of the union of 2 hoops

Depth Resulting octree
Before AfterComp.
Como

B w G Tot B w G Tot
4 64 378 63 505 64 154 31 249
5 565 1907 353 2825 565 731 185 1481
6 2027 11225 1893 15145 2027 3042 724 5793
7 7877 21930 4258 34065 7877 8889 2395 19161

Table 4: Nodes of the octree of the resulting hoop

233

