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Abstract
The clip technique is a popular method for visualizing complex structures and phenomena within 3D unstructured meshes.
Meshes can be clipped by specifying a scalar isovalue to produce an output unstructured mesh with its external surface as the
isovalue. Similar to isocontouring, the clipping process relies on scalar data associated with the mesh points, including scalar
data generated by implicit functions such as planes, boxes, and spheres, which facilitates the visualization of results interior
to the grid. In this paper, we introduce a novel batch-driven parallel algorithm based on a sequential clip algorithm designed
for high-quality results in partial volume extraction. Our algorithm comprises five passes, each progressively processing data
to generate the resulting clipped unstructured mesh. The novelty lies in the use of fixed-size batches of points and cells, which
enable rapid workload trimming and parallel processing, leading to a significantly improved memory footprint and run-time
performance compared to the original version. On a 32-core CPU, the proposed batch-driven parallel algorithm demonstrates a
run-time speed-up of up to 32.6x and a memory footprint reduction of up to 4.37x compared to the existing sequential algorithm.
The software is currently available under an open-source license in the VTK visualization system.

CCS Concepts
• Computing methodologies → Shared memory algorithms; • Theory of computation → Computational geometry;

1. Introduction

Current computing trends are driven by the increasing size of data
and the evolution of parallel computing systems. However, many
popular algorithms were originally designed for sequential comput-
ing models, which may reduce their effectiveness in modern appli-
cations. For example, Marching cubes [LC87, NY06], a well-known
isocontouring algorithm, widely employed in visualization software
like VTK [SML06], ParaView [AGL05], and VisIt [CBW∗12], in-
herits sequential design patterns that adversely affect performance.
These patterns include building data structures incrementally for
inserting output points and cells, incremental memory allocations,
and duplication of computational operations to produce intermedi-
ate results. These deficiencies prompted the recent development of
Flying Edges [SMG15], a performant and scalable algorithm that
addresses the computational shortcomings of Marching Cubes.

In this work, our goal is to accelerate the sequential clip algo-
rithm introduced by Meredith et al. [MC10], which shares similar
deficiencies with those found in Marching Cubes. This algorithm is
designed with the primary goal of reconstructing material interfaces
from volume fractions for visualization and analysis purposes. It
is capable of processing both discrete and continuous data; how-
ever, this paper focuses solely on its continuous version due to its

simplicity. Furthermore, it exhibits desirable quality across mul-
tiple accuracy metrics, generating smooth surfaces with minimal
defects. Thanks to these noteworthy features, this clip algorithm
is widely recognized as an important visualization technique for
visually exploring complex unstructured meshes.

Contributions: In this paper, inspired by the emergence of new
parallel computing models, we introduce a high-performance batch-
driven parallel clip algorithm optimized for unstructured meshes.
Following the example set by Flying Edges, our proposed algorithm
represents a redesign of Meredith’s sequential clip algorithm, tai-
lored to exploit modern multi-core hardware. Our parallel multi-pass
algorithm has the following novel contributions:

1. Eliminates bottleneck functions, such as coincident point merging,
and reduces incremental memory allocations.

2. Minimizes memory accesses by reducing memory footprint, opti-
mizing cache-friendly access, and avoiding unnecessary accesses.

3. Utilizes fixed-size batches of points and cells, enabling rapid
workload trimming and parallel processing.

4. Significantly surpasses both Meredith’s sequential algorithm and
VTK-m’s [MSU∗16] parallel algorithm in terms of performance
and memory footprint. Additionally, it demonstrates enchanced
parallel efficiency compared to VTK-m’s algorithm.
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Figure 1: An interior view of the external surface of the Japan
Aerospace Exploration Agency (JAXA) Standard Model (JSM), from
the 3rd AIAA CFD High-Lift Prediction Workshop [RSS19], that
was clipped in half using a plane.

In the following sections, we cover related work, define the prob-
lem, discuss Meredith’s sequential clip algorithm, introduce our
batch-driven parallel clip algorithm, evaluate performance and dis-
cuss the results, and conclude with future work.

2. Related Work

Prior research has proposed several approaches for implementing
a clip algorithm. All of these approaches share the common goal
of removing portions of a mesh that are unimportant or interfere
with visual inspection or data processing. As Figure 1 illustrates,
this may involve removing specific regions of the mesh in space or
defining values of a field that should be removed.

Clipping algorithms are typically implemented by processing the
cells of a mesh. For each input cell of a mesh, a clip algorithm
computes a case index based on the scalar values of its defining
points, akin to Marching Cubes, to access a case table. A case table
indicates whether a cell produces nothing, the cell itself, or one or
more new clipped cells. The output cells reference three types of
points: input points, edge point intersections defined by two input
points, and points located at the centroid of input cells.

The VTK library’s [SML96] first clip algorithm, which is still
available today within the vtkClipDataSet class, has a single
pass. During this pass, the algorithm fully extracts each input cell,
computes the case index to access a case table, and generates output
cells and points, incrementally. Notably, a point locator is employed
to identify duplicate points before they are incrementally added.
This algorithm exhibits three noteworthy deficiencies:

• Full Extraction of Each Cell: The algorithm fully extracts each
cell, including not only the point IDs but also its actual points,
leading to increased memory accesses. These points are necessary
for unique insertion into the point locator.

• Use of Point Locator: The algorithm relies on a point locator,
introducing additional computational overhead.

• Incrementally Built Data Structures: The algorithm relies on in-
crementally building data structures by inserting cells and points
while ensuring unique point insertion, thereby impeding indepen-
dent processing. This incremental approach significantly affects

the algorithm’s scalability and prevents parallelization. Addition-
ally, this leads to incremental memory allocations, contributing
to potential inefficiencies in memory usage.

A subsequent clip algorithm by Meredith [MC10], initially in-
corporated into VisIt [CBW∗12] under the vtkVisItClipper
class and later integrated into the VTK library within the
vtkTableBasedClipDataSet class, comprises four main passes.
First, it extracts the point IDs of each input cell, computes its case
index to access a case table, and stores its associated output cells
into intermediate type-specific connection arrays with temporary
point IDs. In the second pass, the number of edge points and cen-
troid points is known, and the number of kept points is determined
by constructing a point map. Third, it extracts the output points.
Finally, it traverses each intermediate type-specific connection array,
renumbers the point IDs of each cell based on the number of kept
points, edge points, and centroid points, and writes them into the
output cells. Although this algorithm eliminates the use of a point
locator and does not fully extract each cell, it still involves incremen-
tal memory allocations due to incremental data structure building.
Moreover, it has the following additional deficiencies:

• Increased Memory Footprint: The algorithm produces intermedi-
ate type-specific connection arrays, nearly doubling the memory
requirements for output cells.

• Computational Overhead: The algorithm requires duplicating the
writing of point IDs for each output cell, introducing computa-
tional overhead.

Moreland et al. [MGMM13] analyzed widely employed algo-
rithms in the Scientific Visualization domain, categorizing the clip
algorithm within the algorithmic class named Build Connected
Topology. This class poses a significant challenge for parallelization
in Scientific Visualization due to its technical complexity, notably
stemming from a lack of prior knowledge regarding the output size.
Moreland’s analysis sparked the collaborative creation of the VTK-
m library [MSU∗16]. VTK-m provides a collection of algorithms
originally found in the VTK library, specifically designed to support
various many-core processors, such as CPUs and GPUs.

VTK-m’s clip algorithm, implemented within the vtkmClip
class, is parallel by design, leveraging simple and reusable parallel
primitives as presented by Moreland et al. [MMP∗21]. These primi-
tives significantly reduce developer costs. The algorithm achieves
independent processing through multiple passes. Instead of gener-
ating intermediate type-specific connection arrays with temporary
point IDs, for each cell several accumulators are used to compute
cell statistics. These statistics are then transformed into offsets us-
ing a parallel prefix-sum operation, ensuring that the output can be
written once with the correct point IDs. Although this algorithm
effectively addresses the previous limitations of both sequential al-
gorithms and is inherently parallel, even for GPUs, it exhibits two
new important deficiencies:

• Increased Memory Footprint: The algorithm’s storage of cell
statistics significantly increases the memory footprint, as these
statistics are stored for each cell.

• Computational Overhead: The prefix sum computation, convert-
ing the accumulators to offsets, is expensive since it is applied to
all cells instead of batches of cells.
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3. Problem Definition

Let M be an unstructured mesh defined as a set of cells C of size
NC, connecting points in set P of size NP. Each cell ci is defined
by its type ti and point connections conci,0,conci,1, . . .. As depicted
in Figure 2, C is constructed using a “Types” array T of size NC,
containing the type of each cell, and a “Connections” array CON of
size NCON , containing the point indices to which each cell connects.
To find the connections for a given cell, a third “Offsets” array OF is
constructed. Each o fi contains the index in CON for the connections
of cell ci, and its points Pci have size NPci

= o fi+1−o fi. The size of
OF is NOF = NC +1 with its last value o fNC = NCON .
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Figure 2: The data structures used to represent an unstructured
mesh.

The input of a clip algorithm is an unstructured mesh M with
scalars S associated with P. S can either be a scalar field, such as
density, or generated from P using an implicit function IF(x), e.g.,
a plane, a box, or a sphere. The points Pci of cell ci have associated
scalar values Sci of size NPci

.

(a) A kept cell. (b) A clipped cell. (c) A discarded cell.

Figure 3: The three high-level cell cases of a clip algorithm, using
a plane implicit function.

Given an isovalue v, a clip algorithm evaluates each cell ci using
its scalars Sci . As shown in Figure 3, this evaluation determines if a
cell ci is kept, clipped, or discarded. ci is kept if all of Sci are above v.
ci is discarded if none of Sci are above v. ci is clipped if it is neither
kept nor discarded, i.e., some scalars are above v and some are not.

When a cell is kept, its output points mirror its input points.
However, when a cell is clipped, new points must be constructed to
represent the new geometry. Two types of points may be generated
(see Figure 4). Edge points are constructed on an edge of the input
mesh and are defined by the two input points of the edge and an
interpolation weight. These points, along with points passed directly
from the input, are generally shared among multiple output cells.

One centroid point, which is defined by input or edge points, may
be constructed within the interior of an input cell. Centroid points
are exclusive to output cells generated by a specific input cell. They
are required, in certain cases, for triangulating the following 3D cell
types: voxels, hexahedrons, wedges, and pyramids.

Figure 4: Example of the point types that clip algorithms can gener-
ate: edge points (green) and centroid points (red). Output cells are
also constructed from points passed from the input (blue).

The output of a clip algorithm is an unstructured mesh M′, defined
with cells C′ and points P′ using the same representation demon-
strated in Figure 2. P′ incorporates three sets of points: kept points
KP which are a subset of P, edge points E, and centroid points CEN
of sizes NKP, NE , and NCEN , respectively.

3.1. Algorithmic Constraints, Terminology and Data Structures

The clip algorithms discussed in this paper are designed to process an
input mesh M consisting exclusively of first-order cells. These cells
adhere to the condition NPci

≤ 8 and belong to one of the following
types: vertex, line, triangle, pixel, quadrilateral, tetrahedron, voxel,
hexahedron, wedge, and pyramid.

Cells are clipped in much the same way as Marching Cubes
[LC87] slices cells. A case index array CI of size NC is constructed
by categorizing each cell’s incident points as either above or below
v, and then combining them to form a unique case index cii for the
tessellation. Since only first-order cells with NPci

≤ 8 are supported,
the case index cii of ci can be represented by 8 bits to capture all 28

possible cases, where each bit of cii is set as cii, j = sci, j ≥ v.

The case index cii of a cell ci is used to access a clip case table,
akin to the Marching Cubes case tables, which facilitate efficient
access to information such as the number and types of output shapes,
the number of points for each shape, and the types of points within
each shape. In this context, shapes encompass both the resulting
output cells and optionally a centroid point used to define them.

The computation of kept points KP requires the creation of a
point map MP of size NP. If mpi ≥ 0, then pi is part of KP and mpi

is its point ID in P′, else if mpi =−1, then pi is discarded. The com-
putation of E uses an edge locator EL that identifies and combines
shared edges in adjacent cells. It provides a unique index for an
edge’s pair of point IDs and stores the linear interpolation weight
used to compute coordinates and other fields at this location. The
computation of CEN requires the storing of the point IDs defining a
centroid point in an input cell.

© 2024 The Authors.
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4. Existing Algorithm: Sequential Clip

As described in Section 2, Meredith’s clip algorithm comprises four
passes. Algorithm 1 provides a high-level description of its passes.

Algorithm 1 Sequential Clip
Input: Unstructured mesh M with points P, scalars S, cells C, and
isovalue v.
Output: Clipped unstructured mesh M′ with points P′ and cells C′.

1: Pass 1: Evaluate cells and extract output cells into intermediate
type-specific connection arrays with temporary point IDs.
Determine number of output cells, edge points, and centroid
points.

2: Pass 2: Define a point map and determine the number of kept
points.

3: Pass 3: Extract kept points, edge points, and centroid points.
4: Pass 4: Extract the output cells by renumbering the point IDs

of the intermediate type-specific connection arrays.

4.1. Pass 1: Evaluate Cells

Initially, the number of kept points NKP, edge points NE and centroid
points NCEN , is not known. To characterize intermediate output cells’
temporary point IDs, three ID segments are defined: 0≤ ID < NP
(input point), ID≥ NP (edge point), and ID < 0 (centroid point).

In the first pass, the cells are traversed. For each cell ci, its case
index cii is computed using Sci to access a case table. Then, the
number of output shapes is extracted, and the shapes are traversed.

For each output shape, its points are traversed, and their IDs are
defined as follows: If it is an input point, its temporary ID remains
the same as its input point. If it is an edge point, it is inserted into the
edge locator EL; its unique edge ID is retrieved, and the temporary
edge point’s ID is set as ID← NP + ID. If it is a centroid point, the
temporary centroid point’s ID is set as ID←−1−NCEN , where
NCEN represents the current size of CEN.

After defining the point IDs, if the output shape is the special
centroid, the centroid is defined using the IDs and incrementally
inserted into CEN. For other shape types, the cell type is extracted,
and the IDs are incrementally inserted into an intermediate type-
specific connection array. Finally, upon completion, NC′ (including
NCON ′ and NOF ′ ), NE , and NCEN become known.

4.2. Pass 2: Define Point Map

To compute KP, a point map MP of size NP is initialized to −1, and
a counter← 0 is created. Next, the output point IDs of each cell
in the intermediate type-specific connection arrays are traversed. If
0≤ ID<NP, and mPID =−1, mPID ← counter is set, and the counter
is incremented. At the end of this loop, NKP← counter and KP is
derived from the non-negative entries in MP.

4.3. Pass 3: Extract Output Points

In the third pass, the output points P′ are allocated, and the fol-
lowing types of points are inserted: the kept points KP, the edge
points E that are created using their two point IDs and their linear
interpolation weight, and the centroid points CEN.

4.4. Pass 4: Extract Output Cells

In the fourth pass, the point IDs of each cell in the intermediate
type-specific connection arrays are renumbered and written into the
output cells C′. This renumbering is possible since NKP, NE and
NCEN are now known. First, the output cells C′ of size NC′ are allo-
cated. To populate C′, each intermediate type-specific connections
array is traversed. For each cell, its type is inserted in T ′, and its
point IDs are renumbered as follows and written in CON′ by defin-
ing OF ′: If 0≤ ID < NP (input point), then ID← mPID . If ID≥ NP
(edge point), then ID← NKP + ID−NP. If ID < 0 (centroid point),
then ID← NKP +NE − ID−1.

5. Proposed Algorithm: Batch-Driven Parallel Clip

The proposed batch-driven parallel clip algorithm comprises five
passes aimed at enhancing parallel execution and eliminating all de-
ficiencies mentioned in Section 2. Algorithm 2 provides a high-level
description of its passes. Subsequent subsections offer comprehen-
sive details on batch definition, detailed descriptions of each pass,
and implementation details regarding workload trimming, memory
footprint and access, load balancing, and parallel execution.

Algorithm 2 Batch-Driven Parallel Clip
Input: Unstructured mesh M with points P, scalars S, cells C, and
isovalue v.
Output: Clipped unstructured mesh M′ with points P′ and cells C′.

1: Pass 1: Evaluate batches of points and associated scalars
against the isovalue, defining a point map, and determining the
number of kept points.

2: Pass 2: Evaluate batches of cells, collect edge points, and
determine the number of centroid points, number of output
cells, output connections’ size, case indices, and batch-related
information enabling the writing of cells in Pass 4.

3: Pass 3: Create the edge locator.
4: Pass 4: Extract output cells and define the centroid points.
5: Pass 5: Extract kept points, edge points, and centroid points.

5.1. Batch Definition

Assume a set A, such as points or cells, of size NA. A can be par-
titioned into batches BA with each batch having a fixed size of SB,
except the last batch containing the remainder. Each batch bAk can
have extra variables, such as accumulators, storing statistics related
to the algorithm’s processing primitive and used for generating
output.

Batches can be efficiently removed or trimmed if they meet spe-
cific criteria, such as having one of their accumulator variables equal
to 0, thereby enabling workload trimming. The accumulator vari-
ables of a batch, which is part of a collection of batches, can be
leveraged to calculate global summations. Furthermore, these accu-
mulator variables can be efficiently transformed in-place to offsets
using a parallel prefix-sum.

The configurability of the batch size SB, which is evaluated in
Section 6.2, significantly affects both run-time performance and
memory footprint, showcasing noticeable enhancements or deterio-
ration depending on the dataset size.

© 2024 The Authors.
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5.2. Pass 1: Define Point Map

The batches of points BP have a size of NBP . Each batch bPk has an
accumulator variable for the number of kept points. Initially, the
batches of points are traversed in parallel. For each scalar value si
of a point pi in batch bPk , if si ≥ v, then mpi ← 1, else mpi ←−1.
If mpi = 1, then the accumulator is incremented. Upon completion,
the accumulator contains the number of kept points in the batch.

Subsequently, the batches whose accumulator of kept points is
zero are trimmed. For the remaining batches, a parallel prefix sum of
the accumulated kept points count is computed. The summed values
contain the offset in the output points array for the kept points, and
the total summation is NKP.

Finally, the remaining batches of points are traversed in paral-
lel again. Before traversing each batch bPk , a counter← offset is
created. For each pi in bPk , if mpi = 1, then mpi ← counter and the
counter is incremented. Eventually, an MP equivalent to that gener-
ated in the sequential algorithm is defined, and KP is determined.

5.3. Pass 2: Evaluate Cells

The batches of cells BC have a size of NBC . Each batch bCk contains
three accumulator variables: output connections’ size, number of
output cells, and number of centroid points. Initially, the batches of
cells are traversed in parallel. For each cell ci in each batch bCk , its
case index cii is computed using Sci to access a case table. Then, the
number of output shapes is extracted, and the shapes are traversed.

For each output shape, its points are traversed. Any edge point
is inserted into thread-local edge points. Afterwards, if the output
shape is the special centroid, the number of centroid points in bCk is
incremented. For other shape types, the number of output cells and
their output connections’ size in bCk are incremented.

Once the batch processing is completed, the batches whose num-
ber of output cells accumulator is zero are trimmed. Subsequently,
the global summation of all accumulators, including NCON ′ , NC′ ,
and NCEN , is computed, and the accumulators of each batch are con-
verted to offsets. Finally, the thread-local edge points are merged.

5.4. Pass 3: Create Edge Locator

The merged edge points undergo parallel sorting, prioritizing the first
point’s ID and then the second point’s ID. This sorting facilitates the
identification of duplicate edge points through sequential traversal
of the sorted edges, resulting in the formation of the unique edge
points E of size NE . The EL is created by defining beginning and
ending offsets for each first point ID defining a static hash map.
Given the two point IDs defining an edge, EL enables the swift
retrieval of a unique edge point ID.

5.5. Pass 4: Extract Output Cells

First, output arrays for CON′, OF ′, and T ′ are allocated using the
value of NCON ′ and NC′ computed in Pass 2. Likewise, an array CEN
to hold centroid points is allocated using NCEN . Then, the trimmed
batches of cells are traversed in parallel. For each cell ci in bCk , its
case index cii is used to access a case table. Then, the number of
output shapes is extracted, and the shapes are traversed.

For each output shape, its points are traversed, and their IDs are
defined as follows: if it is an input point, its ID is set as ID← mpID ;
if it is an edge point, its unique ID is retrieved using the edge locator
EL and set as ID← NKP + ID; and if it is a centroid point, its ID is
determined using the offset of the number of centroids’ accumulator
in bCk and set as ID← NKP +NE + ID.

After defining the point IDs, if the output shape is the special
centroid, the centroid is defined using the point IDs and is inserted
into CEN. For other shape types, the cell type is extracted, and
point IDs, offset, and cell type are written to CON′, OF ′, and T ′,
respectively, at the correct memory position. This is facilitated by
the offsets of the output connections’ size and the number of output
cells accumulators in bCk , computed at the end of Pass 2. All offsets
are then appropriately incremented. Finally, the last offset value is
assigned as o f ′NC′

= NCON ′ .

5.6. Pass 5: Extract Output Points

As described in Section 3, there are three types of points: kept points,
edge points, and centroid points. With the completion of Pass 4, all
necessary information is available to define the output points P′.
Firstly, the output points P′ of size NP′ = NKP +NE +NCEN are
allocated. Afterwards, the trimmed batches of input points are tra-
versed in parallel. For each point pi in bPk , if mpi > 0, it is written
to P′ at position mpi . Subsequently, the edges E are traversed in par-
allel. For each edge ei with two point IDs and a linear interpolation
weight, the edge point is constructed and written to P′ at position
NKP + i. Finally, the centroid points CEN are traversed in parallel.
For each centroid ceni, the centroid point is constructed and written
to P′ at position NKP +NE + i.

5.7. Workload Trimming

As most cells in a clip operation are either fully kept or entirely
discarded, utilizing trimming techniques whenever feasible can sig-
nificantly reduce the workload. To that end, the following two opti-
mizations are implemented:

• Trim Batches: In Passes 1, 2, 4, and 5, the algorithm iterates over
batches of points or cells. One motivation for this approach is
to enable trimming point batches with no kept points in Pass 1
and cell batches that yield no output in Pass 2. As a result, in the
second part of Pass 1, in Pass 4, and in Pass 5, fewer batches of
points and cells are traversed, respectively, whenever possible.

• Store Case Index: In Pass 2, we save the 8-bit case index of
each cell. Although this requires additional memory, in Pass 4 it
enables the quick determination of whether a cell is kept, clipped
or discarded without recomputing it by re-accessing the scalars,
and therefore, enabling quick cell trimming.

5.8. Memory Footprint and Access

The clip algorithm is not inherently computationally expensive;
therefore, its performance and scalability are constrained by mem-
ory bandwidth. It is crucial to minimize memory accesses by re-
ducing the memory footprint and ensuring cache-friendly access or
avoiding memory access whenever possible. To achieve this goal,
the following five optimizations are implemented:

© 2024 The Authors.
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• Optimize Point Map Computation: Instead of constructing the
point map by traversing the point IDs of output cells to determine
if they use an input point, as done in Meredith’s and VTK-m’s
clip algorithms, our proposed algorithm traverses input points.
It determines whether they are kept based on their scalar value,
as described in Section 5.2. Traversing the cell connectivity is
less cache-friendly because it writes values in the point map in
a non-sequential order. Furthermore, points shared by adjacent
cells will access the same point map entries multiple times.

• Use 32-bit IDs: If NC ≤ 2,147,483,647, the output cells and
point map can be constructed using 32-bit IDs, instead of 64-bit
IDs, leading to a halved memory footprint for both.

• Optimize Case Tables: The case tables used by the sequential
clip algorithm, which consist of several arrays per cell type, are
packed into one array that can be accessed using an index lookup
table. This optimization ensures cache-friendly memory access,
especially for input meshes containing more than one cell type.

• Avoid Accessing Case Tables: Using the case index, the determi-
nation of whether a cell is kept or discarded can be performed
without accessing the case tables. Even with the optimized case
tables, this improvement proves to be a significant fast-path, since
the majority of the input cells are either kept or discarded, and
only a small portion is clipped.

• Minimize Accumulators’ Memory Footprint: In contrast to VTK-
m’s clip algorithm, the batch-driven parallel algorithm allows
batches to store accumulators for a sequence of cells, not just
one. The higher the batch size, the greater the memory footprint
reduction benefit.

5.9. Load Balancing and Parallel Execution

Load balancing is challenging when the size of the output can-
not be determined a priori or when the amount of work differs
for ostensibly similar tasks. For all parallel traversals, VTK uses
vtkSMPTools to perform parallel execution. vtkSMPTools has four
backends: 1) Sequential, 2) std::thread without load balanc-
ing, 3) OpenMP using schedule(runtime) for load balancing, and 4)
TBB [Rob11] using parallel_ f or, which manages a thread pool to
process tasks and performs work-stealing when necessary. Based on
performance analysis of various algorithms, TBB has been chosen
as the default backend for vtkSMPTools due to its load balancing
capabilities. Nonetheless, the backend is configurable at runtime
using vtkSMPTools::SetBackend("BackendName").

Alternative approaches to enhance load balancing in parallel iso-
contouring involve domain decomposition using data structures such
as octrees, sphere trees, and contour trees. However, the cost of cre-
ating such data structures incurs overhead that is not justifiable for
the clip algorithm, as the output size can be orders of magnitude
larger compared to isocontouring. In contrast, the batch-driven ap-
proach, which includes workload trimming, boosts thread utilization
by eliminating batches without work, thereby improving parallel
scalability.

The proposed batch-driven parallel clip algorithm has been seam-
lessly incorporated into VTK and ParaView, both of which possess
MPI awareness. Assuming data have already been distributed across
MPI nodes, and since no data dependencies exist between nodes,
this algorithm can be effortlessly executed at large scales.

(a) A Human Torso generated by parallel Surface Nets [STHF24] using as
input an AI-generated segmentation from Total Segmentator [WBM∗23].

(b) The CX-1 Sedan provided by Altair Engineering, Inc.

(c) The Japan Aerospace Exploration Agency (JAXA) Standard Model
(JSM) from the 3rd AIAA CFD High-Lift Prediction Workshop [RSS19].

(d) The fluid volume around an F-15 aircraft, provided by Helden
Aerospace, Inc.

Figure 5: The datasets used for the performance evaluation.
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6. Performance Evaluation

In this performance evaluation of clip algorithms, we assess the
performance of Meredith’s sequential algorithm (clip-seq) [MC10],
VTK-m’s parallel algorithm (clip-m-par) [MSU∗16], and our batch-
driven parallel algorithm (clip-par). VTK’s first sequential algo-
rithm [SML96] is omitted from this evaluation due to its significant
slowness. While all algorithms are MPI-aware thanks to VTK’s
infrastructure, we opted not to use MPI because an algorithm would
simply be executed independently on each node. Thus, analyzing
beyond the desktop is unnecessary for the scope of this paper.

The performance evaluation is performed on a computing node
that has an Intel Xeon Gold 6226R processor with 16 physical and
32 logical cores (including 16 hyper-threads), and 64GB of DDR4
memory. All algorithms are executed within a Docker container,
utilizing the GCC compiler 13.2.0, CMake 3.27.0, and TBB 2021.9
for a standardized evaluation environment (see Appendix A).

6.1. Methods

We evaluated the clip algorithms’ performance using four datasets
(see Table 1 and Figure 5) with varied sizes and cell distributions.
For each clip algorithm execution, a dataset is clipped using a plane
implicit function with a normal vector (1,0,0). Its origin is centered
on the dataset’s bounds along the y and z axes, while the percentage
variable Per controls its position along the x-axis, enabling the cre-
ation of output meshes with different sizes. For Per values equal to
20%, 50%, and 80%, we aim to clip most, half, and a small fraction
of the dataset, respectively. The run-time and memory footprint are
averaged over ten algorithm executions, excluding dataset reading.

Table 1: Datasets’ input size and output size for {20%, 50%, 80%}
Per values. M stands for millions and K for thousands.

Dataset Torso CX-1 JSM F-15

Input
NP 1.4 M 8.2 M 50.4 M 116.4 M
NC 2.9 M 16.2 M 120.0 M 246.1 M

Per 20%
NP′ 0.2 M 1.2 M 0.9 K 3.1 K
NC′ 0.4 M 2.4 M 2.0 K 9.0 K

Per 50%
NP′ 0.7 M 3.1 M 35.3 M 91.0 M
NC′ 1.5 M 6.2 M 83.0 M 192.0 M

Per 80%
NP′ 1.2 M 5.3 M 50.4 M 116.4 M
NC′ 2.5 M 10.4 M 120.0 M 246.0 M

6.2. Batch Trimming and Size

Figure 6 clearly demonstrates the significant impact of trimming on
the run-time of the clip-par algorithm across different batch sizes.
Notably, the effects of batch trimming are most clearly demonstrated
at Per = 20%, highlighting its substantial efficacy. While the me-
dian run-time differences with and without trimming are smaller at
Per = 50% and Per = 80%, since they generate more output cells,
the reduction in run-time variance is noteworthy. Both aforemen-
tioned observations support that batch trimming enhances clip-par’s
algorithm performance. Therefore, batch trimming is consistently
enabled in all subsequent executions.

Figure 6: Clip-par algorithm’s normalized run-time distributions of
{20%, 50%, 80%} Per values with and without batch trimming for
varying batches, evaluated using the F-15 dataset, and employing
32 threads. Each run-time is divided by the average run-time with
and without trimming for every Per value.

Figure 7: Clip-par algorithm’s normalized run-time distributions of
varying batch sizes, with trimming, constructed using the normalized
run-times of {20%, 50%, 80%} Per values, evaluated using the F-15
dataset, and employing 32 threads. Each run-time is divided by the
average run-time with and without trimming for every Per value.
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Table 2: The run-time of clip-seq, clip-m-par, and clip-par algorithms evaluated using the datasets shown in Figure 5 with {20%, 50%, 80%}
Per values, and employing 1, 16 and 32 threads (T ).

Torso CX-1 JSM F-15
Algorithm T Per Time (ms) Speed-up Time (ms) Speed-up Time (ms) Speed-up Time (ms) Speed-up

clip-seq 1 20% 142 1.00 980 1.00 5,357 1.00 11,285 1.00
clip-m-par 1 20% 352 0.40 2,238 0.44 14,720 0.36 30,402 0.37
clip-m-par 16 20% 82 1.73 432 2.27 2,688 1.99 5,497 2.05
clip-m-par 32 20% 71 2.00 414 2.37 2,369 2.26 5,010 2.25
clip-par 1 20% 100 1.42 542 1.81 3,233 1.66 6,813 1.66
clip-par 16 20% 15 9.47 66 14.85 389 13.77 687 16.43
clip-par 32 20% 11 12.91 54 18.15 385 13.91 652 17.31

clip-seq 1 50% 246 1.00 1,547 1.00 18,347 1.00 44,770 1.00
clip-m-par 1 50% 495 0.50 3,116 0.50 30,621 0.60 81,135 0.55
clip-m-par 16 50% 109 2.26 560 2.76 5,206 3.52 11,151 4.01
clip-m-par 32 50% 93 2.65 513 3.02 4,641 3.95 10,081 4.44
clip-par 1 50% 132 1.86 805 1.92 7,397 2.48 19,068 2.35
clip-par 16 50% 21 11.71 92 16.82 888 20.66 1,854 24.15
clip-par 32 50% 15 16.40 80 19.34 820 22.37 1,497 29.91

clip-seq 1 80% 363 1.00 2,169 1.00 25,940 1.00 55,225 1.00
clip-m-par 1 80% 637 0.57 3,876 0.56 40,260 0.64 93,661 0.59
clip-m-par 16 80% 124 2.93 670 3.24 6,044 4.29 12,180 4.53
clip-m-par 32 80% 106 3.42 600 3.62 5,412 4.79 11,210 4.93
clip-par 1 80% 172 2.11 1,116 1.94 8,307 3.12 22,508 2.45
clip-par 16 80% 24 15.13 120 18.08 894 29.02 2,133 25.89
clip-par 32 80% 20 18.15 95 22.83 884 29.34 1,694 32.60

Figure 7 clearly demonstrates the significant impact of choosing
the appropriate batch size on the run-time of the clip-par algorithm
for different Per values with trimming enabled. Notably, very small
batch sizes lead to a substantial performance overhead. This stems
from the fact that the size of the accumulators increases, and there-
fore, more memory is accessed to compute the prefix-sums and
global summations of the accumulators. When analyzing the ideal
batch size, it is evident that the run-times follow a quadratic curve.
While several batches with sizes greater than 1000 lead to similar
median run-times, the variance of their distribution is larger. Notably,
a batch size of 1000 seems to be the optimal point on this curve,
demonstrating the least variability across different Per values. Con-
sequently, the optimal batch size of 1000 is chosen and consistently
used in all subsequent executions.

6.3. Run-time Performance

Table 2 showcases the run-time performance of clip-seq, clip-m-par,
and clip-par algorithms. Notably, clip-par stands out with significant
speed-ups over clip-seq of up to 3.12x on just 1 thread and up to
32.60x on 32 threads. This enhancement is credited to optimizations
detailed in Sections 5.7 and 5.8 and is underscored by clip-seq’s
limitations in Section 2. Conversely, clip-m-par shows a noticeable
slowdown compared to clip-seq with a single thread, with sub-
optimal speed-ups from 0.36x to 0.64x. Despite this, thanks to its
parallel capabilities, clip-m-par achieves a noteworthy speed-up of
up to 4.93x. The relative slowness of clip-m-par compared to clip-
seq with a single thread is attributed to the usage of accumulators

per cell. Overall, clip-par is always faster than clip-m-par by up to
7.68x on the same number of threads and faster than clip-seq on a
single thread by up to 3.12x.

Overall, as illustrated in Figure 8, it is evident that clip-par demon-
strates enhanced parallel efficiency compared to clip-m-par. With
16 and 32 threads, clip-par achieves efficiencies of 66% and 42%,
respectively. The inability to reach 100% efficiency is attributed to
load balancing challenges, as discussed in Section 5.9, and memory
bandwidth constraints, as noted in Section 5.8. The drop in paral-
lel efficiency from 66% to 42% is expected due to the additional

(a) Clip-m-par’s parallel efficiency. (b) Clip-par’s parallel efficiency.

Figure 8: The parallel efficiency of the clip-m-par and clip-par
algorithms evaluated using the datasets shown in Figure 5 with 80%
Per value, and employing 1, 2, 4, 8, 16 and 32 threads. The dashed
lines represent the usage of 16 additional hyper-threads.
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16 threads being hyper-threads. Also, a discernible trend emerges:
parallel efficiency declines as the number of threads increases. How-
ever, it is important to highlight that parallel efficiency improves
with larger datasets.

Table 3 provides a breakdown of the run-time for each pass of
the clip-par algorithm. Notable, since Per directly influences the
amount of output to extract, and Passes 4 and 5 extract the output,
it’s understandable that they exhibit high sensitivity to Per. More-
over, Pass 3 emerges as the least resource-intensive pass, because
NE << NP,NC. Lastly, the implicit function computation and Pass
1 demonstrate comparatively lower parallel efficiency.

Table 3: The run-time of each pass (P) of the clip-par algo-
rithm, including the scalar point data computation with the plane
implicit function (IF(x)), evaluated using the F-15 dataset with
{20%, 50%, 80%} Per values, and employing 1 and 32 threads (T ).

Time (ms)
T Per IF(x) P1 P2 P3 P4 P5

1 20% 553 276 6,178 37 1 1
32 20% 140 38 382 41 1 1
1 50% 549 361 6,354 76 9,655 1,881

32 50% 117 52 400 50 597 171
1 80% 621 383 6,104 35 12,158 2,280

32 80% 116 57 358 42 667 205

6.4. Memory Footprint

Table 4 demonstrates the substantial reduction in memory foot-
print achieved by the clip-par algorithm, which is up to 4.37 times
less than that of clip-seq, thanks to optimizations explained in Sec-
tion 5.8. In contrast, the memory footprint of clip-m-par exhibits a
distinct pattern, increasing by up to one order of magnitude for low
Per values and by 1.73x for high Per values compared to clip-seq.
In summary, clip-par consistently maintains the smallest memory
footprint under most conditions and under the largest memory con-
ditions.

Table 4: The memory footprint of clip-seq, clip-m-par, and clip-par
algorithms evaluated using the datasets shown in Figure 5 with
{20%, 50%, 80%} Per values. The memory footprint is the same
regardless of how many threads are being utilized.

Memory (megabytes)
Algorithm Per Torso CX-1 JSM F-15

clip-seq 20% 92 581 588 1,349
clip-m-par 20% 388 4,946 13,743 28,156
clip-par 20% 29 230 695 1,664

clip-seq 50% 196 1,058 13,375 33,294
clip-m-par 50% 447 1,925 15,991 35,914
clip-par 50% 53 417 3,295 8,640

clip-seq 80% 302 1,592 19,008 40,370
clip-m-par 80% 523 1,969 19,715 41,788
clip-par 80% 80 624 4,348 10,573

7. Conclusions and Future Work

We have designed a batch-driven parallel clip algorithm optimized
for clipping unstructured meshes with a continuous point-associated
set of scalar data that exhibits high performance and low memory
footprint. The inspiration for developing this algorithm comes from
the advent of new parallel computing models and the realization
that many algorithms need to be redesigned to take full advantage of
modern multi-core hardware. Our parallelized clip algorithm oper-
ates over fixed-size batches of points and cells. Batches enable rapid
workload trimming and parallel processing, leading to a significantly
improved run-time performance and memory footprint compared to
Meredith’s sequential algorithm and VTK-m’s parallel algorithm.

In the future, when batch processing capabilities are introduced
into VTK-m, we aim to incorporate our proposed batch-driven clip-
ping algorithm, thereby harnessing GPU utilization within the frame-
work. Additionally, our proposed batching technique, along with sev-
eral concepts from the Flying Edges algorithm, could be potentially
used to design an efficient clipping algorithm tailored for structured
meshes, such as medical images. Finally, we plan to enhance the
parallel Surface Nets discrete isocontouring algorithm [STHF24] by
integrating batch processing. We anticipate that this enhancement
will substantially improve the processing of segmented medical
images that are sparse.

We have adhered to the principles of reproducible science by
integrating our batch-driven parallel algorithm into the Open-Source
VTK library [SML06]. The code has been included in a later version
of the vtkTableBasedClipDataSet class. For details regarding
the versions of VTK used, please refer to Appendix A.
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Appendix A: Reproducibility of Results

To reproduce the results presented in Section 6, access the vtk-clip-
evaluation repository. This repository includes the evaluation code
along with a link to the used datasets and a Docker image that
includes all the built executables used for the performance evalu-
ation. There are six executables: clip-par-test-various-batchSizes-
trimming-no, clip-par-test-various-batchSizes-trimming-yes, clip-
par-pass-time, clip-seq, clip-m-par, and clip-par. Each executable
compiles against a different version of VTK that includes the appro-
priate version of the vtkTableBasedClipDataSet and vtkmClip
classes. The VTK version that is utilized by each executable can be
found at its CMakeLists.txt in the form of a Git commit SHA.

All executables have the input filename, percentage, and num-
ber of iterations parameters, while the parallel ones also have the
number of threads parameter. At the end of each execution, the
following information is printed: the memory used by the dataset in
kilobytes, the average time spent by each algorithm in milliseconds,
and the maximum memory used by the executable in kilobytes. The
memory footprint of the algorithm is determined by subtracting the
memory used by the dataset from the maximum memory used by
the executable. The following command shows an output example
of the clip-par executable.

$ /usr/bin/time -vv\
./clip-par ./Torso.vtu 0.5 1 8

Origin: 490.803, 287.599, 648.45
Normal: 1, 0, 0
Number of input cells: 2867390
Number of input points: 1404982
Memory used by dataset in KB: 139372
Number of output cells: 1454024
Number of output points: 720730
Time in ms: 19
Command being timed:\

"./clip-par ./Torso.vtu 0.5 1 8"
...
Maximum resident set size (kbytes): 197924
...
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