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Abstract
Spatio-temporal ensemble data consist of several simulation runs with multiple spatial and a temporal dimension, where the
runs are obtained using different parameter settings or initial conditions for the simulation. During analysis, one is interested
in investigating the different facets of space, time, and parameter values. When globally analyzing some facet(s), others shall
be aggregated to generate summary visualizations. Due to the large amount of data that an ensemble consists of, one may want
to generate summary visualizations at multiple levels of detail. Wavelet transforms are a well-known concept for efficiently
switching between multiple resolutions. We propose to extend this concept to ensemble data, where individual facets may be
aggregated adaptively. We present how to apply the scheme for any data sizes to generate correct averages even when the
number of samples is not a power of two in each dimension. We further develop an out-of-core strategy to handle large data
sizes. Our scheme is coupled with common 1D, 2D, and 3D visualization methods for an interactive visual analysis of the
ensemble data.

CCS Concepts
• Computing methodologies → Parallel algorithms; • Human-centered computing → Scientific visualization;

1. Introduction

The increase in computational performance over the years opened
the door to the simulation of ever more complex physical phenom-
ena at higher precision. Simulations are run for many parameter
combinations, such that the resulting set of simulation runs forms
an ensemble. The complexity of spatio-temporal ensemble data is
manifested by the different facets that come into play with the data
being defined over an (often 3D) spatial domain, varying over time,
and consisting of different ensemble members, which are often as-
sociated with the parameter settings that were used for running the
simulation. We consider these facets (space, time, parameters) as
dimensions that form a multidimensional hyper-cube, where the di-
mensionality depends on the number of spatial dimensions as well
as on the dimensionality of the parameter space.

When visually analyzing the data, one often concentrates on one
or a few facets. This can be achieved by picking specific values for
the other facets, i.e., effectively slicing the multidimensional hyper-
cube. For example, one may be interested in the temporal evolution
and fixes the parameter settings to show an animation of a volume
rendering over time. However, such a visualization only shows one
ensemble member and not the whole ensemble. To obtain global
summary views of the entire ensemble data, one needs to aggregate
over some facets to show the change within other facets. For the
stated example, one would aggregate over all ensemble members to
visualize the temporal evolution of the ensemble mean. Similarly,

one could aggregate over space and time to analyze the change
when varying parameter settings.

The complexity of ensemble data is also reflected in the data size
and poses a problem for the analysis. Nowadays, it is not unusual
that the size of an ensemble dataset ranges from hundreds of giga-
bytes to many terabytes. In this paper, we propose a novel approach
that supports the aggregation over any facets of spatio-temporal
ensemble data to support summary visualizations of other facets
through averaging. Moreover, the aggregation is provided at multi-
ple levels of resolution to alleviate the data size issue. We present an
efficient scheme that allows for quickly switching between differ-
ent levels of resolution and adaptively refining/coarsening the level
of resolution in chosen dimensions. In summary, the algorithm sat-
isfies the following five requirements:
(R1) A progressive reconstruction of the data should allow for an
analysis at different levels of detail.
(R2) The reconstruction should be flexible, allowing different lev-
els of detail for each dimension.
(R3) The method should apply to large datasets.
(R4) The aggregations should represent an interpretable summary
of the ensemble data, such as the arithmetic mean of the ensemble.
(R5) The algorithm should work on volume sizes that are not pow-
ers of two.

Satisfying all five imposed requirements is desirable for any
method that is meant to be applied for the explorative analysis of
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large multidimensional data. For instance, the combination of Re-
quirements R1 and R3 ensures that the approach is scalable to large
data with a high number of dimensions but the intermediate views
would not be of much analytical use if the approach does not also
satisfy Requirement R4. On the other hand, Requirement R2 caters
to the needs of an explorative analysis, where the interesting facets
of the data are not always known beforehand. In that case, one may
wish to discard some dimensions interactively, allowing them to
analyze the influence of the remaining ones. The last Requirement
R5 ensures that an approach is directly applicable to a dataset of
any size, avoiding the risk of introducing any resampling artifacts
while preprocessing the data.

We achieve our goals by defining an aggregation scheme called
Multistage Multiresolution Aggregation (MMA) that computes
means based on the Fast Wavelet Transform (FWT). We base MMA
on the FWT, as it provides great flexibility in the manner of how to
aggregate and reconstruct the data. We discuss how the FWT has
prior been used to aggregate single volumes (see Section 3) and
how it can be extended to the aggregation of spatio-temporal en-
sembles (see Section 4). Afterwards, we introduce MA to compute
error-free means at all levels of detail (see Section 5.1). We re-
fer to summarizations as error-free if the aggregated data on each
level of detail agrees with the direct computation of the summa-
rization. Second, we tackle the problem of large data sizes and pro-
vide MMA as an out-of-core extension of MA to enable the parallel
processing of volumes, which may not fit into main memory (see
Section 5.2). Third, we generate mean summary visualizations by
integrating MMA into a visualization framework such that a suit-
able state-of-the-art 1D, 2D, or 3D visualization is chosen to visu-
alize the aggregated data depending on its dimensionality (see Sec-
tion 6). We evaluate our approach with multiple synthetic datasets
(see Section 8) and show its usefulness by applying it to two real-
world ensemble datasets (see Section 7).

2. Related Work

The visual analysis of large volumetric data, including ensemble
data, has been an active field of research for many years [WHLS19,
RH19]. For example, it has become common practice to reduce the
amount of data actively residing in memory by employing various
compression techniques.

Different surveys [BHP15,BRGIG∗14,LMG∗18] give extensive
overviews of the common techniques. Among those are the use of
Octrees for subsampling [Ose09, Ose11], statistically based rep-
resentations of the data [TLB∗11, WLW∗17], tensor approxima-
tions [Ose09, Ose11, BRP16, BRP19], wavelet transforms [GG16,
GS01, GS04, Mur92, IP99, SG10], hierarchical residual encodings
[BMSK23], multi-component expansion [ML23] and approaches
based on MGARD [ATWK18, ATWK19, GWZ∗22, LGC∗21].
These techniques generally comprise a compression preprocessing
step, followed by an offline reconstruction of the volume at a lower
level of fidelity or an online decompression, which is coupled with
a visualization, often a direct volume rendering [Max95]. In either
case, the compression scheme can be lossy or loss-free, balanc-
ing decompression speed, memory requirement, and visualization
fidelity. Given that a spatio-temporal ensemble dataset can be inter-
preted as a single multidimensional volume, with non-overlapping

Table 1: Comparison of different methods in relation to the stated
requirements. FWT only fulfills R4 with errors.

Method R1 R2 R3 R4 R5
Subsampling [Ose09] ✓ ✓ ✓
HIRE [BMSK23] ✓ ✓ ✓ ✓
Multi-Component Expansion [ML23] ✓ ✓ ✓
MGARD [ATWK18] ✓ ✓ ✓
Curve Boxplot [MWK14] ✓ ✓ ✓
Contour Boxplots [WMK13] ✓ ✓ ✓
Streamline Variability Plots [FBW16] ✓ ✓ ✓
FWT [KMMG87] ✓ ✓ (✓)
MA (ours) ✓ ✓ ✓ ✓
MMA (ours) ✓ ✓ ✓ ✓ ✓

sub-volumes for each ensemble member, those techniques are con-
ceptually also applicable for use on ensemble data. However, none
of these techniques fulfills all the requirements stated in the intro-
duction.

The work of Barbarioli et al. [BMSK23] proposes a hierarchi-
cal multiresolution compression. While originally proposed as a
compression scheme, their work could also be repurposed for data
aggregation by choosing an appropriate approximation function.
Then, the approximations of X could be reinterpreted as summa-
rizations of X . While possible, a shortcoming of their approach
is that, so far, the applicability to the multidimensional case re-
mains unclear. Related to that, the work of Magri and Lindstrom
[ML23] proposes Multi-Component expansion for the compres-
sion of scalar fields. However, as the multi-component representa-
tion uses rounding to low-precision floating-point numbers, it nei-
ther provides meaningful aggregations nor allows for flexible re-
constructions along single dimensions. Similar shortcomings are
also applicable to the other compression methods like subsampling
[Ose09] or MGARD [ATWK18], which primarily aim to allevi-
ate memory constraints by representing the data at reduced fidelity,
as to fit in the available storage, being either persistent storage or
RAM. As such, they are generally not useful for the task of data
summarization.

None of the discussed approaches could satisfy all requirements
identified in the introduction, as shown in Tab. 1. In particular, com-
pression methods always satisfy the requirement R3, since they re-
duce the memory requirements for a given dataset but never satisfy
R2. On the other hand, summarization approaches satisfy R4, but
lack in either R2 or R3. Only MMA fulfills all the requirements.

While related, the use of compression techniques is orthogonal
to the concept of data aggregation, which this paper focuses on.
The main goal of data compression is to enable the visualization
of large datasets, where large refers to the amount of memory
required to store or work with the data. In contrast, an aggre-
gation seeks to reduce the complexity of the data by creating
intermediate, lower-dimensional views summarizing the given
ensemble. Approaches relying on a compression/decompression
workflow mainly focus on achieving high compression ratios
and fast full-fidelity reconstructions with low amounts of error,
while, within an aggregation workflow, the focus lies on the ability
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Figure 1: Schematic comparison of averaging using the FWT (top)
and chunks (bottom) on an input with eight elements. LL0 and LL1
are the approximations after two transformation steps, while LH
and H are the detail coefficients. Computing the second FWT step
is equivalent to computing the average inside the chunk of size 4.

to compute many different low-dimensional aggregations in a
fast manner, while rarely requiring the full non-aggregated view
on the data. The aggregation facilitates the visual analysis of
ensembles by allowing a human analyst to examine the impact of
individual facets contained in the ensemble. Typical summarization
methods employ statistical summaries like computing means and
variances [MWK14, WMK13] or applying some sort of cluster-
ing [FBW16] to remove the members dimension of the ensemble.
Potter et al. [PWB∗09] proposed making use of linked views to dis-
play summary statistics of ensemble members in selected regions
of space. Luo et al. [LKP03] proposed methods to extend standard
visualization techniques to make them viable for ensemble data.
The presented methods, among other publications, only focus
on summarizing single facets of the ensemble, often the member
dimension. Therefore, they are not suited for the task at hand.

3. Background

Of particular interest for the scope of this paper is the wavelet
transform (WT), mainly the discrete wavelet transform (DWT) and
the fast wavelet transform (FWT). It is defined as the convolu-
tion Wψ(a,b) of an input signal x(t) and a wavelet function ψ(t)
[KMMG87]. The WT is often unpractical, as it requires computing
and storing many coefficients. Alternatively, one can discretize a
and b, deriving the DWT. Common choices are to use a j = 2 j and
bk = k ∗2 j, where j,k ∈ Z. Multidimensional signals can be trans-
formed by using an appropriate multidimensional wavelet function,
or by applying the 1d wavelet transform in all dimensions of the in-
put signal separately [SDS96].

Mallat [Mal89] proposed a method, called the FWT, to compute
the DWT in linear time, assuming that the input contains 2N , N ∈N
elements. He describes replacing the wavelet function with a high-
pass and a low-pass filter pair, which are used to compute the WT
in log2(2

N) = N steps. The FWT transforms an input signal by re-
cursively splitting it into an array of approximations and an array
of detail coefficients, using both a low-pass and high-pass filter,
until the remaining data has reached a minimal size. If we choose
a function that computes the average of its input as the low-pass
filter, the array of approximations at a step k is equivalent to com-
puting the mean of our input in chunks, where the chunk size is 2k

(see Fig. 1). For instance, with a chunk size of 4, containing the in-
put elements a,b,c, and d, the resulting approximation LL0 is equal
to both the average of our four input elements and the average of
the two approximations from the previous step. This equivalency is

also valid for the multidimensional case, as multidimensional FWT
can be computed by applying the one-dimensional FWT on each
dimension of our input separately. In that case, we have a chunk of
the size 2ki along each dimension, where ki is the number of FWT
steps performed for the dimension i. Formally, our low-pass filter
f is a bivariate function, defined as f (a,b) = (a+ b)/2 , where a
and b are two neighboring elements of the previous step. To later
be able to reconstruct the volume, we also have to define a high-
pass filter. We are free to choose any function that, together with
the results of the low-pass filter, is reversible, as we do not care for
the computed detail coefficients in any shape or form, except for
reconstruction. Therefore, we choose our high-pass filter g as the
function g(a,b) = a− f (a,b). The transformations are reversible,
as the equations can be easily inverted. As a result, we can recon-
struct the data progressively and can switch between any levels of
resolution. Moreover, since the filter pair takes two inputs and pro-
duces two outputs, we do not need to increase the memory require-
ments to store the transformed volume, as the number of stored co-
efficients remains the same when performing a transformation step
(see Fig. 1).

If we partially reconstruct the volume along single dimensions
in an adaptive setting, we may encounter the case that the number
of elements at a reconstruction step does not match the number of
detail coefficients. We can interpret this situation as our detail coef-
ficients containing information to reconstruct data that we already
discarded. In that case, we can remove this unnecessary informa-
tion by reapplying the FWT to the detail coefficients until they con-
tain only the details we require, i.e., until the size of the number of
detail coefficients matches the number of elements at a given step.

By storing the detail coefficients at each step, along with the fi-
nal approximation coefficient, one can thus, essentially, invert the
default level of detail of the volume from the highest one to the
lowest one, while still being able to reconstruct each level of detail.
Therefore, this inverts the cost associated with accessing the differ-
ent data views, with the highly aggregated views being very cheap
to access, but making it expensive to access the fully reconstructed
input volume. This is advantageous, as we expect that, during an in-
teractive analysis, one will use a low-dimensional summary of the
data most of the time. Therefore, we prioritize the time required to
access different data summaries, over the time required to access
the full volume.

We showed that the FWT can effectively be used for data aggre-
gation purposes. However, there are some limitations, which make
the presented aggregation scheme unfeasible for ensemble datasets.
First, the FWT is only defined for inputs where the number of ele-
ments is a power of two. Therefore, we would be required to expand
the input data until it reaches the required size, resulting in more
expensive transformations and reconstructions, and, more impor-
tantly, wrong aggregation, as we would compute the means of the
expanded input instead of the means of the original input. Second,
the FWT requires loading the entire input into memory, making
it not trivial to implement efficiently in cases where the data does
not fit, which may be the case with a multidimensional ensemble
dataset. We propose to tackle the first shortcoming by extending the
described aggregation scheme with our MA approach. The second
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shortcoming is tackled by our out-of-core extension of the algo-
rithm, which we refer to as MMA.

4. Aggregation of Spatio-temporal Ensembles

Our approach requires an ND volume as its input, which can then
be aggregated along the different dimensions. However, due to their
size, ensemble datasets are usually stored as a collection of vol-
umes where each volume covers only a subset of the ensemble, for
example, as 3D volumes containing a single time step of an ensem-
ble member each. To apply FWT to ensemble data, we first need
to map the lower-dimensional volumes to a multidimensional (log-
ical) volume that contains the entire dataset with all its facets. A
spatio-temporal ensemble dataset can be described as a (4+m)D
volume, where three dimensions correspond to the spatial dimen-
sions as in the original data, one dimension represents the temporal
dimension, and m dimensions represent dimensions for the ensem-
ble members. Depending on the analysis goals, the set of ensem-
ble members can be represented as a single dimension (m = 1).
Alternatively, different dimensions can be used for different input
parameters (m equals the number of input parameters), allowing
for aggregations among individual input parameters. This mapping
can be achieved by indexing the data according to the different di-
mensions and redirecting these indices to the volumes stored on the
disk. Thus, no data transformation is required.

In case all ensemble members are considered to form a set, they
can be mapped to a single dimension, but the ordering is not pre-
defined. While the order does not influence the result when com-
pletely aggregating along the member dimension, it strongly influ-
ences the outcome for intermediate aggregation levels. One poten-
tial avenue for deriving an ensemble ordering could be to order the
ensembles based on the 1D embedding of the member field simi-
larities. If applicable to the dataset, one could use parameter depen-
dencies as a starting point for the ordering. In other cases, depend-
ing on the dataset, the member ordering is irrelevant, in which case
one could use a random ordering. Defining a general ordering rela-
tion for ensemble members is beyond the scope of this paper, and
reserve it for future work. For our examples, we define an ordering
on a case-by-case basis.

Another challenge when representing the ensemble as a mul-
tidimensional volume is caused by multi-field data. While aggre-
gations of different data types, such as scalar fields, vector fields,
and tensor fields, are not well-defined, even the aggregation among
scalar fields is often not meaningful, such as aggregating a temper-
ature field with a humidity field. If an aggregation is meaningful,
multiple fields can be included as an additional dimension. Other-
wise, like for the use case presented in Section 7, we create one
logical volume per field such that the different fields can be inves-
tigated separately or shown in juxtaposed views.

5. Efficient Aggregation

An effective and efficient scheme for data aggregation with spatio-
temporal ensembles can be found by using the FWT. However, we
also pointed out that there are still two major shortcomings, which
make the direct application of the FWT unfeasible for our stated use
case. In the following, we will derive a scheme that allows working

Figure 2: Schematic comparison of averaging using the FWT (top)
and chunks (middle) on an input with six elements. L0, L1 and L2
are the approximations after one transformation step, while H are
the detail coefficients. Computing the second FWT step is equiva-
lent to computing the average inside the chunks of size 4 (bottom),
which is undefined as the second chunk (LL1) goes out of bounds.

with volumes that are not powers of two, as well as an extension
to tackle the large ensemble sizes. Our approach is related to the
lifting scheme for wavelet transformations [DS98]. However, the
modified predict and update steps do not only depend on the results
of the splitting step but require additional information for error-free
aggregation.

5.1. Multiresolution Aggregation (MA)

To better understand the reason the FWT is restricted to powers of
two, it is useful to look at the case where this precondition does not
apply. Again, for the sake of simplicity, we will restrict our descrip-
tions to one-dimensional volumes, but all steps apply to the multi-
dimensional case. Let n be the size of our input. We have shown
that applying the ith FWT step is equivalent to computing the aver-
age inside chunks of size 2i (see Fig. 1). If n is a power of two, then
2i|n (meaning that 2i is a divisor of n) for all i = 0,1, . . . , log2 n, i.e.,
for each FWT step the chunk is fully contained inside the bounds
of our input and covers each element, without any overlap. If n
is not a power of two, then there exists an i ∈ {0,1, . . . ,⌈log2 n⌉}
where 2i ∤ n. In other words, the chunk goes out of bounds. Trans-
posing it again to the FWT aggregation, this would be equivalent
to the number of elements in a step not being divisible by two (see
Fig. 2). This can be resolved by expanding the input signal, such
that each possible chunk is fully in bounds. Evidently, this would
lead to an error in the computed aggregate. Instead, we propose to
define the out-of-bounds values dynamically, for each chunk, such
that the aggregation inside the chunk is not affected by them. As
we are computing the average, we can simplify this to shortening
the chunk size until it is fully in bounds. In terms of a FWT step, it
is equivalent to leaving the last element unchanged when the num-
ber of elements is uneven. We are below presenting a scheme to
efficiently compute that. Given that we are now diverging from the
FWT, we are from now on going to refer to our aggregation scheme
as Multiresolution Aggregation (MA).

An MA step is now a mapping of a sequence of n elements to
a sequence of ⌈ n

2⌉ elements, and therefore we lose the information
whether n was even or uneven after applying the step. This infor-
mation is critical when we invert the step, i.e., reconstruct the data,
so we store it during the aggregation. Further, with the FWT we
implicitly assumed that all elements of a step contributed equally
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to the aggregate, this is not the case anymore with MA, as each
element contributes proportionally to the size of the chunk it was
derived from. A straightforward way to solve this problem is to in-
troduce a weighting factor to each element. Initially, at step zero,
the elements are weighted uniformly, but we change the weights
with each aggregation step. The weight of an element at a specific
step can be computed on-demand, as it depends solely on the num-
ber of elements in the input sequence, or they can be derived by
aggregating the weights of the previous step. In any case, they do
not need to be stored along with the aggregated data and detail co-
efficients, as they can be reconstructed from the input size and the
number of aggregation steps applied to the input.

We define our weights as tuples of the form w = (L,R) ∈ N×N
with l((L,R)) = L and r((L,R)) = R. The tuples signify the number
of elements from the input covered by an element in the approxima-
tion, with the constituent parts indicating the number of elements
covered by the element at the prior step. The weights are initialized
to (1,0) for each element at step zero. To simplify the handling of
weights, we further define for each w1,w2 ∈ N×N the relations
|w| = l(w)+ r(w) and w1 +w2 = (l(w1)+ l(w2),r(w1)+ r(w2)).
With these definitions, we can redefine our low-pass filter f to be
the weighted arithmetic mean of our input

f (a,b,wa,wb) =
|wa| ·a+ |wb| ·b

|wa +wb|
(1)

Similar to the FWT aggregation scheme, we can rewrite an aggre-
gation step in an element-wise notation, with the addition of wi

k
being the weight of the kth element at the step i, and derive the
reverse step thereafter, by

ai+1
k =

|wi
2k|·a

i
2k+|wi

2k+1|·a
i
2k+1

|wi
2k+wi

2k+1|

di+1
k = ai

2k −ai+1
k

wi+1
k = (|wi

2k|, |w
i
2k+1|)

(2)

These equations can, again, be rearranged to ai
2k and ai

2k+1, yield-
ing the reverse step

ai
2k = ai+1

k +di+1
k

ai+1
k =

l(wi+1
k ) ·ai

2k + r(wi+1
k ) ·ai

2k+1

|wi+1
k |

=⇒ ai
2k+1 = ai+1

k −
l(wi+1

k )

r(wi+1
k )

·di+1
k

(3)

If the input size is actually a power of two, then for each i,k ∈ N
we obtain that l(wi+1

k ) = r(wi+1
k ), i.e., the two Equations 2 and 3

are equal to computations of the FWT. Therefore, the aggregation
scheme using the FWT can be considered a special case of MA
when the input size is a power of two. Thus, we optimize the MA by
reproducing the prior aggregation scheme when applicable, saving
us the additional complexity and memory requirements introduced
by the weights.

Like with the FWT, we have to consider the special case, where
we partially reconstruct an input, which may lead to the number

Figure 3: Schematic visualization of aggregating an input of size
eight with MMA and a block size of four. The weights are not dis-
played, as, in this case, they are not required. Elements ending with
an L represent the approximations, likewise elements ending with
an H represent the detail coefficients. Each stage splits the result
of the previous stage into blocks of size four and applies the MA on
each block. The last approximation coefficient of each block is then
gathered into an array of partial aggregates. After the first stage,
we obtain a partial aggregation of the input with two elements re-
maining. The complete aggregate is obtained by applying a second
stage on the gathered result of the first stage. We can reconstruct
the input by reverting the procedure of each stage.

of detail coefficients and the number of elements not matching.
We then have to remove the additional details of the detail co-
efficients by aggregating them with the MA. If we were to com-
pute the aggregation with Equation 2, we would not be able to use
the aggregated detail coefficients to reverse the aggregation step
on our input data, as the computed weights irreversibly lose the
information required for correctly applying Equation 3. In other
words, the computed weights would be able to reconstruct the
newly aggregated detail coefficients, but not the original input.
We therefore modify the handling of the weights of Equation 2 to
wi+1

k = wi
2k +wi

2k+1. Again, when the input size is a power of two,
we obtain wi

2k +wi
2k+1 = (|wi

2k|, |w
i
2k+1|), thus preserving the full

compatibility of the MA and FWT approaches.

5.2. Out-of-core Aggregation

The other limiting factor of the FWT aggregation scheme, now re-
placed by the MA scheme, is the limited scalability due to the large
memory requirements with an increasing number of elements. Due
to the curse of dimensionality, it is often unfeasible to aggregate
large multidimensional volumes using the MA scheme, and there-
fore we extend the MA to an out-of-core aggregation scheme called
Multistage Multiresolution Aggregation (MMA). Instead of apply-
ing the MA on the entirety of the input, we subdivide it into multi-
ple non-overlapping blocks and apply the MA on each block indi-
vidually, leading to a partial aggregation. The result of each block,
i.e., the fully aggregated voxel, is then gathered, and the process is
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repeated (see Fig. 3). We define a stage as being the operation of
splitting the input, applying the MA, and gathering the results. This
approach can be implemented with an arbitrary number of stages
by caching the result of one stage to persistent memory. Each addi-
tional stage reduces the amount of data that has to be processed by
the final stage, allowing for the transformation of bigger inputs.

For simplicity, we focus on utilizing only two stages. In that case,
the second stage consists of a simple application of MA on the re-
sult from the first stage. A stage can be parallelized by process-
ing multiple blocks simultaneously, though with an increase in the
runtime memory requirements. As a further optimization, we re-
strict the block size to be a power of two along each dimension, the
size can differ in each dimension. If our input is a n-dimensional
volume, each stage may produce 2n different block shapes, as the
block size along each dimension does not necessarily evenly divide
the volume along the same dimension. Thus, we have one block
shape equaling the chosen block size, i.e., filled blocks, and up to
2n −1 different shapes of partially filled blocks. The partially filled
blocks can only occur as the last block along each dimension and
are therefore relatively infrequent when compared to the number of
filled blocks. Given that we can simplify MA to FWT when applied
on a volume with a size equaling a power of two, we can therefore
speed up the computation and reduce the working memory required
to aggregate filled blocks, while reserving the more complex ag-
gregation for the infrequent occurrence of partial blocks. This opti-
mization presumes uniform weights inside the block, but the same
reasoning still applies, as we expect the occurrence of filled blocks
with nonuniform weights to be more infrequent than the occurrence
of partial blocks, given that the former can only occur as a result of
having partial blocks in a prior stage.

The reconstruction of the input with the MMA also occurs in
multiple stages, but in reverse order. We start with the last stage
and divide the input into single elements, each element belonging
to a block of the stage. Then, each block is reconstructed to the
requested level of detail by reverting the MA. Finally, the result-
ing blocks are combined, and the process is repeated with the next
stage. If only a specific range of interest is required during the re-
construction, this process can be further optimized, by considering
that we can map each block inside a stage to the range of the input
volume covered by said block. With this information, we can check
whether a block covered some part of the range of interest, and skip
it otherwise. As a result, we can significantly reduce the time and
memory required to reconstruct the required range, if the range of
interest and the block size are small enough.

Similar to MA, we have to handle the case where we partially
reconstruct the input in an adaptive setting. The procedure remains
largely unchanged, except that now we also have to handle the
case that a prior stage was reconstructed partially, in addition to
the partial reconstruction of each block. In that case, we also have
to merge multiple blocks, e.g., for two-dimensional volume span-
ning, the X and Y axes, where we only reconstruct the X axis, we
merge all blocks along the Y axis. The naive approach of loading all
blocks into memory and aggregating the resulting super block may
lead to the loading of large amounts of data into memory, in the
worst case, we would be required to merge all blocks into one. As
a workaround, we use the property of MA being able to produce

partial aggregates of two blocks when the weights of the blocks
are known, which they are, given that we can always rebuild the
weights on demand. Therefore, we merge the blocks sequentially,
requiring us to only keep two blocks worth of data in memory at
any given time (see Appendix Fig. 1).

6. Explorative Analysis of Ensembles

The aggregated information computed by the MMA can be used to
generate mean summary visualizations. The MMA is a data pre-
processing and loading scheme and is therefore not tied to one
visualization method. As a result, we can easily integrate our ap-
proach into preexisting analytical workflows and have access to
a broad range of visualization methods. The aggregates of an n-
dimensional input volume may possess any number of dimensions,
ranging from one to n. In the one- and two-dimensional case, one
could use any visualization such as line plots for the 1D case
or heatmaps for 2D to directly visualize the aggregated data. For
three-dimensional aggregations one could, e.g., use a direct vol-
ume rendering [Lev89, Max95], isosurfaces [LC87], etc. We inte-
grated our MMA approach into the visualization framework Voreen
[DLJL22], as it already provides many visualization methods for
the different dimensionalities out of the box.

As we described above, the MMA trades off fast access to the
high-resolution ensemble in exchange for the ability to construct
low-resolution aggregates cheaply. The low cost of constructing
the aggregates is mainly of benefit during an interactive explorative
analysis of the ensemble. During such an analysis, one is often pri-
marily concerned with gaining insight into the patterns contained
in the data. Therefore, it is beneficial to quickly change between
the different views, which requires adaptive changes of aggrega-
tion dimensions and levels. For example, if the users are interested
in finding similarities between multiple ensemble members, they
may start with a visualization that aggregates every facet except for
the ensemble members (see Section 4).Afterward, they may con-
tinue by changing to an aggregation that does not aggregate over
the temporal dimension,enabling an exploration of the similarity
over time. Consequently, they may incorporate other facets in their
analysis, like other spatial dimensions. This kind of analysis would
be unfeasible if changing the aggregation would incur long compu-
tation times.

With our MMA approach, we can avoid long reconstruction
times by being able to directly transition from the current level of
detail to another in an adaptive manner (in any dimension) without
the need to go through the entire multiresolution hierarchy. MMA
provides a progressive reconstruction scheme with multiple levels
of detail. Thus, instead of reconstructing to the desired level of
detail directly, we can split the reconstruction into multiple steps,
where each step adds details, i.e., increases the resolution, to the
results of the prior step. If, for example, we have many levels of
detail l0, . . . , ln for one facet, where l0 is the lowest and ln is the
highest, we could either reconstruct ln directly or through a chain
of reconstructions l0 → l1 → ·· ·→ ln. While this approach slightly
increases the total time required to reach the desired level of detail,
it benefits from a reduced interaction latency. It has to be noted, that
each step up in the level of detail roughly doubles the resolution and
is about twice as costly as the step to the prior level of detail, with
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Figure 4: One-dimensional plot showing the density of dry fuel
field (rhof_1) for the time 0s-690s as bar chart. The reconstruction
is configured such that only the values residing directly on the ter-
rain are considered. The x, y, and temporal dimensions of the field
are aggregated, and therefore each cell represents the arithmetic
mean of the dry fuel density on the terrain. Shades of blue repre-
sent the aggregations of the Backcurve runs, and shades of orange
represent the Headcurve runs.
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Figure 5: Two-dimensional plot of the rhof_1 field for the time
0s-690s. The reconstruction is configured such that only the val-
ues residing directly on the terrain are considered. The x- and y-
dimensions of the field remain aggregated, and therefore each cell
represents the arithmetic mean of the dry fuel density on the terrain.
The x-axis represents the time, while the aggregated field values are
mapped to the y-axis.

l0 being very cheap to reconstruct. Therefore, the progressive re-
construction reduces the response time drastically, allowing us to
quickly determine whether the inclusion/exclusion of some facet is
of benefit for the analysis.

7. Usage Scenarios

In the following, we apply MMA to ensemble analysis and discuss
the insights gained by investigating the data on different aggrega-
tion levels.

Wildfire Ensemble. We applied our MMA approach to the
SciVis 2022 Contest wildfire ensemble dataset [Lab22], which
models wildfire propagation depending on the terrain shape. For the
evaluation, we use six simulation runs named Headcurve 40/80/320
and Backcurve 40/80/320. The simulation runs differ in either

the form of the terrain or the starting position of the fire. For the
Headcurve runs, the fire is positioned on the wind-facing side of the
mountain, while it is located on the mountain lee side for the Back-
curve runs. The number behind the Headcurve and Backcurve runs
represents the mountain curvature. Each run simulated six scalar
fields and one vector field over about 70 time steps in 10-second
increments. The spatial resolution of the fields is 600× 500× 63.
Interesting in our case are the rhof_1 field (bulk density of the dry
fuel), and the theta field (potential temperature). We use these fields
to visualize similarities between the speed and location of the prop-
agating fire of each run. As a first step, we aggregated the ensemble
by applying MMA with a block size of 64× 64× 64× 8× 8, i.e.,
a block size of 64 for the spatial dimensions and a block size of
8 for the temporal dimension and the ensemble members. The
ensemble members were ordered lexicographically which in this
case agrees with first ordering the Backcurve runs based on the
curvature followed by the Headcurve runs.

The shape of the mountain and the location of the fires’ origin
may have an impact on the propagation of the fire. The speed of the
propagating fire is correlated with a decrease in the rhof_1 field, as
the fire would consume the available dry fuel. First, we examine
the arithmetic mean of the dry fuel mass density on the mountain
surface for each simulation run (see Fig. 4). Here, we observe small
to no differences between the members of the same group, indicat-
ing similarities in the evolution of the propagating fire within the
same group. To gain more insight into the propagation of the fire
over time, we also reconstruct the temporal dimension (see Fig. 5).
We observe a pronounced effect of the shape of the mountain and
its starting point on the propagation of the fire. In all Headcurve
runs, the mean density decreases faster than in the Backcurve runs,
indicating that the faster propagation is aided by the wind travel-
ing up the mountain. We further observe that the curvature of the
mountain also affects the propagation, with the lower curvatures
causing a stronger decrease in the fuel density. We also observe
that the curves of the two groups diverge immediately after 50s,
which corresponds to the time at which the fire is lit.

In a second step, we analyze the propagating fire of the two
groups individually by visualizing the temperature field over time.
The aggregations of the Backcurve and Headcurve runs are in-
cluded in the supplemental materials (see WILDFIRE ENSEMBLE)
and Appendix Fig. 2, including a video animation. There, we show
a volume rendering where the ensemble is reconstructed on the xy-
plane, on the mountain surface and the z-axis of the aggregated
3D space is mapped to time. The volume rendering of the aggre-
gation allows for directly studying the evolution of the fire spread
over time. In accordance with our previous observations, the visu-
alization depicts stronger fire propagations for the Headcurve runs.
Those observations are aligned with our previous analysis of the
same dataset [BHS∗23]. Compared to the previous analysis of the
dataset, our approach enables flexible aggregations along different
dimensions without large preprocessing times.

Grand Ensemble As a second usage scenario, we apply MMA
to the historical data of the RCP8.5 scenario of the Max Planck
Institute Grand Ensemble [MMSG∗19] dataset (MPI-GE), which
consists of 100 members with a spatial resolution of 192× 92 and
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1872 timesteps. We consider the anomaly of the monthly surface
temperature.

First, we investigate the mean temperature variations over time,
where we average over both spatial dimensions and the member
dimension. The temperature anomaly variation over time is shown
in Fig. 6a. Besides the general increase over time, which can be
attributed to global warming, the mean temperature slightly de-
creased between 1880 and 1900. To investigate this phenomenon
in more detail, we progressively refine the representation up to
the full resolution shown in Fig. 6b. While significant fluctuations
dominate the temporal variation, we observe a steep drop in 1883.
This corresponds to the volcanic winter caused by the eruption of
Krakatau, which significantly influenced the global climate [Sel92].

a)

b)

Figure 6: Mean temperature variation over time for the Grand En-
semble dataset at the 4th level of detail (a) and at the full resolution
(b).

In the next step, we also want to consider the spatial variations
of the temperature. Therefore, we create a 3D volume spanned by
the two spatial dimensions and the temporal dimensions. For the
volume rendering, we limit the color map to temperature anoma-
lies of more than 1.9 K. In the temporally aggregated visualization
(see Fig. 7a), we can see that the high-temperature anomalies occur
for later timesteps which agrees with the findings of the 1D in-
vestigations. However, we observe a strong spatial variation, with
the highest temperature anomalies occurring in the arctic region.
The full resolution (see Fig. 7b) reveals that in the other regions,
the temperature anomaly temporally decreases below 1.9 K, which
is not the case for the arctic region, indicating the strong global
warming. Thus, our approach allows for a flexible analysis on dif-
ferent levels of detail, facilitating an explorative analysis. While
these visualizations can also be obtained without our approach by
averaging the complete dataset, these computations would take sig-
nificantly longer.

8. Evaluation

First, we evaluate MMA according to (1) the error contained in
the reconstructed data, (2) the memory required to store our re-
sults, and (3) the computation time of reconstructing the data. We

a)

b)

Figure 7: Spatial variation of high-temperature anomalies over
time (z-axis) on the 5th level of detail in time (a) and for the full
resolution (b). The spatial dimensions (x- and y-axis) are fully re-
solved, while the member dimension is fully aggregated.
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Figure 8: Mean and maximum errors for the reconstruction of the
d1 dataset with the FWT approach, for each possible level of detail.

compare our MMA approach to a variant in which we aggregate
the blocks using the FWT approach detailed in Section 2 instead
of using the MA. The tests that utilize our MMA approach are la-
beled as “MMA”, while the tests using the FWT variant are la-
beled as “FWT”. In the FWT tests, blocks that are not powers of
two are filled with zeros at the end up to the next power of two.
We test the two methods using one two-dimensional and two five-
dimensional synthetic volumes containing randomized values. The
volumes are called d1 (resolution 16534× 15873), d2 (resolution
32× 32× 16× 8× 4), and d3 (resolution 51× 48× 37× 21× 5).
The d1 volume uses the single precision float data type, while d2
and d3 are stored using the double-precision floating-point for-
mat. All tests were run on a Linux system with an AMD Ryzen
9 5950X CPU, 32 GB of RAM, 32 CPU threads and a Samsung
960 EVO SSD formatted as Btrfs. Both approaches utilize simple
thread pools, where the processing of each block corresponds to
one task of the thread pool, no further parallelism has been em-
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ployed beyond processing multiple blocks simultaneuosly, but is
conceivable with the help of some parallelism library like OpenMP.
For the MMA we utilized the filter triple detailed in Section 5.1,
corresponding to a weighted arithmetic mean. Accordingly, for the
FWT we utilize the equivalent unweighted filter pair described in
Section 3, corresponding to an application of the Haar wavelet.

8.1. Reconstruction Error

We compare the two approaches according to the error contained
in the (partially) reconstructed data (see Fig. 8). For that purpose,
we ran the reconstruction on the d1 dataset, resampled to the size
1653×1587 using a numeric datatype with arbitrary precision. We
define the error as the absolute difference between the reconstruc-
tion and a direct aggregation to the requested level of detail, there-
fore smaller errors indicate higher aggreements between the recon-
struction and the direct summarization of the volume. The mea-
surements show that the FWT approach is unable to reconstruct
our dataset without introducing a summarization error, while the
reconstructions with our MMA approach are free of summarization
errors. This is expected, as the FWT approach requires the data to
be padded to the next power of two, which alters the aggregation. In
practice, the reconstruction will introduce small additional errors,
due to the numerical imprecision of the data types. For instance, our
measurements show a maximum numerical error of 2.4 ·10−5 when
reconstructing the d1 dataset with the float datatype. However, this
is several orders of magnitude smaller than the maximum error of
5.0 · 10−1 when reconstructed with the FWT approach. We also
observe that the error in the FWT approach tends to increase with
higher levels of detail, especially when reconstructing along a sin-
gle dimension. This is expected, as lower levels of detail distribute
the error along the entire aggregation, while with higher levels of
detail the error location gets more localized to the blocks where the
additional data was inserted. We get similar results in our tests of
the d2 and d3 datasets (see ADDITIONAL RUNTIMES AND ERRORS

in the supplemental materials).

8.2. Memory Consumption

In theory, as our approach is derived from the FWT, we should
be able to create the aggregation without increasing the memory
footprint of the dataset if the dataset is appropriately sized. In prac-
tice, we include additional metadata, like the block size and which
MMA steps have been applied, to each block. This metadata aided
in the implementation of the approach, but adds a small overhead
to each block, and is especially impactful when the data are split
into many blocks, due to a small block size. We tried to mitigate
this overhead by compressing the blocks stored to disk using the
zstd compression [Met23] at the default compression level (see Ap-
pendix Table 1). Our measurements show that the block overhead
is small in relation to the dataset size, but can become important
in memory-constrained environments, where it is not feasible to
increase the block size. When coupled with compression, this per
block overhead is sometimes offset by the better compressibility
of the encoded ensemble than the original input, like in the case
of the relatively large SciVis Contest dataset, where our approach
only requires 81.17% of the memory needed for storing the original
compressed data. Our tests of the FWT approach indicate a similar
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Figure 9: Mean computation times for the reconstruction of the d1
dataset using various block sizes. The times are measured using the
FWT and MMA approaches and include the time required to load
and decompress the blocks from disk.
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Figure 10: Mean computation time for the reconstruction of the
d1 dataset using the MMA approach, with the color indicating the
mean error of the reconstruction, for each possible level of detail.
The reconstruction times include the time required to load and de-
compress the blocks from disk.

behavior in the compressed case, but produce much larger outputs
in some cases when the data is not compressed (see Appendix Ta-
ble 2). This is likely due to the FWT requiring a block of data to
be a power of two, and therefore padding smaller blocks to bigger
sizes.

8.3. Computation Time

Fig. 9 shows the reconstruction computation times of the d1 dataset
over multiple block sizes. A similar evaluation for the dataset d2
can be found in the supplementary material. The measurements in-
corporate the time required to load the blocks from disk and decom-
press the blocks. The computation times of the two approaches are
similar in most cases. The selected block size can have a big impact
on the required computation time, forming a U-shape in the image.
The optimal block size is dataset-dependent, but we observe that
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the d1 dataset provides many options for a good block size with a
similar computation time as the optimal one. This observation may
be caused by the increased size of the d1 dataset, which allows for
a higher amount of parallelism. As a guideline, one could start by
choosing the block size in a way that the input can be split into, at
least, 2 to 3 times the number of blocks as there are threads, while
being small enough such that one block per thread fits into mem-
ory concurrently. We also depict the computation time required for
each level of detail combination of the d1 dataset with a block size
of 256×256 (see Fig. 10). From the image, we can clearly see the
transition between the two stages at X = 7,Y = 6. Past that point,
it becomes very computationally expensive to include data from
the previous stage, as it would necessitate the merging of multiple
blocks. Besides that, the computation time generally increases with
an increasing level of detail, with the optimum path being the diag-
onal, where no additional data adjustments have to take place. As
expected, we observe increasing computation times with increasing
distance from the main diagonal, as further distances require more
adjustment steps. The computation time behaves similarly for d3
(see ADDITIONAL RUNTIMES AND ERRORS in the supplemental
materials). In the case of larger datasets like SV , the reconstruction
time is entirely I/O bound, and therefore, a higher level of paral-
lelism may be bottlenecked by the data retrieval bandwidth.

9. Discussion and Conclusion

In this work, we presented Multiresolution Aggregation (MA) and
Multistage Multiresolution Aggregation (MMA) as its out-of-core
extension to enable the creation of aggregations for large ensem-
ble datasets. We evaluated our approach according to its memory
requirement, its computation time, and the reconstruction error,
where we showed that MMA is error-free except for minor numeri-
cal errors due to the limited precision of the datatypes, while not in-
troducing any significant increase in the memory requirements. To
show the utility of the aggregation scheme, we applied our method
to the wildfire ensemble dataset and the MPI-GE dataset.

In contrast to other aggregation approaches which only aggre-
gate along single facets, our approach allows for an efficient ag-
gregation of multiple facets and at multiple levels of detail. Having
multiple levels of detail enables the progressive rendering of en-
sembles, which is essential for explorations of large datasets. Fur-
ther, the presented approach is not coupled to any specific visual-
ization method, and can therefore be easily integrated into preex-
isting analytical workflows. This also allows an easy integration in
visual analysis tools that already contain other visualizations, such
as detail visualizations for single ensemble members. Hence, when
considering the requirements R1-R5 introduced in Section 1, our
approach is able to satisfy all five requirements.

We also present limitations and challenges. First, we have shown
that finding the optimal block size is difficult, as it is affected by the
amount of memory and level of parallelism available on the sys-
tem, making the sharing of already aggregated ensembles subopti-
mal. However, our analysis indicates that there is some flexibility in
choosing good block sizes that, even if not the optimum, do not sig-
nificantly degrade the computation time. In future work, one could
investigate the possibility of in-place re-encodings to optimize the
representation for different machines. Another way to reduce the

computation time of our approach is to investigate offloading the
aggregation, reconstruction, and decompression of blocks to accel-
erators, like GPUs.

While the MMA enables multiple levels of detail, it does so on
a logarithmic scale and is not continuous, i.e., each level roughly
doubles the resolution of a prior level along the selected dimension.
This is often sufficient when used to reduce the amount of data, or
when used to render the ensemble progressively, but may become
a limiting factor if the dimension contains some internal structure
one wants to avail itself to. For example, if a dimension contains
six elements, where the first three belong to one group and the last
three to another group, it is impossible to access the aggregation of
the first or last group. To mitigate this, one would be required to
split the dimension in two.

Currently, MMA can only aggregate using the arithmetic mean,
but other aggregation methods like the variance are also widely
used. As presented, our approach can be used to aggregate using
an arbitrary linear filter function and the weighted equivalent. In
future work, we want to investigate other aggregation schemes for
additional visual summarization.
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