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Abstract 
Detecting collision between surfaces is an important feature for supporting interactive assembly operations 
based on the geometric constraint-based simulation. CAD models define the geometry of components using 
surfaces as the basic primitive while current collision detection toolkits, disregard this information and use only 
polygons. The automatic recognition of geometric constraints can use colliding surfaces to simulate realistic 
behaviour interactively. This paper presents our research into supporting surface based collision detection for 
use in immersive Virtual Environments. That resulted in the implementation of a surface collision detection 
module built on top of RAPID. 

Keywords 
Collision Detection, Surface, Virtual Environment, Virtual Prototyping 

1. INTRODUCTION 
Due to many research efforts over the Iast decade, 

virtual reality technology is now considered as a viable 
design too! for industrial applications. ln his assessment 
of VR, Brooks [Brooks99] concludes that VR industrial 
applications are Iimited to visualization task or tasks 
with simple interaction. The industry now requires that 
these systems integrate realistic behaviour of virtual 3D 
models, making use of surface geometric data provided 
by CAD systems. 

The Virtual Prototyping Group at the Centre for Vir­
tual Environments at Salford has been exploring the 
applicability of VR in different product development 
stages such as maintenance simulation, which involves 
complex object interaction and control [FernandoOl] 
[FernandoOO]. The aim of this research is to develop a 
simulation environment that allows designers and engi­
neers to assess maintenance tasks before any physical 
prototype is built. One of the key challenges presented 
in this research is the simulation of physical realism 
Within the environment to support assembly and disas­
sembly operations on the virtual prototypes. The group 
has chosen the geometric constraint-based approach to 
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simulate assembly and disassembly operations since this 
approach is faster and robust for virtual environment 
applications. ln this geometric constraint-based ap­
proach, the simulation of an assembly relationship is 
considered as a constraint specification and satisfaction 
problem. For example, the creation of an against assem­
bly relationship between two blocks involves satisfying 
an against constraint between two planar surfaces. Once 
this constraint is satisfied, the geometric constraint­
based approach allows the user to perform relative con­
strained motion between the two objects. ln this ap­
proach, disassembly operations involve breaking the 
previously defined constraints by applying an externai 
force. 

The paradigm presented within the maintenance 
simulation environment, developed by the Virtual 
Prototyping Group, is to assemble and disassemble parts 
within immersive environments such as a CAVE or a 
Workbench using direct interaction techniques. A 
constraint manager based on the geometric constraint­
based modelling monitors the user manipulations within 
the environment. While an object is being manipulated, 
the position of the moving object is sampled to identify 
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collisions between objects. When a collision occurs 
between two objects, checks are made to identify 
collisions between surface pairs in order to identify 
potential assembly relationships. The detection of 
collision between surface pairs is time consuming and 
therefore one of the technical challenges in this research 
is to develop a fast collision detection algorithm that can 
perform surface collisions. 

This paper presents the development of a surface based 
collision detection toolkit. This toolkit, built on top of 
RAPID [Gottschalk96], can determine ali colliding 
surfaces of virtual prototypes. RAPID is a public domain 
collision detection library developed to investigate 
colliding polygons in a dynamic scenarios, disregarding 
ali the surface data of the CAD model. The awareness of 
ali the colliding surfaces is a valuable information to the 
constraint manager that can use it to automatically 
recognize constraints between objects. 

The next section gives a brief discussion of the 
techniques used within the RAPID library. Section 3 
describes the implementation of the surface collision 
detection module, which includes spatialization of 
surfaces. Section 4 evaluates the implementation of this 
toolkit using a real industrial case study. Conclusions are 
reported in section 5. 

2. RAPlD COLLISION DETECTION 

RAPID [Gottschalk96] is a public domain collision 
detection toolkit developed at the University of North 
Carolina at Chapei Hill. RAPID defines the geometry of 
objects by a set of triangles (polygon soup), which are 
organised spatially using a hierarchy of oriented 
bounding boxes. An oriented bounding box (OBB) is a 
rectangular bounding box but with an arbitrary 
orientation so that it encloses the underlying geometry 
more tightly. The representation of an oriented bounding 
box encodes not only position and widths, as in the case 
of the axis aligned bounding boxes, but also orientation. 

For the representation of an oriented bounding box A, 
fifteen parameters are used to define the centre point C, 
edge half-lengths ª" a2, a3 and an orientation specified 
as three mutually orthogonal unit vectors A1

, A 2 and 
A 3 , which are the columns of a 3x3 rotation matrix. 
With these parameters we can define the bounded region 
of the oriented bounding box A as: 

R = { P e 9t3 
• P = C + ka A 1 + sa A 2 +ta A 3 

A • 1 2 3 

/\k, S, t E [-1,1] } 

Using a top-down approach, RAPID builds a 
hierarchical tree of oriented bounding volumes. This tree 
is constructed as a recursive application of "fit-and-split" 
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operations. Given a collection of polygons, it fits a 
bounding volume to them, and then partitions the 
collection into two groups. To each group, fit a new 
bounding volume and partition again until ali leaf nodes 
are indivisible. The subdivision rule used in the RAPID 
system is to split the longest axis of an oriented 
bounding box with a plane orthogonal to one of its axes. 

The overall time to build the oriented bounding tree is 
not an essential issue for virtual environments 
applications. This is a pre-processing step that does not 
influence the interactive component of a virtual 
environment. On the other hand, it is important that the 
algorithm for the intersection of three-dimensional 
models, supported by this hierarchical tree of oriented 
bounding boxes, to run in real time. 

ln the RAPID system, the algorithm for finding if two 
OBBs are overlapping is based on the "separating axis" 
theorem, knowing that two convex polytopes are disjoint 
if there exists a separating axis orthogonal to a face of 
one of the polytopes, or orthogonal to an edge from each 
polytope. 

An oriented bounding box has three unique face 
orientations and three unique edge directions. This leads 
to fifteen potential separating axes to test, three faces 
from one OBB, three faces from the other OBB, and nine 
pairwise combinations of edges. If two oriented 
bounding boxes are not in contact, then a separating axis 
exists, and at least one of the fifteen axes mentioned 
above will be a separating axis. If the polytopes are 
overlapping, then clearly no separating axis exists. So, 
testing the fifteen given axes is a sufficient test for 
determining overlap status of two OBBs. 

To find out if two oriented bounding boxes overlap, 
RAPID's strategy is to project the centres and the half­
Iengths of the OBBs onto the separating axis L. If the 
distance between the projected box centres is greater 
than the sum of the projected half-lengths, then the 
intervals and the corresponding oriented bounding boxes 
are disjoint. If the two oriented bounding boxes are 
overlapping then the corresponding children nodes may 
or may not be disjoint, further tests are required. If this 
is the case, this procedure is recursively repeated with 
the children nodes of the oriented bounding box tree 
current node until the leaf nodes are reached. 

Severa] others public domain collision detection systems 
developed based on RAPID are also available for 
polygonal models. 

V-COLLIDE [Hudson97] is built on top of the RAPID 
library and does a sweep-and-prune operation using an 
axis-aligned bounding box (AABB) for each object. ln 
this first levei V-COLLIDE finds ali pairs ofoverlapping 
bounding boxes eliminating pairs of objects that cannot 
intersect. Then for each pair of objects, which are 
potentially in contact, it uses RAPID algorithm based on 
oriented bounding boxes to detect collisions. 
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The PQP library, Proximity Query Package, uses two 
different type of bounding volumes [Larsen99]. lt uses 
rectangle swept spheres (RSS) for distance queries and 
oriented bounding boxes (OBBs) for collision detection. 
It is also based on RAPID library. 

These public libraries implement different approaches 
based on bounding volumes hierarchies to speed up 
collision detection algorithms between general polygonal 
models with no topological data. The basic idea of these 
approaches is to approximate the three-dimensional 
models with bounding volumes to reduce the number of 
pairs of objects or primitives that are needed to be 
checked for contact. 

Bounding volumes used in these implementations are 
mainly axis-aligned bounding boxes or oriented 
bounding boxes. These volumes are used to reject objects 
or pairs of polygons, which cannot intersect, providing a 
small number of polygons to be checked pair wise. 

3. SYSTEM DESCRIPTION 
Industrial designs, developed using modem CAD 
systems, are defined using geometric surfaces. Such 
surface details are required to be maintained within our 
constraint-based design environment to support 
collisions between surfaces and to simulate interactive 
assembly modelling operations between parts. However, 
typical graphical toolkits use polygonal representation to 
visualise objects. Similarly, the collision detection 
toolkits, developed for VR applications, are based on 
triangles. Therefore there is a need for extending the 
current polygonal representations, used for rendering 
and collision detection, to perform surface based 
collisions for supporting interactive assembly modelling 
operations within virtual environments. 

In this research, for supporting surface based collisions, 
we have explored three different mapping techniques for 
determining colliding surfaces based on polygon 
collision detection: surface-polygon mapping, surface­
object mapping and spatial mapping. These three 
methods are designed to optimise the existing features 
offered by current collision detection toolkits such as 
RAPID. These are designed for polygonal models and 
only provide pairs of colliding polygons. We have 
chosen the RAPID algorithms as our collision detection 
toolkit to conduct this research. The following section 
presents the key features of these three approaches. 

3.1 Surface-Polygon mapping 

This implementation associates polygons with their 
surfaces. ln this approach, a geometric kernel called 
Parasolid is used to extract surface information and to 
tessellate each surface individually. These individual 
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surfaces and their corresponding polygonal data are 
stored in a scenegraph (based on the SGI OpenGL 
Optimizer). Each object is considered as a collection of 
surfaces and each surface is maintained within the 
scenegraph as a separate node. Each surface node in the 
scenegraph maintains the surface information and its 
corresponding polygonal data. For example, for a planar 
surface it maintains a point, normal, bounding box and 
polygonal data for that surface. 

The polygonal data from each surface is then inserted 
into the collision detection engine (figure 1). Each 
polygon, inserted into the collision detection module, 
maintains a pointer onto its parent surface in the 
scenegraph. 

Poly on adding 

Collision Detection 

Object 

Polygon 
Soup 

Figure 1: The surface-polygon mapping data 
structure. 

When two objects are tested for collision, the detection 
engine is configured to return ali intersecting triangles. 
These triangles are then processed to identify ali the 
colliding surface pairs. 

A consequence of this approach is that the potentially 
Jarge amount of redundant computation is required since 
the algorithm has to check collisions between ali the 
possible polygonal pairs. However, it is obvious that we 
conclude that two surfaces are colliding when two 
polygons (one from each surface) are colliding and 
hence avoid further collision checks between the 
colliding surfaces. However, since typical collision 
detection libraries, such as RAPID, maintain polygons 
for the objects as "polygon soups" it is not possible to 
eliminate redundant collision checks between polygons. 

3.2 Surface-Object mapping 

A different implementation creates multiple objects in 
the collision detection engine from one single virtual 
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object. The virtual object is first added into the detection 
engine as a whole. Then surfaces are added into the 
collision engine as separate objects: one surface is one 
colliding object. We named this approach surface-object 
mapping (figure 2). 

Ali objects added to the collision detection engine are 
organized hierarchically and a connection is maintained 
between each surface and its representation as a 
colliding object. The whole object is the top node of this 
hierarchy of objects. Surface-objects are underneath this 
node. This hierarchy minimize the tests of non-colliding 
objects. 

Collision Detection 

Object 

Polygon 
List 

Polygon 
Llst 

Figure 2: The surface-object mapping data structure. 

Our current implementation of the surface-object 
collision detection starts by testing the each object's top 
nodes. If both objects' top nodes are colliding, in 
principal ali their surfaces needs to be tested for 
intersection. However, the testing of ali possible surface 
pairs will lead to O(N2

) complexity and therefore 
techniques are required to reduce the number of checks 
made. The following approach was initially used to 
eliminate unnecessary checks. 

The first collision test determines whether there is any 
contact between both objects or not. This test uses both 
objects' complete representation (i.e. the top node of the 
colliding-objects hierarchy). If objects are colliding, their 
surfaces are screened in a second series of intersection 
tests. Here, each surface from one object is tested against 
the complete model of the other colliding object. If the 
result is positive, the surface is added to a list of 
colliding surfaces. This test is repeated to ali surfaces of 
both objects. At the end of these series of tests there are 
two lists of colliding surfaces, one for each object. The 
next step is to test the surfaces on the lists among 
themselves. The positive intersection tests of this last 
step are the colliding surfaces. 
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Table 1 presents the surface-object algorithm described 
above, where the keyword colliding indicate a RAPID 
collision detection test. Although these RAPID collision 
test stop at the first intersecting polygon, the overhead 
associated with the integration of surfaces is significant. 

if objectl colliding object2 
{ 

collList // List of colliding surfaces 
for each surfaceX of objectl 
{ 

if surfaceX colliding object2 
add surfaceX to collList 

for each surfaceY of object2 
if surfaceY colliding objectl 

for surfaceX of collList 
if surfaceX colliding surfaceY 

add colliding pair to result 

Table 1: Suface-object mapping algorithm 

The surface-object collision detection is better suited for 
large surfaces models. This approach eliminates 
redundant tests between multiple colliding triangles of 
the sarne surface. We believe that a more sophisticated 
hierarchy of colliding objects can improve the 
performance of this object-surface implementation. That 
may be a subject for further research. 

3.3 Spatial Mapping 
Spatial mapping consists in partitioning the volume of 
the object into cells. These cells are divisions of the 
object's bounding box used to localise the area of 
collision and efficiently eliminate surfaces that are not in 
this area. The spatial mapping is a pre-processing stage 
that does not determine whether surfaces are intersecting 
or not. It reduces the number of surfaces to be tested by 
the collision detection toolkit. 

The cells result from the division of each edge of the 
object's bounding volume in three equal segments, 
dividing the bounding volume into 27 identical cells. 
Each of these cells corresponds to a bit mask that 
uniquely identifies this cell. Each surface is then signed 
with a bit mask that determines which cells are occupied 
by this surface. A surface can be in more than one cell 
and one cell can include multi pie surfaces. 

The spatial organization of data can be used to eliminate 
some surfaces that are not colliding. lt is an inexpensive 
test compared to the one described in the surface-objecl 
mapping, although it only eliminates surfaces that are 
not in colliding cells. Surfaces that are in these cells but 
are not colliding are not filtered. For this reason a 
combination of both approaches is necessary with 
surfaces still being added to the polygonal collision 
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detection toolkit as objects (as described in the surface­
object mapping). 

We implemented and assessed different spatial mapping 
algorithms, attempting to reduce efficiently the number 
of surfaces to be tested by the polygonal collision 
detection. Two of the algorithms that performed better 
are described bellow. 

A first implementation of this algorithm tested ali cells 
of one object for intersection with ali cells of another 
object. Ali the 27 cells of each object were checked for 
intersection, resulting in 27x27 intersection tests. These 
tests yielded pairs of intersecting cells that defined the 
pairs of surfaces that were potentially colliding. By 
checking ali cells we eliminated pairs surfaces that were 
in colliding cells but that were not colliding with each 
other. Although this filtering was faster than the one 
described in the surface-object mapping algorithm, it 
eliminated fewer surfaces that the surface object 
mapping. This ineffective filtering passed more surfaces 
to lhe last stage of the collision detection process, 
requiring more tests at the latest stage, using the 
polygon-based collision detection. As a result this 
algorithm performed worse than both the surface-object 
and the surface-polygon approaches. 

Object 

Collision Detection 

Object 

Polygon 
List 

Figure 3: Spatial mapping 

A refined algorithm benefits from the speed of spatial 
mapping to complement the accuracy of surface-object 
mapping. It started with an intersection test between the 
?ounding boxes of both objects. If these volumes were 
intersecting further tests were required to determine the 
colliding surfaces. Then each cell of one object was 
~ested with the bounding box of other object. This only 
lílVolved 2x27 intersection tests: the 27 cells of a 
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component A against the bounding volume of a 
component B and the 27 cells of a component B against 
the bounding volume of a component A. These tests 
deterrnined the colliding cells of each component and 
not the pair of colliding cells Iike in the 27x27 
intersection tests. This resulted in more surfaces being 
passed to the following stage. The cells intersection test 
is like a coarse filter that eliminates surfaces from 
further testing. This filtering is not very tight and 
surfaces that are not colliding but occupying an 
intersecting cell are passed to the next filtering stage. 
However, it is faster than other filtering processes, which 
make it ideal for an initial screening. The surfaces 
occupying colliding cells are then passed to the next 
filtering stage: the one described in the surface-object 
mapping. Table 2 outlines this implementation 
algorithm. 

if objectl intersects object2 
{ 

collCellsl // colliding cells of obj 1 
co11Cells2 // colliding cells of obj 2 

BBl // Bounding box of objectl 
BB2 // Bounding box of object2 

For each cellX of objectl 
if cellX intersects BB2 

add cellX to collCellsl 

for each cellY of object2 
if cellY intersects BBl 

add cellY to col1Cells2 

collList // List of colliding surfaces 
for each surfaceX of objectl 

if surfaceX in collCellsl 
if surfaceX colliding object2 

add surfaceX to collList 

for each surfaceY of object2 
if surfaceY in col1Cells2 

if surface Y colliding objectl 
for surfaceX of collList 

if surfaceX colliding surfaceY 
add colliding pair to re­
sul t 

Table 2: Spatial mapping algorithm 

4. EXPERIMENTAL RESUL TS 
We conducted a set of experiments to assess the different 
algorithms for determining colliding surfaces and the 
overhead of integrating surface information into the 
collision detection process. 

We executed severa) different tests that showed that the 
time to determine ali colliding surfaces depended on the 
characteristics of the colliding models. The surface­
polygon approach is better suited for surfaces with small 
number of polygons, while surface-object performs better 
when used with surfaces with many polygons. ln this 
situation, the surface-object collision detection can even 
outperform thc RAPID collision detection of ali colliding 
triangles. 
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From the tests involving objects of different complexities 
we concluded that for objects with an average of up to 30 
polygons per surface the surface-polygon mapping 
performed better in determining the colliding surfaces. 
For more complex objects, the surface object mapping 
showed to be more adequate. The virtual prototypes that 
were provided to us by our industrial partners, when 
tessellated with a tolerance of 0.5 millimetres, have 
approximately this average of polygons per surface. 
Therefore, it is important to investigate the surface 
collision detection performance in this situation. The 
experiments described in this section aim to illustrate a 
realistic scenario in a virtual prototyping environment. 

A real industrial case study from Rolls Royce was used 
in this assessment. The maintenance scenario was 
composed of a Fuel Metering Unit and an Oi! Pump 
from the Trent 800 engine. This is the engine used in the 
Boeing 777. 

The Fuel Metering Unit is a component with 142 
surfaces tessellated to 5472 triangles and the Oi! Pump 
has 912 surfaces, totalling 25302 triangles. Figure 
shows the fuel -metering unit with its surfaces coloured 
randomly and the cells dividing the object's space. 
Figure 5 shows the oil pump with ali its surfaces also 
coloured randomly. 

Figure 4: The Fuel Metering Unit with coloured 
surfaces 
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Figure 5: The Oil Pump with coloured surfaces 

These tests were performed on an ONYX2 with 
MIPS 10000 processors clocked at 250MHz and 4 
gigabytes of RAM. Only one CPU was used, because this 
collision detection software is not a multithreaded 
application . 

Ali triais were performed under identical circumstances. 
To achieve this an interaction was recorded where the 
user moved the Fuel Metering Unit around the Oil 
Pump, which remained static. During this movement 
both objects collided severa! times with different leveis 
of penetration. The recorded interaction was then played 
back using the three different algorithms. During the 
playback of the fuel-metering unit's recorded movement, 
the collision detection was timed. The time to determine 
the colliding polygons, their number, the time to 
determine colliding surfaces and their number was 
recorded. 

The recorded results revealed that the overhead to 
convert from polygons to surfaces using the surface­
polygon mapping was less than 6% of the overall time. 
The expensive operation in this case is the test of ali the 
polygons, many of which are just redundant information. 
The surface-polygon mapping consists of many 
inexpensive tests, but is the required quantity of these 
tests that limits the performance. The spatial mapping 
reduces the number of these tests, reducing the time to 
determine colliding surfaces. 
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Figure 6 -Performance of the three implemented 
mapping techniques 

Figure 6 shows the time to determine ali colliding 
surfaces as a function of the number of colliding 
surfaces. The graph shows a deterioration of the surface­
polygon mapping results when compared to the other 
two approaches. The performance of surface-polygon 
mapping is comparable with the spatial mapping when 
objects are colliding superficially, involving few surface 
intersections. Once objects are penetrating more deeply 
lhe surface polygon mapping degrade considerably when 
compared to lhe spatial mapping. The use of a spatial 
data structure to localise the colliding area allows the use 
of complex virtual prototypes in interactive systems. For 
a number of colliding surfaces between 30 and 50 there 
is a significant improve of performance, pushing to 
interactive rates values that are beyond interactivily 
when using a simple surface polygon mapping. Using a 
spatial approach together with surface object mapping 
we have achieved interactivity in very complex situations 
where we have f.ound about two thousand intersecting 
polygons representing two hundred intersecting surfaces. 

The results presented above demonstrate that it is 
possible to use surface collision detection in interactive 
environments. 

5. CONCLUSION 
From the results we conclude that the hybrid approach of 
spatial mapping and surface-object mapping are the best 
approach to determine colliding surfaces of complex 
object. The time to determine ali colliding surfaces 
between objects leaves a limited time to compute the 
collision response at interactive rates. Nevertheless, the 
surface collision detection is essential for the automatic 
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recognition of geometric constraints that determine the 
collision response. This work presents a solution for 
determining surface intersection between complex 
objects like real case studies of virtual prototypes. 

This work resulted in a library built on top of RAPID 
that is able to identify ali colliding surfaces. Currently it 
implements a surface-object mapping, a surface-polygon 
mapping and a spatial mapping approach for surface 
collision detection. The library operation mode can be 
adjusted to the complexity of the models to be 
manipulated. For use in virtual prototyping 
environments we find the spatial mapping algorithm to 
yield better performance. 
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