
Eurographics Symposium on Parallel Graphics and Visualization (2024)
D. Pugmire, G. Reina, S. Rizzi (Editors)

Efficient Construction of Out-of-Core Octrees
for Managing Large Point Sets

Jonathan Fischer1, Paul Rosenthal2 , and Lars Linsen3

1Chemnitz Technical University, Germany 2University of Rostock, Germany 3University of Münster, Germany

Abstract
Among various space partitioning approaches for managing point sets out-of-core, octrees are commonly used for being simple
and effective. An efficient and adaptive out-of-core octree construction method has been proposed by Kontkanen et al. [KTO11],
generating the octree data in a single sweep over the points sorted in Morton order, for a given maximum point count m per
octree leaf. Their method keeps m+1 points in memory during the process, which may become an issue for large m. We present
an extension to their algorithm that requires a minimum of two points to be held in memory in addition to a limited sequence of
integers, thus adapting their method for use cases with large m. Moreover, we do not compute Morton codes explicitly but rather
perform both the sorting and the octree generation directly on the point data, supporting coordinates of any finite precision.

CCS Concepts
• Computing methodologies → Rendering; Point-based models;

1. Introduction

Visualizing large point-based volumetric data sets imposes chal-
lenging data management tasks, especially for data with highly
varying spatial point distribution, such as those produced by
Smoothed Particle Hydrodynamics (SPH) simulations [LMD∗11].
Due to their enormous sizes, such large SPH data sets demand out-
of-core techniques and level-of-detail approaches for high-quality
rendering at acceptable frame rates. During both preprocessing and
rendering of these data, hierarchical space partitioning is employed
for memory management and data processing tasks.

Among various hierarchical space partitioning schemes, octrees
are popular for being simple and effective. Especially in the context
of out-of-core techniques, they have the unique advantage of allow-
ing a highly efficient construction: Given a maximum number m of
points per octree leaf, an octree can be built during a single sweep
over the point set if the points are sorted along a space-filling curve
that traverses the octree to an infinite depth. The octree can be con-
structed immediately during the out-of-core point sorting process
by integrating the construction as a simple filter right before out-
putting the sorted points.

The idea of building an octree for points along a space-filling
curve has already been followed by Salmon and Warren [SW97] for
use in N-body simulations. Later, Kontkanen et al. [KTO11] pre-
sented the procedure more thoroughly and extended it by a chunk-
ing scheme for saving more coherent octree data to disk to speed up
its later traversal. For their use case of rendering large point clouds,
they employed a rather small m = 16, resulting in a large octree
which thus had to be out-of-core itself.

Our use case is memory management for processing large astro-
physical SPH particle sets out-of-core. Since we require the parti-
cles of a rather compact volume region to be loaded at any time,
a much larger m is appropriate, which may very well reach mil-
lions. Although constructing the octree in a single sweep over the
particles is favorable, Kontkanen et al.’s algorithm bears the disad-
vantage of requiring m+1 points in memory. While this is feasible
also in our use case, we would like to employ a method with a
memory footprint that does not depend on m, to assign more of the
available memory to the sorting process that is run concurrently.

We therefore present an extension to their algorithm, which pro-
cesses the sorted point stream in chunks of arbitrary size. Instead
of keeping the points in yet unprocessed octree nodes in memory,
we build a temporary sub-octree from them, which in this case is
fully defined by its number of leaves at every level and the parti-
cle count of each leaf. When moving from one point chunk to the
next, we thus only require one point and an integer sequence of size
O(logm) in memory, which keeps us equally well prepared for any
points to come as saving all points would.

Moreover, we do not compute any Morton codes explicitly but
instead employ a Morton order comparator function acting directly
on the floating-point coordinates as proposed by Connor and Ku-
mar [CK10]. Their method makes use of a routine xorMSB for
computing the highest index of a differing bit of two floating-point
numbers. Since we reuse this routine in our octree construction
scheme, we introduce their comparator function in Section 2 before
explaining our out-of-core octree construction algorithm in Sec-
tion 3. We then conclude with a performance analysis in Section 4.
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2. Computing Morton Order

Morton’s Z-order curve is a space-filling curve with numerous ap-
plications concerning multidimensional data. For point coordinates
with finite binary representation, as is the usual case for applica-
tions involving point data, its inverse function is well-defined and
maps any point in multiple dimensions to its unique Z-value or
Morton code, which can be computed by interleaving the binary
digits of the point’s coordinates. A set of points can therefore be
sorted by their Z-values, in Morton order.

In many applications of Morton order, the point coordinates are
rasterized into integer coordinates prior to computing the Z-values.
This facilitates a uniform bit length for storing them but limits the
coordinates’ precision, which can be undesirable in cases of highly
varying point densities. However, for sorting points by their Z-
values it is not necessary to explicitly compute these. Chan [Cha06]
showed that it suffices to find the pair of corresponding coordinates
that differ in the most significant bit and compare these coordinates.

This approach has been extended to floating-point coordinates
by Connor and Kumar [CK10]. We explain it in short here, assum-
ing non-negative coordinates for simplicity, although it can be eas-
ily extended to signed ones. Given two points xxx = (x1,x2,x3) and
yyy = (y1,y2,y3), a routine xorMSB is invoked on each coordinates
pair (xi,yi), which returns the greatest index of a differing bit of xi
and yi, serving as a measure of the pair’s importance. Then xxx and
yyy are compared by their most important coordinates pair, giving
precedence to higher index i in case of equal importance.

We reuse xorMSB in our octree construction method and there-
fore restate it here. Let F denote the set of values of some floating-
point data type, MANT_LENGTH the size of the mantissa used,
and INT_MIN be smaller than the smallest index of a possibly set
bit of any element of F, i. e., smaller than the smallest representable
exponent with the mantissa length subtracted.

Algorithm 1: xorMSB(x, y)
Data: x,y ∈ F, both non-negative
Result: INT_MIN if x = y,

else the highest bit index where x and y differ
1 if x = y then return INT_MIN
2 if x = 0 then return ⌊log2 y⌋
3 if y = 0 then return ⌊log2 x⌋
4 if ⌊log2 x⌋= ⌊log2 y⌋ then
5 a←MANT_LENGTH−⌊log2 x⌋
6 return ⌊log2(⌊2

ax⌋⊕⌊2ay⌋)⌋−a

7 return max(⌊log2 x⌋ ,⌊log2 y⌋)

We provide pseudocode for xorMSB in Algorithm 1. Given x,y∈
F, we return the index of the highest significant bit of either x or y
if the other highest significant bit index is not defined (Lines 2 and
3) or lower (Line 7). In case they are the same, we examine the
mantissae in Line 6: We first shift the binary points of x and y by
a bits, such that they have no fractional digit set. Then we convert
each result to an integer type with at least MANT_LENGTH bits
without losing any precision. Afterwards, we apply a bitwise XOR
operation ⊕ to them, take the index of the highest set bit of the
result, and transfer it back to the order of binary indices of x and y.

3. Octree Construction

Kontkanen et al.’s Algorithm. The algorithm by Kontkanen et al.
writes the octree nodes to a file in the order of a depth-first traversal
following Morton order. Inner nodes are kept on a stack while pro-
cessing their children, after which the inner nodes themselves are
constructed.

Starting at the root node, the algorithm reads enough points to
decide whether the current node needs to be split up, i. e., whether
it contains more than m points. If this is the case, the node is pushed
to the stack and its first child becomes the new current node. Oth-
erwise, the current node is finalized, i. e., its node data are written
to the file, and its next sibling becomes the current node. Whenever
a finalized node is the last among its siblings, all points of its par-
ent have been processed. Then, the parent node is popped from the
stack and finalized itself. The procedure is followed until the root
node is finalized.

To decide whether more than m points reside in the current node
and to find its number of points if it is a leaf node, the algorithm
keeps m+1 points in a FIFO queue in memory. When finalizing a
leaf node, its points are removed from the queue before refilling it
with enough points to decide on the next node.

Our Extension. Our algorithm is an extension to Kontkanen et
al.’s which considers the points in chunks of arbitrary size. If a
chunk is not large enough to decide whether the current node con-
tains more than m points, we build a virtual temporary subtree in
memory, rooted in the current node. The subtree contains the point
counts of the nodes that we may have to export in the future if their
direct parents turn out to contain more than m points. Thereby, it
needs to be split up to the level necessary to cope with any further
points coming up in later chunks. Since we allow up to m exactly
identical points in the stream, the temporary subtree must be deep
enough to separate the last seen point ppplast from the last different
point before. Despite possibly comprising many levels, the struc-
ture of the temporary subtree is rather simple in that, for every level,
only the last node considered so far can be a non-leaf, as the ones
coming before in Morton order are already known to not contain
more than m points.

Figure 1 illustrates the temporary subtree in an example case. To
encode it, we only need the point counts of the nodes temporarily
finalized so far, i. e., the sibling nodes preceding the one containing
ppplast in Morton order on every level. We structure this point count
record as a double-ended queue SSS of lists sss0,sss1, . . . ,ssssize(SSS)−1, each
of which contains the up to seven counts corresponding to one oc-
tree level. We write ∑sssi to denote the sum of the point counts in a
single list sssi, and ∑SSS to indicate the sum of all point counts in SSS.
Further, we use a variable n holding the number of points processed
so far that do not belong to a finalized node yet.

If one wanted to keep our algorithm’s memory footprint mini-
mal, one could set it up to consider the points in chunks of size
one, which would then require memory for two points, for SSS, and
for a small fixed number of bookkeeping variables used while pro-
cessing the current point chunk. However, larger chunks greatly
accelerate the process, as we discuss in Section 4.

We employ a variable B, which is always kept equal to the binary
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Figure 1: Example configuration of the temporary subtree in 2D.
Having processed 11≤ m points in the current node (dashed gray)
so far, we cannot decide yet whether it has to be an inner node.
Hence, we build up a temporary subtree rooted in the current node,
up to the depth necessary to separate the last point ppplast (red) from
its predecessor in Morton order. The point counts of the temporarily
finalized nodes are recorded in a queue SSS of lists sss0,sss1 . . . depicted
on the right-hand side, which defines the entire subtree structure.

logarithm (i.e., logarithm to base 2) of the current octree node’s
edge length. It indicates the node’s octree level in absolute terms, ir-
respective of the root node size, which is why we call B its absolute
octree level of the current node. Likewise, another absolute octree
level is indicated by variable C, namely of a node considered for
possibly later becoming the current node. While the current node
is the octree node containing ppplast at level B, we refer to this node
containing ppplast at level C ≤ B as the current potential node.

The greatest absolute octree level required for separating two
points xxx = (x1,x2,x3) ∈ F3 and yyy = (y1,y2,y3) ∈ F3 is the binary
logarithm of the edge length of the largest node containing xxx but
not yyy. We compute it with the help of the xorMSB routine defined
in Algorithm 1, using the function

mbs(xxx,yyy) =
3

max
i=1

(xorMSB(xi,yi)) .

Given a point xxx = (x1,x2,x3) ∈ F3 and an absolute octree level
C ∈ Z, the octree node of size 2C containing xxx is fully fixed. To
determine its index in {0, . . . ,7} among its direct siblings in Morton
order, we employ

mbiC(xxx) =
3

∑
i=1

2i−1
(⌊ xi

2C

⌋
mod 2

)
.

We provide pseudo-code for our method in Algorithm 2. The
steps referring to Kontkanen et al.’s method are highlighted with
surrounding boxes. We have designed this code to also work in
the case of multiple exactly equal points as long as there are at
most m instances of each. However, during the following textual
explanations, we assume distinct points for simplicity.

We consume the first point while initializing the current node,
SSS, B, n, and ppplast in Lines 1 to 5. Then we consider the remaining

Algorithm 2: Out-of-Core Octree Construction
Data: • upper bound m of points per octree leaf

• point sequence in Morton order, not containing
more than m exactly equal instances

• octree root node
1 set current node to root node
2 initialize SSS to an empty list
3 B← log2(current node edge length)
4 n← 1
5 initialize ppplast to the first point

6 foreach point chunk PPP =
(

ppp0, ppp1, . . . , pppsize(PPP)−1

)
do

7 C← B
8 while size(PPP)> 0 do
9 l←min

(
size(PPP)−1,m−n+∑

B−C−1
i=0 ∑sssi

)
10 if ppplast = pppsize(PPP)−1 then
11 n← n+ size(PPP)
12 remove all points from PPP
13 while n > m do
14 execute lines 28 to 32

15 else if ppplast = pppl or mbs(ppplast, pppl)<C then
16 C←C−1
17 if size(SSS)< B−C then
18 append new list of mbiC(ppplast) zeros to SSS

19 else
20 shorten SSS to size B−C
21 k← index of first pppk satisfying mbs(ppplast, pppk)≥C
22 C←mbs(ppplast, pppk)
23 z = mbiC(pppk)−mbiC(ppplast)−1
24 ppplast← pppk
25 n← n+ k+1
26 remove the first k+1 points from PPP
27 while n−1 > m or (B >C and n > m) do
28 push current node to stack

29 finalize its children with point counts in sss0

30 n← n−∑sss0
31 B← B−1
32 remove the first list sss0 from SSS

33 if B >C then
34 append point count n−∑SSS−1 to last list in SSS
35 append z zeros to last list in SSS

36 else
37 finalize current node (point count = n−1)

38 finalize C−B inner nodes from stack

39 finalize z empty nodes

40 n← 1
41 B←C

42 finalize current node (point count = n) and all of its ancestors
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points in chunks of arbitrary size. When starting to process a new
chunk PPP, its points may allow us to finalize the current node. We
therefore initialize the current potential node to the current node,
i. e., C to B, in Line 7.

Conforming with Kontkanen et al.’s algorithm, we then try to
access the m-th point after the current potential node’s first one to
investigate whether it has to be a leaf or an inner node. Since we
have already seen n−∑

B−C−1
i=0 ∑sssi points in this node, we sub-

tract this amount from m to obtain the index of the point we seek.
However, if PPP is not large enough, we consider the last point in PPP
instead. In any case, we save its index to l in Line 9.

As soon as we reach an octree level C small enough to separate
ppplast from pppl , we find the number k of points in PPP belonging to the
current potential node (Line 21). Since mbs(ppplast, ppp) grows with
the point sequence, we can use a binary search for this step, which
is worthwhile especially for large m. During this iteration, we con-
sume all points until pppk, which is the first one outside the current
potential node and thus becomes the new ppplast. The absolute level
of separation between pppk and the point preceding it must be the
one separating pppk and ppplast. As this will be the level of the current
potential node during the next iteration, we set C to it in Line 22.
In order to later account for empty nodes in between the one con-
taining ppplast and the one containing pppk, we save their number as z,
before updating ppplast, n, and PPP.

With n increased, we handle provably inner nodes. This is nec-
essary especially because if C was increased in Line 22, we want to
unwind the temporary octree to the new level but have to make sure
to use its data first. In fact, if C was increased in Line 22, we know
that all ancestors of the current potential node must contain more
than m points because else we would have found the new ppplast al-
ready at an earlier iteration with higher C. Hence, we test in Line 27
whether the current node is an inner one. Thereby, ppplast is already
counted in n but belongs to the current node only if B > C. For
each such identified inner node, we push it to the stack and final-
ize as many children of it as we have already temporarily finalized,
thus consuming the first list in SSS.

Afterwards, SSS is nonempty only if we have not seen more than
m points in the current node. In this case, C cannot have been in-
creased in Line 22 as pointed out earlier, such that B >C still holds.
We thus temporarily finalize the current potential node by append-
ing its point count n−∑SSS− 1 to the last list in SSS in Line 34, fol-
lowed by a 0 for each further empty sibling before ppplast.

If however B≤C, the current potential node is the current node
and C may have increased in Line 22. We therefore finalize the cur-
rent node and its ancestors from the stack that do not contain ppplast.
If any of those has still unfinalized children, we finalize them as
empty nodes during this step. Afterwards, we finalize empty sib-
lings of the node containing ppplast preceding it in Morton order.

When finishing a point chunk PPP, our algorithm ensures that we
have not found more than m points in the last chunk so far. This
is because, after each increase of n, we finalize nodes until n ≤ m.
Therefore, after processing all point chunks, we can simply finalize
the current node in Line 42 and all the inner nodes from the stack
up to the root node, knowing that any further unfinalized nodes
encountered during this step have to be empty leaves.

4. Performance Discussion and Conclusion
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Figure 2: Logarithmic plot of time and memory required by our
method and that of Kontkanen et al. for computing an octree con-
taining 108 points, for various maximum point counts per leaf m.
Computations were conducted on a Lenovo ThinkPad P15v Gen3
with 12th Gen Intel®Core™i7-12700H processor and 32GB RAM.

To compare the performance of our algorithm to that of Kontka-
nen et al., we implemented both in Python (cf. the source code on
OSF [Fis24]). Since both algorithms read over the sorted points in
one sweep and write out a stream of octree data to file, their work-
load for input/output is equal. We therefore focus on their in-core
work. We have applied both methods on several sorted streams of
108 points residing in RAM and timed their work for m = 104,
105, 106, and 107, employing various point chunk sized for our al-
gorithm to examine its impact on performance, see Figure 2. For
chunk sizes below m, the running time is roughly inversely propor-
tional to the chunk sizes, since we have to build up the temporary
octree at the end of every point chunk.

To estimate dynamic memory, we recorded the maximum length
of the octree inner node stack and - for our method - of the point
count record SSS, during each octree construction run. Assuming 128
bytes for holding an inner octree node on the stack, 64 bytes for an
element sssi of SSS, and 24 bytes for a point in a considered chunk, we
than computed the memory estimate as the sum of memory taken
by objects of these three kinds. We found space for the points to
greatly dominate the other components, causing the memory taken
by our method to be roughly proportional to the chunk size.

Naturally, the method by Kontkanen et al. is the better choice if
holding m points in memory is not an issue. However, in our use
case, combining out-of-core point sorting and octree construction,
we are better off assigning most of the available memory to i/o op-
erations and accepting a higher CPU load, as long as the overall
performance remains to be by bound by i/o. We have done so in an
out-of-core SPH particle sorting stage to build an octree for mem-
ory management during a later construction of particle hierarchies
for SPH data visualization [FLR15].
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