
Eurographics Symposium on Parallel Graphics and Visualization (2024)
D. Pugmire, G. Reina, S. Rizzi (Editors)

Fast Rendering of Parametric Objects on Modern GPUs

Johannes Unterguggenberger, Lukas Lipp, Michael Wimmer, Bernhard Kerbl, and Markus Schütz

TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

(a) SH glyph order 12 (b) 19,600 SH glyphs (c) Parametric seashell (d) 358k fiber curves (e) Fiber curves close-up

Figure 1: Our technique is able to render a variety of parametrically defined objects with diverse properties—all in real time. The frames per
second for Figures 1a to 1e on a mid-range previous-generation NVIDIA RTX 3070 GPU are 248 FPS, 270 FPS, 349 FPS, 98 FPS, 138 FPS,
respectively (Figures 1a and 1b rendered at 1440×1440 resolution, Figures 1c to 1e at 1920×1080 with 4×SSAA and 8×MSAA).

Abstract
Parametric functions are an extremely efficient representation for 3D geometry, capable of compactly modelling highly complex
objects. Once specified, parametric 3D objects allow for visualization at arbitrary levels of detail, at no additional memory cost,
limited only by the amount of evaluated samples. However, mapping the sample evaluation to the hardware rendering pipelines
of modern graphics processing units (GPUs) is not trivial. This has given rise to several specialized solutions, each targeting
interactive rendering of a constrained set of parametric functions. In this paper, we propose a general method for efficient
rendering of parametrically defined 3D objects. Our solution is carefully designed around modern hardware architecture.
Our method adaptively analyzes, allocates and evaluates parametric function samples to produce high-quality renderings.
Geometric precision can be modulated from few pixels down to sub-pixel level, enabling real-time frame rates of several 100
frames per second (FPS) for various parametric functions. We propose a dedicated level-of-detail (LOD) stage, which outputs
patches of similar geometric detail to a subsequent rendering stage that uses either a hardware tessellation-based approach
or performs point-based softare rasterization. Our method requires neither preprocessing nor caching, and the proposed
LOD mechanism is fast enough to run each frame. Hence, our approach also lends itself to animated parametric objects.
We demonstrate the benefits of our method over a state-of-the-art spherical harmonics (SH) glyph rendering method, while
showing its flexibility on a range of other demanding shapes.

CCS Concepts
• Computing methodologies → Rasterization; • Human-centered computing → Scientific visualization;

1. Introduction

Across the multi-faceted landscape of interactive graphics appli-
cations, we see a growing demand for solutions that reduce over-
all memory load. The increasing demand for cloud rendering so-
lutions encourages developers to reduce data traffic across high-
latency networks. For devices with dedicated graphics hardware,
minimizing slow CPU-GPU transfers across slow bus systems is

key to avoiding stutter and lagging. Even for on-chip processing,
modern consumer-grade GPUs encourage high arithmetic load over
memory load: in the last decade, GPU compute throughput has pro-
gressed much quicker than memory transfer speed. As an example,
consider NVIDIA’s RTX 4090, which has 2.5× the compute per-
formance of the previous generation’s RTX 3090 (73 TFLOPS vs.
29 TFLOPS), while memory bandwidth increased by only 7.8%

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/pgv.20241129 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/pgv.20241129


2 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

u

v
uv

parameters
patch

(0,0) (2π,0)

(2π,π)(0,π)

fp(u,v)

 u
v

sin(u) + sin(2v)


sin(u) cos(v)

cos(u)
sin(u) sin(v)

 Sphere surface
displaced according

to SH function

Figure 2: We consider vector-valued parametric functions fp(u,v)
with fp : R2 → R3 mapping independent 2D variables called pa-
rameters to 3D positions in Euclidean space. The arithmetic defi-
nition enables a compact representation of geometric shapes with
varying complexity and desirable properties, such as C∞ continu-
ity. We illustrate the input to such fp(u,v) with parameter patches
that range from lower bound parameter values umin,vmin to upper
bound parameter values umax,vmax, where the notations u and v re-
fer to the whole ranges, i.e., u = [umin,umax] and v = [vmin,vmax].

(1008 GB/s vs. 935 GB/s). This development was observable in
GPU generations released by NVIDIA and AMD in the last decade,
and is especially evident in their last two respective GPU genera-
tions. At first glance, these trends run counter to the users’ expec-
tations for modern graphics applications: ultra-detailed geometry
(≈one triangle per screen pixel [KSW21]) is expected for interac-
tive entertainment. One answer to this apparent dilemma can be
found in procedural content, such as parametric functions.

Procedural content can be created from coarse inputs by comput-
ing transient data for fine-grained details on the fly. At the applica-
tion level, we can exploit suitable procedural geometry representa-
tions, like parametric functions [PDG21, Cra23, Wil22]. These can
efficiently yield detailed 3D shapes by evaluating surface or vol-
ume samples according to the function’s mathematical definition,
like illustrated in Figure 2. However, previous work limits the types
of functions that can be efficiently sampled, requiring specialized
real-time rendering solutions for different function classes.

At the hardware level, procedural content generation is facili-
tated by modules like the tessellation shader [The23b]. Coarse base
geometry is processed in compute units, where the tessellation en-
gine produces new geometry primitives before passing them to the
rasterizer. Hence, tessellation trades increased computational load
for reduced memory transfers, resulting in overall increased ren-
dering speed compared to not using the tessellator and transferring
geometry in high detail [NKF∗16]. However, their historic orienta-
tion toward triangle meshes makes it unclear how to exploit these
modules for other representations, including parametric functions.

In this paper, we consolidate the use of procedural geometry
representations—specifically, parametric functions—with recent
hardware trends to achieve fast, high-quality rendering of complex
mathematical shapes. Our proposed technique takes as input only
a parametric function. Compared with previous work, our solution
makes few assumptions about the sampled functions, supporting a
wide range of complex shapes (see Figure 1). It requires neither
derivatives nor preprocessing. We propose a multi-step pipeline: a
dedicated LOD analysis stage adaptively determines the sampling

density to be used by a subsequent rendering stage. Depending on
the chosen sampling resolution, our technique can render highly
tessellated patches (where each resulting triangle spawns approxi-
mately one or only a few screen pixels) or directly render the para-
metric function point-wise, typically sampling the function once or
multiple times per screen pixel. Our point-based method draws in-
spiration from recent advances in point cloud rendering [SKW21].
Common to both rendering approaches is their emphasis on utiliz-
ing the compute capabilities of GPUs and their ease of integration
into existing rendering applications. We also account for the emerg-
ing trend in recent years toward ultra-high geometric detail in real
time, as heralded by Epic Games’ Nanite [Epi24]. Nanite can ren-
der static geometry at such high detail that, after an LOD selec-
tion step, rasterization is usually performed on triangles not much
larger than a single pixel [KSW21]. Similarly, our technique can
render almost pixel-perfect geometric detail for parametric func-
tions that show limited variance at a sub-pixel level when render-
ing at screen resolution. With super-sampled (SS) configurations,
our tessellation-based or point-based rendering variants are able to
capture and render sub-pixel geometric detail in real time.

In summary, the contributions of our paper are:

1. We describe a general method to render a wide range of para-
metric functions with close to pixel-perfect geometric accuracy,
which is fast enough to be used in conjunction with SS.

2. We describe an efficient compute shader-based LOD selection
algorithm that generates view-dependent parameter patches for
generic parametric functions, leading to approximately uniform
geometric detail in the rendered output across the entire para-
metric object.

3. We describe two different variants to render the patches from
Contribution 2.: One performs point-based rendering into a
64-bit integer image, while the other uses hardware tessellation.

4. We evaluate our method on a range of demanding parametric
shapes and compare it to the state of the art in terms of SH glyph
rendering by Peters et al. [PPUJ23], showing that our method
surpasses it in terms of rendering speed and rendering quality
for higher SH orders; in large datasets already for SH order 4.

2. Related Work

Most previous work on rendering parametric curves or surfaces fo-
cuses on specific parametric shapes, such as the efficient rendering
of rational Bèzier patches [EML09, SS09], Catmull-Clark subdivi-
sion surfaces [PEO09, NL13, KOCM23, WA23], or similar patches
such as B-Spline or NURBS curves and surfaces [WA23]. Poirier et
al. [PDG21] focus on rendering Spherical Harmonics (SH) glyphs
for visualizing measurements from diffusion magnetic resonance
imaging (dMRI) scans. Some of these techniques utilize special-
ized data structures [PEO09, KOCM23]. All of them rely on a tri-
angulated representation of a given type of parametric function for
rendering. Some techniques create triangle primitives in software
to be rendered by the hardware rasterizer or perform tessellation in
software [PEO09, SS09, EML09, WA23], while others make use of
hardware tessellation units [NL13], which are standard features on
modern desktop GPUs. The technique by Kuth et al. [KOCM23]
uses mesh shaders, which were first introduced to desktop GPUs
with NVIDIA’s Turing architecture [NVI18] in 2018.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



J. Unterguggenberger et al. / Fast Rendering of Parametric Objects 3 of 12

(a) Johi’s Heart (b) Yarn Curve (c) Fiber Curve (d) Seashell variant 1 (e) Seashell variant 2 (f) Seashell variant 3 (g) Sphere

Figure 3: These images show various parametrically defined objects. Slight variations in the parametric functions can lead to different
shapes, as can be seen in Figures 3d to 3f, which all use the same underlying parametric function with slight variations in auxiliary parameter
values. Figure 3g shows a possible set of patches produced by our PATCH SUBDIVISION stage for a parametrically defined sphere.

Especially older techniques do not try to produce ultra-detailed
geometry but instead optimize for a visual error metric to be less
than a pixel [EML09,PEO09], which is also the approach taken by
the more recent technique by Worchel et al. [WA23]. The method of
Eisenacher et al. [EML09] is conceptually similar to our approach,
insofar as it subdivides patches until a certain metric is satisfied. In
contrast to our approach, they use uniform subdivision of patches
and their technique is tailored to Bèzier patches. Their method
could be incorporated into the structure of our method by using the
same error metric from their “oracle” step in our PATCH SUBDI-
VISION stage instead of our generally applicable screen distance-
based metric. Our tessellation-based rendering variant would be
perfectly suitable for rendering Bèzier patches, possibly requiring
a crack avoidance procedure between neighboring patches.

The work by Poirier et al. [PDG21] on SH glyph rendering takes
a more pragmatic approach in trying to evaluate and set suitable
tessellation levels, but fails to prevent visual inaccuracies. Another
recent approach is able to produce and render ultra-detailed geom-
etry at real-time frame rates on modern GPUs [KOCM23], but fo-
cuses on Catmull-Clark subdivision surfaces only. In terms of SH
glyph rendering, Peters et al. [PPUJ23] achieve pixel-perfect geo-
metric detail by intersecting a ray with the SH glyph through poly-
nomial root finding for each screen pixel. Their visual results con-
stitute a significant improvement over the results from Poirier et
al. [PDG21], but suffer from exceedingly decreasing performance
with increasing SH order and visual artefacts with SHs of orders
10 and higher. In terms of rendering configuration, our proposed
method is more similar to the approach by Poirier et al. [PDG21]
insofar as we also use the graphics pipeline. However, in terms of
rendering quality and in terms of its performance characteristics,
our method is much more similar to the ray tracing-based approach
by Peters et al. [PPUJ23]: both methods scale performance-wise
relative to the number of rendered pixels: The method of Peters et
al. traces one ray per pixel, while our solution selects suitable levels
of geometric detail using a screen distance-based metric.

Further usages of glyphs in the context of medical or scientific
visualization include comparisons between healthy and infected
persons [ZHC∗17, ZCH∗17, ZSL∗15] or comparisons between en-
sembles of stress tensor fields [AWHS15].

Point rendering can arguably also be described as an approach
to render ultra-detailed geometry, under the condition that suffi-
ciently many samples are used. Recent work shows that modern

GPUs are capable of processing and rendering 50 to 144 billion
points per second [SKW21, SKW22], with the former being lim-
ited by memory bandwidth and the latter improving the throughput
through compression. By sampling points on parametric functions,
we avoid memory fetches as the bottleneck, but potentially trade it
for a compute-based bottleneck.

Epic Games’ Nanite technology [Epi24] enables rendering of
ultra-detailed 3D meshes. It achieves this with careful preprocess-
ing of meshes into clusters of 128 triangles each. At runtime,
clever LOD switching enables seamless transitions between differ-
ent LODs on a per-cluster basis and ensures that relevant clusters
are streamed to GPU memory on demand. Clusters are selected
so that rendering their triangles for a given camera position pro-
duces approximately pixel-sized triangles if the input mesh pro-
vides enough explicit detail. Nanite employs both hardware and
software rasterization; they report that the latter is up to 3× faster
for rendering small triangles [KSW21]. To combine software ras-
terization and hardware rasterization into the same render target,
values are written into a single-channel 64-bit integer image by
compute shaders during software rasterization, and from fragment
shaders for hardware-rasterized triangles. Storing depth in the most
significant bits of the written 64-bit integer values is crucial: this
way, it serves as an equivalent to the depth test. While Nanite
can render impressively detailed 3D meshes, it is still limited to
static geometry. Unterguggenberger et al. [UKPW21] extend this
approach partially to supporting animated skinned meshes of high
geometric detail.

Similar to Nanite, our approach combines the strengths of the
graphics and compute pipelines of modern GPUs to produce geom-
etry with close-to-pixel detail. However, we instead target paramet-
ric functions, which can be sampled with arbitrary fidelity, limited
only by machine floating point precision. Furthermore, our solution
involves no preprocessing and recomputes the levels of detail from
scratch each frame; thus, it also lends itself to animated shapes with
erratic changes in appearance.

3. Parametric Function Definition

Our method considers parametric functions that transform two in-
put parameters (u,v) into Cartesian coordinates (x,y,z) of the three-
dimensional Euclidean space, i.e., R2 → R3, or intuitively a trans-
formation of a quad/rectangle into a three-dimensional surface as il-
lustrated in Figure 2. Interpreting R2 as, for example, spherical co-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

Initialize Patches LOD Step 1

LOD Step 2

LOD Step 3

LOD Step n

...

sampling fpi(u,v)

Tessellation-Based
Rasterization Pipeline

Point-Based Rendering
(Compute Shader)

sampling fpi(u,v)

XOR

Storage Buffer
Patches to be evaluated

Storage Buffer
Patches to be rendered

store

load/store

store
load

load

Color Attachment
Possibly super-
or multisampled

64-bit Integer Image
Depth (first 32bit)

Color (second 32bit)

rasterization
output

store

store

1. PATCH INIT. 2. PATCH SUBDIV. 3. RENDERING

ui

viExample
patch i:

...

Figure 4: Overview of the stages of our method, and the buffers and textures which are accessed in each stage. Patches are evaluated and
subdivided and then re-evaluated up to n times in the n LOD steps, before they are stored in the “Patches to be rendered” buffer. The rendering
stage reads all the patches from that buffer and either generates a triangle mesh to render them via hardware tessellation, or performs point-
based rendering. The latter variant cannot be used with a renderpass that rasterizes into a framebuffer. Instead, it must perform atomicMin

writes into a 64-bit integer buffer or image.

ordinates and R3 as the cartesian coordinates of the corresponding
points on a sphere allows us transforming the quad into a sphere.
We can then further transform the sphere into spherical harmonic
glyphs using the respective SH functions.

In the context of our method, a parametric function is expressed
directly in source code; in addition to mathematical elements, it
may also contain logical operators and flow control (conditional
statements, loops, and recursions). This facilitates the intuitive gen-
eration of features that are harder to express mathematically, such
as creases or discontinuities. An example of such a parametric func-
tion is given in Listing 1. It uses if statements to scale parts of a
sphere base shape such that the resulting surface forms the heart
shape shown in Figure 3a.

Listing 1: GLSL source code of a parametric function which pro-
duces a heart shape based on two input parameters u and v.

1 #define PI 3.14159265359

2 // Creates the surface "Johi’s Heart".

3 // Input: u ... first parameter in range [0, PI )

4 // v ... second parameter in range [0, 2*PI)

5 vec3 sampleJohisHeart(float u, float v) {

6 // Start with a sphere shape:

7 vec3 p = vec3(sin(u) * cos(u), cos(u), sin(u) * cos(v));

8 // Distort it into a heart shape:

9 if (u < PI / 2.0) {

10 p.y *= 1.0 - (cos(sqrt(sqrt(abs(p.x * PI * 0.7)))) * 0.8);

11 } else {

12 p.x *= sin(u) * sin(u);

13 }

14 p *= vec3(0.9, 1.0, 0.4);

15 return p;

16 }

4. Method

In this section, we describe our approach, which is able to render a
wide variety of parametric functions in real time with controllable

precision. Depending on the current frame’s camera position, orien-
tation, projection, and screen coordinates, an LOD stage produces
patches of similar size in screen space, which are subsequently ren-
dered with one of two different rendering variants. Figure 4 depicts
the overview of our method and its major stages:

1. PATCH INITIALIZATION: A compute shader stores one patch
per parametric object in the buffer of patches to be evaluated, in
particular the parameter ranges ui and vi along with some aux-
iliary data, such as the type of object—which refers to a par-
ticular fpi(u,v)—and which material shall be used for shading.
For objects that are known to be very detailed, ui,vi can already
be uniformly subdivided in this stage, which ensures a minimal
number of output patches to be forwarded to the rendering stage.

2. PATCH SUBDIVISION: The second stage executes up to a pre-
defined number of n LOD steps, which subdivide the param-
eter ranges ui,vi until their approximated screen-space extents
eui ,evi when evaluated with fpi(u,v) no longer exceed screen-
space thresholds tu, tv. The point of this procedure is to create
patches of similar sizes to be forwarded to the RENDERING stage
in order to optimally utilize GPUs.

3. RENDERING: All the patches which have been scheduled for
rendering in one of the preceding LOD steps during PATCH SUB-
DIVISION are rendered in one of two manners:

a. TESSELLATION-BASED: Patches are rendered with a
tessellation-enabled graphics pipeline with either fixed or
adaptive tessellation levels. Vertices generated by the tessel-
lator are positioned according to fpi(u,v).

b. POINT-BASED: Patches are sampled by fpi(u,v) at fixed steps
across parameter ranges ui and vi. Results are projected into
screen space and written to a 64-bit integer target image.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



J. Unterguggenberger et al. / Fast Rendering of Parametric Objects 5 of 12

u

v
input
patch

no subdivision split u only split v only split both

split u and the
first half of v

split u and the
second half of v

split v and the
first half of u

split v and the
second half of u

Figure 5: During an LOD step, an input patch can either not be
subdivided, or split according to the seven patterns shown in this
figure when being scheduled for re-evaluation.

4.1. Patch Subdivision Stage

To determine whether and how a patch i should be subdivided, its
parameter range ui,vi is sampled and evaluated using its associated
function fpi(u,v). The evaluated samples are projected to screen
space and analyzed separately to determine the subdivision pattern.
In order to achieve adaptive subdivision, we sample along lines in
u- and v-direction independently. Concretely, we take 8 samples in
u-direction at 4 fixed v-values v1, . . . ,v4 (for a total of 32 samples),
and the same for the v-direction at 4 fixed u-values u1, . . . ,u4. For
each line, we compute the sum euik or evik respectively of screen-
space extents between the projected sample points, and compare
them to user-defined thresholds tu, tv. If for any line, e > t, then the
patch half in which the line is located is split along the direction
of the line. For example, if this happens to at least one of the lines
in u-direction at v1 or v2, then the first half of the v-range needs
to be split into two u-intervals and its parts are scheduled for re-
evaluation by the subsequent LOD step. The resulting subdivision
patterns are shown in Figure 5.

The 32 samples correspond to a typical subgroup size on
NVIDIA and Intel GPUs. After one subgroup has taken 2 × 32
samples for the patch splitting decisions, the same subgroup takes
another 25 samples of the parametric function, which is crucial to
prevent false-positive culling decisions for cases where, e.g., only a
small part of a patch corner reaches into the viewing frustum. Our
evaluation scheme is illustrated in Figure 6, showing the lines used
for patch evaluation in u and v directions, and the 25 extra samples.

A fixed number of compute shader invocations is dispatched ev-
ery frame to perform these evaluations in multiple subsequent LOD
steps. We use 12 dispatch calls, which is enough to subdivide a (per-
fectly screen-aligned) 32k pixels-wide patch down to 8 pixels and
should suffice for the vast majority of cases. After sufficient patch
subdivision has been achieved in a certain LOD step, no further
LOD step will store any more patches into the “Patches to be eval-
uated” storage buffer, and only store sufficiently subdivided patches
into the “Patches to be rendered” storage buffer—how both buffers
are accessed is shown in Figure 4. All of the dispatch calls in the
PATCH SUBDIVISION stage are indirect dispatch calls. For those
LOD steps for which no patches are left to be evaluated this means
that the GPU still has to process the respective dispatch commands,
but will find that the number of workgroups to be processed is zero
and therefore, no compute invocations will be executed [The24].
The empty dispatch calls did not incur any noticeable or measur-

able overhead in our tests. Alternatively, the number of dispatch
calls could be adapted based on the previous frame’s highest re-
quired LOD step, if latencies of a few frames to reach the appropri-
ate number of dispatch calls are acceptable by an application.

In many scenarios, the PATCH SUBDIVISION stage is very fast,
often taking less than 10% of the total frame time, which is typi-
cally the case for the tests presented in Figures 9 and 12 even when
the camera is near the parametric object so that many screen pixels
are covered. The exact percentage depends on the particular object
and scene setup. In the test presented in Figure 11, the LOD stage
has to determine patch sizes for 358k fiber curves (i.e., 358k initial
patches), which leads to the LOD stage taking up to 50% of the
frame time for this particular rendering configuration. One key fac-
tor of the PATCH SUBDIVISION stage’s low impact on frame times
in our implementation is its heavy use of subgroup operations. They
allow sharing data between compute invocations [The23a]. For ex-
ample, in order to compute the screen distance between two ad-
jacent samples, we let the two threads that computed the samples
share the results via subgroup communication.

The second key factor for achieving fast rendering performance
is non-uniform patch subdivision, which is illustrated in Figure 5.
There are eight possible cases when a patch is evaluated in the
LOD step: If the approximated screen-space extents euik ,evik do
not exceed thresholds tu, tv across ui,vi of patch i, no subdivision
is performed. In this case, patch i is not scheduled for re-evaluation
but is instead stored in the buffer for patches to be rendered. If,
however, an exceedance of tu, tv was detected for any euik or evik ,
patch i is split according to the seven patterns shown in Figure 5—
except in LOD step n, where (possibly split) patches are scheduled
for rendering in any case. Non-uniform patch subdivision doesn’t
influence the performance of the PATCH SUBDIVISION stage too
much, but to a greater degree leads to better performance in the
RENDERING stage, since the resulting patches are more similar in
terms of their screen-space extents. The reduction in total frame
time when comparing non-uniform patch subdivision to uniform
patch subdivision—that is, a constant patch subdivision scheme of
one patch into four—amounts to already 15% for a simple paramet-
rically defined sphere like shown in Figure 3g, and can be as high as
50% for the close-up view of a SH glyph like shown in Figure 9c.

4.2. Rendering Tessellated Patches

Rendering patches that have been scheduled for rendering with
our TESSELLATION-BASED variant is very straightforward: Each
scheduled patch i is rendered as a quad with fixed inner and outer
tessellation levels l [The23b]. Each vertex produced by the tessel-
lator is set to the position produced by fpi(ux,vy), where ux and
vy refer to the interpolated parameter locations within ui and vi
ranges, produced by the tessellator. In GLSL, these can be com-
puted with the help of gl_TessCoord.xy in tessellation evalua-
tion shaders [Khr14]. The maximum tessellation level supported
on modern GPUs is typically 64, which means that an edge (of
a triangle or quad to be tessellated) is subdivided into 64 parts.
A perfectly screen-aligned edge with a screen-space extent of 64
(which could be the result of using a threshold value t = 64)
would therefore be subdivided so that there is one segment for each
pixel. In many cases, choosing such fine subdivisions is counter-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

(a) Patch evaluation re-
sulted in no splits.

(b) Patch evaluation re-
sulted in u and v splits.

(c) Patch evaluation
pattern on the example
of Johi’s Heart.

(d) Evaluation of one
patch of a sphere seg-
ment (LOD step 1)

(e) Non-uniform subdi-
vision of a sphere seg-
ment (LOD step 1)

(f) Evaluation of the
now subdivided patch
(LOD step 2)

Figure 6: Each of our LOD steps analyzes a given ui,vi patch by sampling fpi(u,v) at 89 locations to determine if and which splits are
necessary. Samples to approximate the screen-space extents across ui are drawn in yellow. Samples to approximate the screen-space extents
across vi are drawn in orange. The 25 extra samples to help with the frustum culling decision are indicated by red dots. Figure 6c shows why
multiple evaluations across a patch are crucial in many cases: The first and fourth measurements in v-direction (evi1 and evi4 ) are very near
to the poles, where the parameters are very condensed. The middle two measurements (evi2 , evi3 ) fall into usable positions. Figures 6d to 6f
show an example of evaluating a sphere segment. Assuming a resolution of 512×512 and user-defined screen thresholds of tu = tv = 256,
LOD step 1 finds that the patch in Figure 6d does not exceed the thresholds and hence, no subdivisions are required. With the camera closer
to the object in Figure 6e, the lower parts of the sphere segment exceed tv. The patch is non-uniformly subdivided and the new parts are
scheduled for evaluation in LOD step 2. Figure 6f shows the evaluation pattern on one of these patches during LOD step 2.

productive due to the resulting impact on rendering performance
[KDR18, KHCW22]. Therefore, we propose to use fixed tessella-
tion levels only for parametric functions which are expected to pro-
duce sub-pixel geometric detail, or resort to adaptive tessellation
with SS, which might capture sub-pixel detail even better and pro-
duce more uniform geometry density.

Adaptive tessellation levels are based on the actual approxi-
mated maximum screen-space extents eui ,evi of a given patch i.
These extents are measured during PATCH SUBDIVISION by tak-
ing the maximum of the four measurements euik and the maximum
of the four measurements evik , as illustrated in Figure 6. For exam-
ple, splitting parameter range u1 with approximated screen extents
eu1 based on threshold tu can lead to split patch sizes with extents
eu2 ≈ tu

2 if eu1 is just slightly less than tu. Adaptive tessellation in
that context means to scale a tessellation level l as follows:

l = clamp(
eu2 l

min(tu, l)
, lmin, lmax).

The result is clamped to a minimum tessellation level lmin (e.g.,
lmin = 8) and a maximum tessellation level lmax (e.g., lmax = 64).

The outputs of a graphics pipeline are typically rasterized into a
color attachment. This is the only option to profit from hardware-
accelerated multi-sampling (MS) and its resolve operation. We use
color attachments as render targets for all our tests presented in
Section 5 that use the TESSELLATION-BASED variant since it is
generally faster than the alternative—which is storing the rendering
output into a 64-bit integer image. The latter is fundamentally the
same approach as taken by Nanite [KSW21]. Depth writes and also
the depth test of a graphics pipeline can be disabled in this case.
The resulting depth and color values are instead written in software
through atomic operations from fragment shaders. By combining
depth and color values into a single 64-bit integer value, as illus-
trated below, atomicMin operations ensure that parallel writes will
produce the correct rendering result.

depth red green blue alpha

...

∆u
∆v

Figure 7: With the POINT-BASED variant, parameter range ui is
processed in “columns” of 32 samples. Within such a column, sub-
groups sample the patch to be rendered “row-wise” in v parameter
direction. A subgroup always keeps the data of two rows in regis-
ters, which are marked in green. Data of neighboring u samples
is shared through subgroup operations. The samples which do not
write pixels are marked in red—they take auxiliary samples which
are used for tangent and bitanget calculations.

4.3. Point-Based Rendering

With the POINT-BASED variant, a patch i of range ui,vi to be ren-
dered is sampled point-wise by fpi(u,v) in equidistant steps along
each parameter direction. Resulting color values are stored in an
image at the respective screen-space coordinates. Since color at-
tachments are incompatible with this rendering variant, we use a
64-bit image as the target to receive the rendering output as de-
scribed in Section 4.2. Samples of an input patch are produced in
the following manner: The screen-space threshold parameters tu, tv
determine the size of a patch. Given a defined workgroup size of
N, we divide the parameter range ui by the smallest multiple of N
that is larger than tu, i.e. by ⌈ tu

N ⌉, and use that as the total number
of samples taken across ui for each parameter v. Parameter range vi
is sampled in steps of size ∆v = vimax−vimin

tv −ε, where ε can be used
to decrease the step size in order to prevent holes in the rendered
output. We use N = 31, which is not arbitrary, but rather tied to
our compute shader-based implementation: 32 subgroups—which
is a typical subgroup size on NVIDIA and Intel GPUs, while it is
typically 64 on AMD GPUs—sample the patch “row-wise” in ⌈ tu

31⌉

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



J. Unterguggenberger et al. / Fast Rendering of Parametric Objects 7 of 12

near
1 2 3 4 5 6

far
7

0

300

600

900

1,200

1,500

1,800

2,100

2,400

2,700

FPS

Ours, 64x adpt. tess.:
SH order 4

SH order 6

SH order 8

SH order 10

SH order 12

Peters et al.:
SH order 4

SH order 6

SH order 8

SH order 10

SH order 12

(a) FPS comparison of using different SH orders for rendering a single SH
glyph, measured on an NVIDIA RTX 3070. tu = tv = 84, noAA, adaptive tes-
sellation, and lmax = 64 have been used as the configuration for our method.

near
1 2 3 4 5 6

far
7

0

150

300

450

600

750

900

1,050

1,200

FPS

Ours, 64x adpt. tess.:
SH order 4

SH order 6

SH order 8

SH order 10

SH order 12

Peters et al.:
SH order 4

SH order 6

SH order 8

SH order 10

SH order 12

(b) FPS comparison of using different SH orders for rendering the HARDI
dataset containing 19,600 SH glyphs on an NVIDIA RTX 3070. tu = tv = 84,
noAA, adaptive tessellation, and lmax = 64 have been used for our method.

Figure 8: These diagrams show the impact of using different SH
orders for rendering the SH glyphs.

“columns” (if we call parameter direction u a “row” and parame-
ter direction v a “column” for the sake of tangible description) and
share data among neighboring subgroups. Our approach is illus-
trated in Figure 7. Each subgroup keeps the data of two rows in reg-
isters, so that neighboring values in v parameter direction are avail-
able. Neighboring values in u parameter direction are read from
neighboring subgroups through subgroupShuffle operations. The
values of the neighboring samples in u and v directions are used to
calculate the normal vector for the current sample ux,vy through the
cross product of tangent vector t = fp(ux+1,vy)− fp(ux,vy) and bi-
tangent vector b = fp(ux,vy+1)− fp(ux,vy). The normal n = t×b
is required for shading computations. We avoid sampling fp(u,v)
multiple times with the same parameters. The last u column does
not produce points since it does not have a neighbor with higher
subgroup index. Therefore, only 31 subgroups write pixel values,
while the last subgroup only provides its data to the second to last
subgroup.

Our POINT-BASED rendering variant also features an adaptive
sampling configuration, where the number of samples in u and v di-
rections are not calculated based on the threshold parameters tu, tv,
but instead on the approximated screen distance extents eui ,evi ,
which are measured during PATCH SUBDIVISION. The adaptive
sampling configuration processes patch i in

⌈
eui
31

⌉
columns, tak-

ing row-wise steps of size ∆v = vimax−vimin
evi

− ε. The adaptive sam-
pling variant assumes fpi(u,v) to distribute samples somewhat uni-
formly across ui,vi, since it takes approximately one sample across
the screen space-based extents eui and evi . This variant often leads
to much faster rendering speeds, but runs the danger of producing
small holes (often the size of 1×1 pixel) in the rendered output. In
some cases, they can be prevented by increasing the ε values.

(a) Result of Pe-
ters et al.

(b) Diff. between
reference and 9a

(c) Ours with
adaptive tess.

(d) Diff. between
reference and 9c

1.7M
1.0M

371k
140k 54k 21k 8k

0k

10k

20k

30k

40k

50k

#p
at

ch
es

:n
oA

A
(O

ur
s

on
ly

)

0

300

600

900

1,200

1,500

FPS

Ours, 64x adpt. tess.:
RTX 4090

RTX 3070

AMD 680M

AMD RX 6600

Peters et al.:
RTX 4090

RTX 3070

AMD 680M

AMD RX 6600

(e) FPS rendered by different GPUs for different views of one single SH
glyph, comparing our method (tu = tv = 84, noAA, adaptive tessellation,
lmax = 64) to the method of Peters et al. The x axis shows the average num-
ber of pixels written (excluding overdraw). The dotted line represents the
number of patches to be rendered, output by PATCH SUBDIVISION.

1 2 3 4 5 6 7 8 910
0k
1k
2k
3k
4k

(f) #patches out
per LOD step (1.7M)

1 2 3 4 5 6 7 8 910
0k
1k
2k
3k
4k

(g) #patches out
per LOD step (1.0M)

1 2 3 4 5 6 7 8 910
0k
1k
2k
3k
4k

(h) #patches out
per LOD step (371k)

1 2 3 4 5 6 7 8 910
0k
1k
2k
3k
4k

(i) #patches out
per LOD step (140k)

Figure 9: For an SH glyph of order 12, Figures 9a to 9d show qual-
itative comparisons of the rendered results compared with a refer-
ence image produced with 16xSS and 8xMS. For the first measure-
ment, the camera starts at the view producing Figures 9a and 9c
and moves away for subsequent measurements. Figure 9e presents
the performance of our variants in comparison to the method by
Peters et al. Ours avoids their closeup artifacts. It also shows the
number of patches to be rendered, produced in our PATCH SUBDI-
VISION stage—while Figures 9f to 9i show the average numbers of
patches to be evaluated during each LOD step. No patches remain
to be evaluated after LOD step 10 in any of these test setups.

5. Results

We evaluate our method and its rendering variants based on the fol-
lowing parametric functions, which have different characteristics
and therefore pose different challenges to a rendering method:

• SH glyphs
• Parametric plain-knit yarn curves
• Parametric seashells

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

(a) Rendered with the
method by Peters et al.

(b) Difference between
10a and reference

(c) Rendered with our
method, noAA

(d) Difference between
10c and reference

(e) Rendered with our
method, 4xSS+8xMS

(f) Difference between
10e and reference

500
1.1k

2.5k
5.5k

10.0k
15.7k

19.5k
0k

20k

40k

60k

80k

#p
at

ch
es

:n
oA

A
(O

ur
s

on
ly

)

0

140

280

420

560

700

840

980

FPS

Ours, 64x adapt. tess.:
RTX 4090

RTX 3070

AMD 680M

AMD RX 6600

Peters et al.:
RTX 4090

RTX 3070

AMD 680M

AMD RX 6600

(g) FPS rendered by different GPUs for different views of the HARDI
dataset, comparing our method (tu = tv = 84, noAA, adaptive tessellation,
lmax = 64) to the method of Peters et al. The x axis shows the average number
of SH glyphs rendered for a certain view distance. The dotted line represents
the patches output by our PATCH SUBDIVISION stage.

500
1.1k

2.5k
5.5k

10.0k
15.7k

19.5k
0k

45k

90k

135k

180k

225k

#p
at

ch
es

:T
es

s.
4x

SS
(O

ur
s

on
ly

)
0

80

160

240

320

400

480

560

640

FPS

Ours, 4xSS+8xMS:
RTX 4090

RTX 3070

RTX 3050 Laptop

AMD 680M

Peters et al.:
RTX 4090

RTX 3070

RTX 3050 Laptop

AMD 680M

(h) Comparing our method (tu = tv = 84, 4xSS, 8xMS, adaptive tessella-
tion, lmax = 64) to the method of Peters et al. The x axis shows the average
number of SH glyphs rendered for a certain view distance. The dotted line
represents the number of patches to be rendered, generated by our PATCH

SUBDIVISION stage, which is much higher than in Figure 10g due to 4xSS.

Figure 10: For 19,600 SH glyphs of order 12, Figures 10a to 10f show qualitative comparisons between the results and a reference image
which has been produced with 16xSS and 8xMS. Figures 10g and 10h compare the performance of our variants with the method by Peters et
al. The camera starts at a view distance similar to the one producing Figures 10a, 10c and 10e and moves away for subsequent measurements.

One challenge when rendering SH glyphs—especially such of
higher order—is that each sample is computationally expensive.
Furthermore, parameters are distorted very non-uniformly across
the entire parameter range. The challenge with rendering plain-
knit yarn curves is the vast amount that is required for a typical
scene. While these two parametric functions produce smooth sur-
faces, the parametric seashell model has very small-scale surface
features, leading to sub-pixel geometric detail for most of our test
setups. The results presented in Figures 9 to 12 were gathered after
a GPU warm-up phase of 2 seconds from multiple camera posi-
tions. The camera is located close to the object or center of the
dataset for the first measurement and moves away with every fur-
ther measurement. Each measurement result (such as FPS, number
of pixels written, or number of render patches) represents the aver-
aged data over a 5 seconds long time span, during which the camera
moved around the center of the object or dataset in one full circle—
requiring the PATCH SUBDIVISION stage to generate and forward
a different set of patches to the RENDERING stage every frame.

SH Glyphs: Spherical harmonics are mathematical functions de-
fined on the surface of a sphere and are parameterized using spher-
ical coordinates (θ,ϕ) with θ ∈ [0,π] and ϕ ∈ [0,2π]. These func-
tions result from a linear combination of a set of orthonormal ba-
sis functions, an important property which makes them useful in a
wide range of fields. They are described via band index ℓ and pa-
rameter m. ℓ also states the order of an SH. Higher orders allow
to represent higher frequencies but also come with an increase in

computational complexity, making them expensive to evaluate and
challenging to visualize. Thanks to their spherical parametrization,
one way of representing them is by using a sphere with the dis-
tance from its surface to its center set to the result of the evaluated
SH at the corresponding location (θ,ϕ), which aligns them with the
definition of parametric functions.

The SH glyphs we use represent measurements from a so-called
high angular resolution diffusion imaging (HARDI) [TRW∗02]
dataset of a brain scan [HCAD22], captured via dMRI and shown
in Figure 1b. We compare our method with the state-of-the-art SH
glyph rendering method by Peters et al. [PPUJ23], which uses ray
tracing to render high-quality SH glyphs in real time. Figure 8
shows the effect of using different SH orders for rendering. Our
method shows remarkably consistent performance for varying SH
orders, while the method by Peters et al. suffers from strongly de-
creasing performance with each SH order increase. While it renders
more than 2000 FPS on an NVIDIA RTX 3070 for SH order 2,
our method outperforms it for SH orders 8 and higher in single
SH glyph rendering (Figure 8a) and already for SH orders 4 and
higher for the large dataset (Figure 8b). Since higher SH orders re-
veal more detail about the measured data they represent, we have
focused further tests on SH order 12: For single glyph rendering of
SH order 12, Figure 9e shows that our method shows better per-
formance across all GPUs. The TESSELLATION-BASED variant is
optimal for rendering SH glyphs due to their smooth surface. Our
recommended configuration is shown in Figures 9c and 9e, which

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



J. Unterguggenberger et al. / Fast Rendering of Parametric Objects 9 of 12

(a) Initial camera po-
sition (yarn curves)

(b) Initial camera po-
sition (fiber curves)

(c) Final camera posi-
tion

3k, 1.5M

5k, 1.5M

11k, 1.5M

27k, 1.2M

56k, 0.5M
60k, 94k

60k, 19k
0k

10k

20k

30k

40k

50k

60k

#p
at

ch
es

:n
oA

A
,p

t/T
es

s.
4x

SS

0

500

1,000

1,500

2,000

2,500

3,000

3,500

FPS

19x Tess., noAA:
RTX 4090

RTX 3070

RTX 3050 Laptop

19x Tess., 4xSS+8xMS:
RTX 4090

RTX 3070

RTX 3050 Laptop

Point Rendering, 4xSS:
RTX 3070

RTX 3070

RTX 3050 Laptop

(d) Comparing the performance of three variants on multiple GPUs. The
x axis states number of fiber curves rendered, and pixels written (not count-
ing overdraw) for the different camera views between Figures 11a and 11c.

20k, 1.4M

30k, 1.4M

63k, 1.3M

158k, 1.0M

335k, 0.4M

358k, 82k

358k, 16k
0k

50k

100k

150k

200k

250k

300k

350k

#p
at

ch
es

:n
oA

A
,p

t/T
es

s.
4x

SS

0

150

300

450

600

750

900

FPS

19x Tess, noAA:
RTX 4090

RTX 3070

RTX 3050 Laptop

19x Tess., 4xSS+8xMS:
RTX 4090

RTX 3070

RTX 3050 Laptop

Point Rendering, 4xSS:
RTX 4090

RTX 3070

RTX 3050 Laptop

(e) Comparing the performance of three variants on multiple GPUs. The
x axis states tuples of number of fiber curves rendered, and pixels written
(not counting overdraw) for the different camera distances between Fig-
ures 11b and 11c.

1 2 3 4 5 6 7 8
0k

10k
20k
30k

(f) #patches out
per step (20k, 1.4M)

1 2 3 4 5 6 7 8
0k

10k
20k
30k

(g) #patches out
per step (30k, 1.4M)

1 2 3 4 5 6 7 8
0k

10k
20k
30k

(h) #patches out
per step (63k, 1.3M)

1 2 3 4 5 6 7 8
0k

10k
20k
30k

(i) #patches out
per step (158k, 1.0M)

1 2 3 4 5 6 7 8
0k

30k
60k
90k

120k

(j) #patches out
per LOD step
4xSS (20k, 1.4M)

1 2 3 4 5 6 7 8
0k

30k
60k
90k

120k

(k) #patches out
per LOD step
4xSS (30k, 1.4M)

1 2 3 4 5 6 7 8
0k

30k
60k
90k

120k

(l) #patches out
per LOD step
4xSS (30k, 1.4M)

1 2 3 4 5 6 7 8
0k

30k
60k
90k

120k

(m) #patches
out per LOD step
4xSS (30k, 1.4M)

Figure 11: Performance results and number of patches to be ren-
dered of different configurations for 60k yarn curves (Figure 11d),
and 358k fiber curves (Figure 11e). For the latter, Figures 11f to 11i
show the numbers of patches to be evaluated for the noAA and point
rendering variants for each LOD step, while Figures 11j to 11m
show the corresponding numbers for the 4xSS configuration.

produces almost pixel-perfect geometric detail. Even a configura-
tion of our method with fixed tessellation factors outperforms the
method by Peters et al. across all GPUs, but does not improve ren-
dering quality despite the higher geometric detail produced. Our
method avoids the artefacts produced by the method by Peters et al.,
which are shown in Figure 9b, but it also introduces small, much
less noticeable artefacts near the poles of the scaled sphere, an ex-
ample of which is shown in Figures 13a and 13b. 9f to 9i show how
PATCH SUBDIVISION increases the number of patches uniformly
during the first four LOD steps to create sufficient geometric de-
tail. Steps 5 and higher subdivide fewer patches or subdivide non-
uniformly for larger distances to the camera, since the subdivisions
suffice already in more cases. Rendering the HARDI dataset, our
method outperforms the method by Peters et al. even more strongly,
as shown in Figure 10g. It even provides headroom for a 4xSS and
8xMS variant, as shown in Figures 10e and 10h. The image qual-
ity of this configuration is superior, which is especially noticeable
during camera movements and can also be observed in Figure 10f.

Plain-Knit Yarn: Gröller et al. [GRS95] provided an early para-
metric description of knitwear, but we use the more recent para-
metric plain-knit yarn curves described by Crane [Cra23]. Its fun-
damental shapes of yarn curves and fiber curves are shown in Fig-
ures 3b and 3c, respectively. We use an extruded version of them for
our evaluations, namely one which takes the yarn direction (“tan-
gent”) as parameter u, and constructs a circle around each point
along that direction via parameter v. We get an orthogonal vec-
tor (“normal”) to the tangent and rotate it using Rodrigues’ rota-
tion formula [Rod40] around the tangent by an angle θ, which is
parameter v in the range [0,2π). The source code repository con-
taining the code for Crane’s plain-knit yarn curves lists several im-
plementations, none of which is able to render a large amount of
yarn curves in real time with good rendering quality and offers real-
time changes to the code—our method enables this for at least 358k
curves, as our results in Figure 11e show.

We show the performance comparisons of three different vari-
ants of our method on the example of a blue curtain composed of
60k yarn curves or 358k fiber curves in Figure 11. The configura-
tions compared are a TESSELLATION-BASED variant with adaptive
tessellation, tu = tv = 62, lmax = 19, and no anti-aliasing (noAA),
the same configuration with 4xSS and 8xMS, and a POINT-BASED

variant with 4xSS. In both test cases, the noAA configuration suf-
fers from severe aliasing artefacts such as Moiré patterns, which
is due to the high number of yarn curves or fiber curves and the
sub-pixel geometric detail produced by them, especially for larger
camera distances. The configurations with SS produce visually sat-
isfying results like those shown in Figures 1d and 1e. In most situa-
tions, TESSELLATION-BASED shows better performance numbers,
but there’s also a noticeable sweet spot for the POINT-BASED vari-
ant, where it outperforms the former—namely when rendering a
limited number of yarn curves or fiber curves at a relatively small
scale. However, our implementation of the POINT-BASED variant
suffers from the problem that it produces a rendering result equiv-
alent to that of conservative rasterization, which can impair visual
quality especially when rendering thin geometry. In contrast to
the results of single SH glyph rendering, where all the geometry is
raised from one single initial patch, Figures 11f to 11m show dif-
ferent subdivision characteristics since PATCH INITIALIZATION al-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



10 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

ready creates 358k patches. Many of them are culled for near cam-
era positions. Hence, only ≈12k remain after the first LOD step in
Figure 11f, all of which need to be subdivided due to the camera
distance and screen resolution. As the camera moves away, more
fiber curves become visible but relatively fewer patches need to be
subdivided. The SS variants in Figures 11j to 11m generally require
more patch subdivisions due to the higher effective resolution.

(a) Initial camera position (b) Final camera position

757k
482k

265k
117k 49k 22k 10k

0k

5k

10k

15k

20k

25k

#p
at

ch
es

:n
oA

A
,p

t/T
es

s.
4x

SS

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500

FPS

19x Tess., noAA:
RTX 4090

RTX 3070

RTX 3050 Laptop

19x Tess., 4xSS+8xMS:
RTX 4090

RTX 3070

RTX 3050 Laptop

Point Rendering, 4xSS:
RTX 4090

RTX 3070

RTX 3050 Laptop

(c) Comparing the performance of three variants on multiple GPUs. The
x axis represents different camera distances between Figures 12a and 12b,
stating the number of pixels written on average (not counting overdraw).

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(d) #patches out
per LOD step (757k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(e) #patches out
per LOD step (482k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(f) #patches out
per LOD step (256k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(g) #patches out
per LOD step (117k)

Figure 12: Results of a parametric seashell with sub-pixel detail.
Figures 12d to 12g show the numbers of patches evaluated per LOD
step for the noAA and point rendering configurations.

Seashell: The parametric seashell model follows roughly the
construction guidelines by Wilson [Wil22], which allows creating
a myriad of seashell variants by parameter variations, such as the
ones shown in Figures 3d to 3f. Achieving satisfying rendering re-
sults for the variant shown in Figure 3f is challenging since its para-
metric model creates many tiny bumps on the surface, which lead to
sub-pixel geometric detail when viewed from a distance or rendered
in low resolution. For our tests with the parametric seashell func-
tion we use the same configurations that we have used for the yarn
curves tests, except for lmax = 64 to capture sub-pixel detail pro-
duced by the parametric seashell model for many view positions.
Also in this case, configurations with SS produce much more satis-
fying visual results. The POINT-BASED performance trails behind
TESSELLATION-BASED configurations. Results of different config-
urations are shown in Figure 12.

The source code for this paper is available at https://github.
com/cg-tuwien/FastRenderingOfParametricObjects.

(a) Artefacts
at SH poles

(b) Closeup
of Figure 13a

(c) Jump dis-
continuities

(d) Point ren-
dering

(e) Rendered
with triangles

Figure 13: Current limitations of our method

6. Conclusion and Future Work

We have presented a general method for sampling and rendering
parametric functions in real time. Although a general method, it
outperforms recent solutions for rendering individual, high-detail
SH glyphs and large glyph datasets in terms of rendering speed and
quality. For large datasets, our noAA configuration achieves higher
frame rates on a mobile AMD 680M GPU than the method by Pe-
ters et al. [PPUJ23] on a dedicated desktop NVIDIA RTX 4090
GPU. Even at the higher-quality 4xSS and 8xMS configurations,
our method running on the much weaker RTX 3050 Laptop is com-
petitive with theirs on an RTX 4090. We found non-uniform patch
subdivision to be a key factor for the good performance, contrary to
the recommendation of Eisenacher et al. [EML09] to always split
patches 1:4. Additional experiments for organic shapes and fabric
yield several hundred FPS while avoiding prominent artifacts.

There are multiple avenues for future work: We intend to inves-
tigate better handling of holes in parametric objects. Our PATCH

SUBDIVISION ignores the concept of holes and would currently
subdivide patches strongly near the discontinuity as illustrated in
Figure 13c. An early exit criterion could improve performance in
such cases. Furthermore, the rendered output of a parametrically
defined palm tree trunk shown in Figures 13d and 13e currently
differs between POINT-BASED and TESSELLATION-BASED since
point rendering does not fill gaps, which are closed by the tri-
angles produced by the tessellator. Besides the proposed screen
distance-based metric for deciding whether to subdivide a patch,
we hope to explore further metrics based, e.g., on the derivatives
of fp(u,v). We also plan to investigate relevant performance fac-
tors for our POINT-BASED variant, the speed of which we found to
depend heavily on the test setup used. Most interestingly, POINT-
BASED performance increased in some cases when the performance
of TESSELLATION-BASED declined. Hence, a combined rendering
variant is conceivable, where noAA tessellation-based rendering is
used for coarse patches and point-based rendering for all others.
Such a dynamic technique may guarantee improved rendering qual-
ity without compromising performance. A new feature of modern
graphics APIs called Work Graphs [PR23,Adv23] would allow the
number of dispatch calls for the PATCH SUBDIVISION stage to be
determined and scheduled within a frame, eliminating the latency
of an adaptive approach like described in Section 4.1.

Since PATCH SUBDIVISION is fast enough to run every frame,
our method is well suited for use with animated objects or time-
varying data. Although flowing curtains consisting of hundreds of
thousands of fiber curves have their appeal, we have only scratched
the surface: we believe that our general method can unlock a
wide range of elaborate, animated parametric functions, and enable
glyph-based visualization of time-varying medical data with high
frame rates, or smooth morphing between data sets in real time.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/cg-tuwien/FastRenderingOfParametricObjects
https://github.com/cg-tuwien/FastRenderingOfParametricObjects


J. Unterguggenberger et al. / Fast Rendering of Parametric Objects 11 of 12

Acknowledgements

We would like to sincerely thank Christoph Peters for his detailed
guidelines for getting the implementation of their SH glyph render-
ing method [PPUJ23] right and reasonably optimized, so that we
were able to compare it to our method in a fair manner. Further-
more, we thank him and Tark Patel for providing the data set they
have used in their paper and pointing us to its origin [HCAD22].
We thank Hiroyuki Sakai for his help with LATEX and TikZ. The
“Sponza” 3D model shown in Figures 1d and 1e is a version mod-
ified by Johannes Unterguggenberger (bundled with the rendering
framework Auto-Vk-Toolkit [Res24]), which is based on a modi-
fied version by Morgan McGuire of the original version by Frank
Meinl, Crytek.

This research has been funded by WWTF (project ICT22-055 -
Instant Visualization and Interaction for Large Point Clouds) and
Netidee (project Math2Model, project call #18, project id: 6890).

References
[Adv23] ADVANCED MICRO DEVICES, INC.: Announcing

GPU Work Graphs in Vulkan. https://gpuopen.com/
gpu-work-graphs-in-vulkan, 2023. [Accessed 08-April-
2024]. 10

[AWHS15] ABBASLOO A., WIENS V., HERMANN M., SCHULTZ T.:
Visualizing tensor normal distributions at multiple levels of detail. IEEE
transactions on visualization and computer graphics 22, 1 (2015), 975–
984. 3

[Cra23] CRANE K.: A Simple Parametric Model of Plain-Knit Yarns.
https://github.com/keenancrane/plain-knit-yarn, 3
2023. [Accessed 29-February-2024]. 2, 9

[EML09] EISENACHER C., MEYER Q., LOOP C.: Real-time view-
dependent rendering of parametric surfaces. In Proceedings of the 2009
symposium on Interactive 3D graphics and games (2009), pp. 137–143.
2, 3, 10

[Epi24] EPIC GAMES, INC.: Nanite Virtualized Geome-
try in Unreal Engine | Unreal Engine 5.0 Documentation.
https://docs.unrealengine.com/5.0/en-US/
nanite-virtualized-geometry-in-unreal-engine/,
2024. [Accessed 01-Jan-2024]. 2, 3

[GRS95] GRÖLLER E., RAU R. T., STRASSER W.: Modeling and visu-
alization of knitwear. IEEE Transactions on Visualization and Computer
Graphics 1, 4 (1995), 302–310. 9

[HCAD22] HASHEMIZADEHKOLOWRI S., CHEN R.-R., ADLURU G.,
DIBELLA E. V. R.: Jointly estimating parametric maps of multiple
diffusion models from undersampled q-space data: A comparison of
three deep learning approaches. Magnetic Resonance in Medicine
87, 6 (2022), 2957–2971. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/mrm.29162, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.
29162, doi:https://doi.org/10.1002/mrm.29162. 8, 11

[KDR18] KHOURY J.-N., DUPUY J., RICCIO C.: Adaptive
gpu tessellation with compute shaders. URL: https://api.
semanticscholar.org/CorpusID:198116975. 6

[KHCW22] KERBL B., HORVÁTH L., CORNEL D., WIMMER M.: An
Improved Triangle Encoding Scheme for Cached Tessellation. In Eu-
rographics 2022 - Short Papers (2022), Pelechano N., Vanderhaeghe
D., (Eds.), The Eurographics Association. doi:10.2312/egs.
20221031. 6

[Khr14] KHRONOS GROUP: gl_TessCoords - OpenGL 4 Ref-
erence Pages. https://registry.khronos.org/
OpenGL-Refpages/gl4/html/gl_TessCoord.xhtml,
2011-2014. [Accessed 08-March-2024]. 5

[KOCM23] KUTH B., OBERBERGER M., CHAJDAS M., MEYER
Q.: Edge-friend: Fast and deterministic catmull-clark subdivi-
sion surfaces. Computer Graphics Forum 42, 8 (2023), e14863.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.14863, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.14863, doi:https:
//doi.org/10.1111/cgf.14863. 2, 3

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive into nanite
virtualized geometry. In ACM SIGGRAPH 2021 Courses, Advances in
Real-Time Rendering in Games, Part 1. 2021. https://advances.
realtimerendering.com/s2021/index.html [Accessed 10-
September-2021]. 2, 3, 6

[NKF∗16] NIESSNER M., KEINERT B., FISHER M., STAMMINGER
M., LOOP C., SCHÄFER H.: Real-time rendering techniques with
hardware tessellation. Computer Graphics Forum 35, 1 (2016), 113–
137. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.12714, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.12714, doi:https:
//doi.org/10.1111/cgf.12714. 2

[NL13] NIESSNER M., LOOP C.: Analytic displacement mapping us-
ing hardware tessellation. ACM Transactions on Graphics (TOG) 32, 3
(2013), 26. 2

[NVI18] NVIDIA CORPORATION: NVIDIA Turing
GPU Architecture. https://images.nvidia.com/
aem-dam/Solutions/design-visualization/
technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018.
[Accessed 12-April-2021]. 2

[PDG21] POIRIER C., DESCOTEAUX M., GILET G.: Accelerating
geometry-based spherical harmonics glyphs rendering for dmri using
modern opengl. In Computational Diffusion MRI (Cham, 2021), Cetin-
Karayumak S., Christiaens D., Figini M., Guevara P., Gyori N., Nath V.,
Pieciak T., (Eds.), Springer International Publishing, pp. 144–155. 2, 3

[PEO09] PATNEY A., EBEIDA M., OWENS J.: Parallel view-dependent
tessellation of catmull–clark subdivision surfaces. pp. 99–108. doi:
10.1145/1572769.1572785. 2, 3

[PPUJ23] PETERS C., PATEL T., USHER W., JOHNSON C. R.: Ray Trac-
ing Spherical Harmonics Glyphs. In Vision, Modeling, and Visualiza-
tion (2023), Guthe M., Grosch T., (Eds.), The Eurographics Association.
doi:10.2312/vmv.20231223. 2, 3, 8, 10, 11

[PR23] PATEL A., RIDDELL T.: D3D12 Work Graphs Pre-
view. https://devblogs.microsoft.com/directx/
d3d12-work-graphs-preview, 2023. [Accessed 08-April-
2024]. 10

[Res24] RESEARCH UNIT OF COMPUTER GRAPHICS | TU WIEN:
Auto-Vk-Toolkit. https://github.com/cg-tuwien/
Auto-Vk-Toolkit, 2024. 11

[Rod40] RODRIGUES O.: Des lois géométriques qui régissent les dé-
placements d’un système solide dans l’espace, et de la variation des co-
ordonnées provenant de ces déplacements considérés indépendants des
causes qui peuvent les produire. Journal de Mathématiques Pures et
Appliquées 5 (1840), 380–440. 9

[SKW21] SCHÜTZ M., KERBL B., WIMMER M.: Render-
ing point clouds with compute shaders and vertex order op-
timization. Computer Graphics Forum 40, 4 (2021), 115–
126. URL: https://www.cg.tuwien.ac.at/research/
publications/2021/SCHUETZ-2021-PCC/. 2, 3

[SKW22] SCHÜTZ M., KERBL B., WIMMER M.: Software rasterization
of 2 billion points in real time. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 5, 3 (July 2022), 1–17. 3

[SS09] SCHWARZ M., STAMMINGER M.: Fast GPU-based adaptive tes-
sellation with CUDA. Computer Graphics Forum 28, 2 (Proceedings of
Eurographics 2009) (Mar. 2009), 365–374. 2

[The23a] THE KHRONOS GROUP INC.: subgroups :: Vulkan Documen-
tation Project. https://docs.vulkan.org/guide/latest/
subgroups.html, 2022-2023. [Accessed 01-March-2024]. 5

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://gpuopen.com/gpu-work-graphs-in-vulkan
https://gpuopen.com/gpu-work-graphs-in-vulkan
https://github.com/keenancrane/plain-knit-yarn
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.29162
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.29162
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.29162
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.29162
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.29162
http://dx.doi.org/https://doi.org/10.1002/mrm.29162
https://api.semanticscholar.org/CorpusID:198116975
https://api.semanticscholar.org/CorpusID:198116975
http://dx.doi.org/10.2312/egs.20221031
http://dx.doi.org/10.2312/egs.20221031
https://registry.khronos.org/OpenGL-Refpages/gl4/html/gl_TessCoord.xhtml
https://registry.khronos.org/OpenGL-Refpages/gl4/html/gl_TessCoord.xhtml
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14863
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14863
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14863
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14863
http://dx.doi.org/https://doi.org/10.1111/cgf.14863
http://dx.doi.org/https://doi.org/10.1111/cgf.14863
https://advances.realtimerendering.com/s2021/index.html
https://advances.realtimerendering.com/s2021/index.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12714
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12714
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12714
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12714
http://dx.doi.org/https://doi.org/10.1111/cgf.12714
http://dx.doi.org/https://doi.org/10.1111/cgf.12714
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
http://dx.doi.org/10.1145/1572769.1572785
http://dx.doi.org/10.1145/1572769.1572785
http://dx.doi.org/10.2312/vmv.20231223
https://devblogs.microsoft.com/directx/d3d12-work-graphs-preview
https://devblogs.microsoft.com/directx/d3d12-work-graphs-preview
https://github.com/cg-tuwien/Auto-Vk-Toolkit
https://github.com/cg-tuwien/Auto-Vk-Toolkit
https://www.cg.tuwien.ac.at/research/publications/2021/SCHUETZ-2021-PCC/
https://www.cg.tuwien.ac.at/research/publications/2021/SCHUETZ-2021-PCC/
https://docs.vulkan.org/guide/latest/subgroups.html
https://docs.vulkan.org/guide/latest/subgroups.html


12 of 12 J. Unterguggenberger et al. / Fast Rendering of Parametric Objects

[The23b] THE KHRONOS GROUP INC.: Tessellation :: Vulkan Documen-
tation Project. https://docs.vulkan.org/spec/latest/
chapters/tessellation.html, 2022-2023. [Accessed 03-
March-2024]. 2, 5

[The24] THE KHRONOS GROUP INC.: Vulkan® 1.3.279 - A Specifica-
tion (with all registered Vulkan extensions). https://registry.
khronos.org/vulkan/specs/1.3-extensions/html,
2024. [Accessed 01-March-2024]. 5

[TRW∗02] TUCH D. S., REESE T. G., WIEGELL M. R., MAKRIS
N., BELLIVEAU J. W., WEDEEN V. J.: High angular resolution
diffusion imaging reveals intravoxel white matter fiber heterogene-
ity. Magnetic Resonance in Medicine 48, 4 (2002), 577–582.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/mrm.10268, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/mrm.10268, doi:https:
//doi.org/10.1002/mrm.10268. 8

[UKPW21] UNTERGUGGENBERGER J., KERBL B., PERNSTEINER
J., WIMMER M.: Conservative meshlet bounds for robust culling
of skinned meshes. Computer Graphics Forum 40, 7 (Oct. 2021),
13. URL: https://www.cg.tuwien.ac.at/research/
publications/2021/unterguggenberger-2021-msh/,
doi:10.1111/cgf.14401. 3

[WA23] WORCHEL M., ALEXA M.: Differentiable rendering of para-
metric geometry. ACM Transactions on Graphics (TOG) 42, 6 (2023),
1–18. 2, 3

[Wil22] WILSON B.: Building a Parametric Seashell. https:
//observablehq.com/@bronna/parametric-seashell,
2022. [Accessed 29-February-2024]. 2, 10

[ZCH∗17] ZHANG C., CAAN M., HÖLLT T., EISEMANN E., VI-
LANOVA A.: Overview + detail visualization for ensembles of
diffusion tensors. Computer Graphics Forum 36, 3 (2017), 121–132.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.13173, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.13173, doi:https:
//doi.org/10.1111/cgf.13173. 3

[ZHC∗17] ZHANG C., HÖLLT T., CAAN M. W. A., EISEMANN E., VI-
LANOVA A.: Comparative Visualization for Diffusion Tensor Imaging
Group Study at Multiple Levels of Detail. In Eurographics Workshop on
Visual Computing for Biology and Medicine (2017), Bruckner S., Hen-
nemuth A., Kainz B., Hotz I., Merhof D., Rieder C., (Eds.), The Euro-
graphics Association. doi:10.2312/vcbm.20171237. 3

[ZSL∗15] ZHANG C., SCHULTZ T., LAWONN K., EISEMANN E., VI-
LANOVA A.: Glyph-based comparative visualization for diffusion tensor
fields. IEEE transactions on visualization and computer graphics 22, 1
(2015), 797–806. 3

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://docs.vulkan.org/spec/latest/chapters/tessellation.html
https://docs.vulkan.org/spec/latest/chapters/tessellation.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.10268
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.10268
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10268
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10268
http://dx.doi.org/https://doi.org/10.1002/mrm.10268
http://dx.doi.org/https://doi.org/10.1002/mrm.10268
https://www.cg.tuwien.ac.at/research/publications/2021/unterguggenberger-2021-msh/
https://www.cg.tuwien.ac.at/research/publications/2021/unterguggenberger-2021-msh/
http://dx.doi.org/10.1111/cgf.14401
https://observablehq.com/@bronna/parametric-seashell
https://observablehq.com/@bronna/parametric-seashell
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13173
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13173
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13173
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13173
http://dx.doi.org/https://doi.org/10.1111/cgf.13173
http://dx.doi.org/https://doi.org/10.1111/cgf.13173
http://dx.doi.org/10.2312/vcbm.20171237

