
Eurographics Symposium on Parallel Graphics and Visualization (2022)
R. Bujack, J. Tierny, F. Sadlo (Editors)

A Flexible Data Streaming Design for Interactive Visualization of
Large-Scale Volume Data

Qi Wu∗1 , Michael J. Doyle†2 , and Kwan-Liu Ma‡1

1University of California - Davis, USA
2Intel Corporation

Figure 1: Large-scale progressive volume rendering of the deep ocean water asteroid impact dataset [PG17]. A) In our system, the pro-
gressive rendering is done by breaking the volume interval into smaller segments, and only compute one segment per frame. B) Additionally,
our system can also break the framebuffer into smaller tiles, and only render one tile at a time. Both method allows our rendering system to
significantly reduce memory footprints.

Abstract
Modern simulations and experiments can produce massive amounts of high-fidelity data that are challenging to transport and
visualize interactively. We have designed a data streaming system to support interactive visualization of large volume data. Our
streaming system design is unique in its flexibility to support diverse data organizations and its coupling with a highly efficient
CPU-based ray-tracing renderer. In this paper, we present our streaming and rendering design and demonstrate the efficacy
of our system with progressive rendering of streaming tree-based AMR (TAMR) volume data and radial basis function (RBF)
particle volume data. With our system, interactive visualization can be achieved using only a mid-range workstation with a
single CPU and a modest quantity of RAM.

1. Introduction

Modern simulations and experiments can produce massive amounts
of high-fidelity data given continuous advancements in computa-
tion and data acquisition technologies. These data can provide crit-
ical details for studying complex physical phenomena and chemi-
cal processes, but they can also be challenging to visualize inter-
actively without using purpose-built hardware such as a PC clus-
ter. The possibility of visualizing such large volume data in more
resource-limited environments such as a single workstation or a
laptop is always desirable, as it promises to lessen or eliminate the
need for expensive and specialized equipment and makes visual-
ization vastly more accessible. However, achieving this ability re-
quires solving two fundamental issues: 1) Large datasets can make

∗e-mail: qadwu@ucdavis.edu
†e-mail: michael1.doyle@intel.com
‡e-mail: ma@cs.ucdavis.edu

it challenging to maintain sufficient bandwidth to utilize available
compute resources adequately; 2) Even if sufficient bandwidth to
the compute resources can be established, the parallel design of
most modern processors necessitates careful workload distribution
to fully utilize the available compute power.

The first issue can manifest in several ways. A high precision
dataset can easily exceed the RAM capacity, causing problems with
both loading and rendering the data. Even if the data can fit in the
RAM, the large working set can degrade the system performance
(e.g., spending a lot of time waiting for I/O) or create difficulties in
a multi-user environment where multiple applications compete for
resources. To alleviate these problems, an effective solution is out-
of-core processing by streaming data on-demand from disk in real-
time. Data streaming occurs when independent subsets of larger
data are loaded and processed at different times. This approach is
useful when we cannot fit the entire dataset in RAM, or if we other-
wise wish to limit RAM usage. However, to maintain interactivity

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/pgv.20221064 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-0342-9366
https://orcid.org/0000-0001-6746-6794
https://orcid.org/0000-0001-8086-0366
https://doi.org/10.2312/pgv.20221064

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

with data streaming methods, it is often necessary to leverage addi-
tional techniques such as level-of-detail and progressive rendering.

For the second issue regarding parallelization, two approaches
are often used. Task parallelism arranges independent visualization
subtasks that operate on the same data using multiple processors.
This technique is popular for rendering acceleration (e.g., multi-
threaded rendering). A pipelined approach splits a visualization
task into several parallelizable stages working on different data sub-
sets. This approach allows better utilization of hardware resources
and can overlap the execution time of different stages (e.g., ren-
dering and the data loading). However, to prevent a stage from be-
coming a bottleneck, the execution times of different stages need
be balanced carefully.

In this work, we contribute a flexible data streaming design,
which addresses the challenges outlined above. Our goal is to en-
able interactive visualization of large-scale volume data on mid-
range personal computing devices with limited memory and com-
puting budgets. Whereas previous streaming systems were opti-
mized for one particular type of data structure and it is unclear how
to adapt them to new data structures, our design can be applied to
different types of data structures (e.g., octree, BVH) with minimal
implementation overhead (Section 4). In particular, to handle large-
scale volume data, we introduce a generalized tree-based multireso-
lution representation of the data, on top of which a well-engineered
CPU-based interactive and progressive ray tracing system is built
to make possible utilization of any computer systems. Our design
is also different from the delayed loading approach used by oth-
ers such as BrickTree [WWJ19] and OpenVDB [Mus13], because
voxels accessed by the visualization are continuously loaded from
secondary storage and cached in system RAM appropriately. The
resulting system produces a fixed memory footprint and simulta-
neously takes advantage of data streaming, task parallelism, and
pipeline parallelism in a unified fashion. We demonstrate our de-
sign by applying it to rendering tree-based AMR (TAMR) data as
well as radial basis function (RBF) particle data, and we release our
implementation at https://github.com/wilsonCernWq/
openvkl-streaming.

2. Related Work

In this section, we review existing methods for rendering large-
scale volumes. We first go over the history of large-scale volume
rendering using data streaming, followed by a review of related
work using non-data-streaming methods with a focus on overcom-
ing the I/O challenges of large-scale data. Finally, we detail existing
solutions introduced particularly for TAMR and RBF particle data.

2.1. Data Streaming for Large Scale Volumes

Volume rendering with data streaming is not a new topic. A
straightforward implementation would divide the original dataset
into pieces and process one piece at a time [LSMT99, BHP15].
This method is also used by several general-purpose visualization
frameworks such as VTK [SM05], probably due to its simplicity
and generalizability. However, the main drawback of this approach
is that more rendering passes are needed for each frame, mak-
ing interactivity more difficult to maintain. LaMar et al. [LHJ00]

and Weiler et al. [ZWE∗00] were among the first to combine data
streaming and LoD for rendering large scale volume data. In par-
ticular, their approaches convert the volume into a set of multi-
resolution textures that fit entirely in GPU texture memory, and then
leverage LoD for adaptive resampling to minimize data lookups.
Gobbetti et al. [GMG08] later offered a similar method for ren-
dering out-of-core volumes on GPUs using hierarchical representa-
tions. However, their hierarchical volume representations are built
on the CPU using octree-like structures. This design was further
improved by GigaVoxels [CNLE09] using ray-guided streaming for
rendering voxel surfaces. This improvement can optimize GPU to
CPU communication and thus enhance interactivity. The CERA-
TVR [Eng11] system later generalized GigaVoxels to volume vi-
sualization and supported both LoD and progressive rendering. It
offered progressive rendering through image-space refinement, al-
lowing high-quality pixels to be computed by successive frames.
The ImageVis3D/Tuvok system [FK10,FSK13] also combined data
streaming with both LoD and progressive rendering for large-scale
interactive volume visualization. In this system, LoD is enabled
during interactive explorations, while progressive rendering is used
when high-quality images are needed. However, their progressive
rendering algorithm is coupled with data streaming; thus, the size
of the data subset loaded and rendered in each frame is controlled
by the RAM capacity and affected by the rendering budget. They
also introduced a more efficient data caching mechanism for reg-
ular volumes that combines the Most Recently Used (MRU) strat-
egy and the Least Recently Used (LRU) strategy at the same time.
The work done by Hadwiger et al. [HBJP12] leveraged previous
work and presented a new approach to address and stream petas-
cale imaging volumes from GPU. Sarton et al. [SCRL19] later gen-
eralized this approach to all regular volumes. In their approach, a
new multi-resolution texture-based volume representation was in-
troduced, analogous to virtual memory and hardware page caches.
Data chunks are loaded and cached if the corresponding virtual ad-
dress is visited by rays, the resolution of the data chunk is con-
trolled adaptively using LoD. This allows their approach to scale
better for extremely large uniform grids compared with the Gi-
gaVoxels and CERA-TVR systems.

2.2. Non Data Streaming Methods

For high-end platforms with enormous RAM capacity, data stream-
ing is not strictly needed. Therefore, volume renderers just focus-
ing on asynchronous data loading can also be beneficial. Due to the
scope of this work, we only review methods leveraging on-demand
data loading, meaning that data I/O and the volume rendering pro-
cesses are largely overlapped. OpenVDB [Mus13] is a hierarchical
data structure heavily used in the industry for representing sparse
dynamic volumes. It uses a B+tree to exploit spatial coherence and
efficiently encodes data values and topologies. It also implements
pipeline parallelism through deferred loading, which means that
data values are only loaded as needed during rendering. However,
their implementation of deferred loading can only work on voxel
buffers (i.e., leaf nodes) and this functionality is not implemented
in its successor, NanoVDB [Mus21]. The Bricktree method pre-
sented by Wang et al. [WWJ19] provides another general algorithm
to overlap rendering and I/O. Their work adopted an octree struc-
ture with branching factor N3 and can also use ray-guided stream-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

38

https://github.com/wilsonCernWq/openvkl-streaming
https://github.com/wilsonCernWq/openvkl-streaming

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

ing to avoid loading invisible data chucks. Wang et al. also provided
an efficient implementation to render their data structures utiliz-
ing multithreading and SIMD vectorization in OSPRay [WJA∗16].
However, their method does not support data eviction. Thus, the
machine RAM capacity must be sufficient to hold the entire dataset
to achieve good performance.

2.3. TAMR and RBF Volume Rendering

Adaptive Mesh Refinement (AMR) data uses multi-resolution grids
to represent computational domains for more efficient allocation of
compute and memory resources. Particularly, an AMR data can be
block-structured (SAMR) [BC89] or tree-based (TAMR) [BO84].
SAMR grids are stored as a hierarchy of overlapping and suc-
cessively finer uniform grids. In contrast, TAMR grids are repre-
sented as sparse octrees and can allow for more economical use
of memory resources for large-scale datasets [DL19]. For render-
ing TAMR data specifically, Labadens et al. [LCPT12] used tree
structures to generate volume splats for direct volume ray trac-
ing. However, their approach only allows nearest-neighbor inter-
polation. Leaf et al. [LVI∗13] improved this by leveraging the
multiresolution interblock interpolation of Ljung et al. [LLY06].
However, their method requires a distributed computing cluster to
handle massive TAMR data. For CPU-based ray tracing, Wang et
al. [WMU∗20] developed high-quality reconstruction filters within
OSPRay [WJA∗16] to directly operate on TAMR grids.

Smoothed particle hydrodynamics (SPH) [Mon92] is a mesh-
free method for simulating motion of fluids in space. The resulting
particle data can be rendered by constructing a scalar field com-
posed of additively weighted SPH kernels [KJM21]. Because this
technique allows particles to be directly rendered without simpli-
fications, it was also generalized to render other particle data, of-
ten referred as RBF volume rendering [KWN∗14]. For large scale
RBF volume rendering, Jang et al. [JFSP10] contributed a KD-tree
based method. Fraedrich et al. [FAW10] used an octree hierarchy
to dynamically resample particles into perspective space uniform
grids of predetermined size for interactive visualization. Reda et
al. [RKN∗13] developed a uniform grid based acceleration struc-
ture for volume ray casting in GPU. Knoll et al. [KWN∗14] em-
ployed coherent bounding volume hierarchy (BVH) traversal to
efficiently evaluate the RBF field, which eliminates the need for
costly per-ray neighbor search, and repeated queries of the same
basis functions at different samples.

3. Overall Design

Our design (Figure 2) consists of three primary parts: The ren-
derer, which is responsible for determining the location of sam-
ples and implementing real-time LoD and progressive rendering
(Section 3.3); the hierarchical abstraction, which implements a
generalized structure for representing the volume and algorithms
for traversing the volume (Section 3.1); and the data management
system, which maintains I/O requests, address translation and data
caching, and generates streaming requests. This design structure
was chosen to support our goal of a flexible data streaming system;
when applying our design to a new data structure, only the hierar-
chical abstraction needs to be slightly extended in order to support
the new structure.

Root

Internal

Hierarchical
Abstractiona) Ray Tracer

Loaded?

LRU Cache Data

c) Data Management

Async I/O
Queue

Bricks

…

Traversal
Feedback

Different Brick Formats for
Different Volume Structures

Yes

No

b)

Block
Block Page

Table

…

…

…

…

BVH Octree Grids

Figure 2: The overall system. a) A progressive renderer, which
communicates with the hierarchical abstraction via traversal feed-
back. b) A hierarchical data abstraction to represent volumes. The
fundamental unit of this abstraction is referred to as a brick, and
a group of bricks loaded simultaneously are referred to as a block.
c) A data management system for SIMD vectorized LRU caching,
page table lookup, and asynchronous streaming.

3.1. Hierarchical Abstraction

The hierarchical abstraction provides a flexible structure for repre-
senting volume data in our streaming-based visualization system.
We refer to the fundamental unit of data in this representation as
a brick, which represents a set of contiguous voxels of the same
resolution (shown as yellow boxes in Figure 2b). The meaning of a
brick will vary depending on the underlying volume data structure.
For example, for octree-based volumes, a brick can represent an oc-
tant, with the root being handled differently. For binary-tree-based
volumes, a brick can represent a tree node.

A key feature of our abstraction is that multiple such bricks can
be nested to form a tree hierarchy, where deeper levels of the hierar-
chy represent successively higher resolution representations of the
underlying data. The number of bytes used by each brick should be
upper-bounded. This upper bound should be small to provide finer
granularity for the abstraction. Then we group hundreds of bricks
together and stream them simultaneously. Such brick groups are
referred as blocks (shown as blue boxes in Figure 2). These blocks
are always aligned with a fixed data size (referred to as the block
size). If a block is not 100% filled, zeros are padded.

To preserve the generalizability of our design, we do not enforce
a universal brick format. Instead, a brick format and the corre-
sponding brick accessor should be defined for each volume data
structure. There are two assumptions for how brick formats should
be designed. First, it must be possible to compute approximated
data values for samples taken within the spatial region of the brick
using only information stored in the brick (i.e. it may not refer
to data stored in child bricks for this operation). This assumption
enables us to implement LoD and progressive rendering. Second,
multiple classes of bricks with different data sizes can be defined
for a brick format(e.g., internal bricks and leaf bricks), but bricks
that belong to the same class should contain the same number of
bytes. This allows us to better optimize data streaming. In Sec-
tion 4, we describe more details on how to create brick formats
for a selection of distinct volume data structures. Having bricks to
follow cache line alignment can be beneficial as well, but it is con-
trolled by the underlying brick format and it does not affect the
correctness of our design.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

39

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

1
4

16
64

256
1024

1 8 64 512 4096

NVMe SSD
SATA SSD
HDD 147 155

1663

2968

NVMe SATA SSD HDD External

Number of Frames Needed per ImageRandom Access Bandwidth (MB/s)

Block Size per Access (KB)
1 8 64 512 4096

Figure 3: Left: Comparison of various hard drives’ random ac-
cess performance. Even for NVMe SSDs (Intel 660p 1TB), random
streaming requests smaller than 4KB lead to significant I/O over-
head. Right: comparison of the number of frames required by our
progressive rendering system to complete an image with the highest
accuracy when the data is located on different devices (“External”
means an external USB 3.0 HDD); Results obtained by rendering
the Disney Cloud using our progressive treelet method (Section 5).

3.1.1. Block Structure for Streaming

By placing the majority of our data on disk and streaming only
data accessed by the current frame, the overall memory footprint
of the volume renderer can be significantly reduced. This unlocks
better scalability for memory-constrained environments. As a con-
sequence, in order to achieve high performance interactive visual-
ization using our system, a storage device with high random access
bandwidth is needed. Luckily, modern solid state drives (SSD) can
provide this capability. Therefore, our design can perform much
better on SSDs compared to mechanical hard drives. Notably, the
sequential I/O bandwidth of the storage device is not particularly
relevant to our design. Therefore, similar performance is expected
between NVMe and SATA SSDs, because their performance dif-
ferences on random data access is not as drastic as those on se-
quential access. As emerging Peer-to-Peer Direct Memory Access
(P2P) technology begins to enable GPUs to directly access SSDs
via PCIe lanes [BBCS19], the use of NVMe SSDs might be justi-
fied. However, we leave P2P technology as an interesting area of
future work for now.

Ideally, we would like the disk to support efficient access of
arbitrary bricks on disk, since predicting data access patterns
can be challenging. However, as each separate I/O operation will
inevitably create some overhead, streaming only a single brick
(which can be as small as several bytes) per request would be ineffi-
cient. We therefore make streaming requests at a granularity of the
aforementioned blocks (Figure 2). Figure 3 shows the relationship
between the block size and random access bandwidth for differ-
ent storage devices. Moreover, in our streaming design, the entire
volume domain is virtualized using a page table and an associated
LRU cache (Section 3.2). As the chosen block size is decreased.
more blocks are required to represent the dataset, and thus more
memory would be needed to maintain the page table and cache.

In our design, the block size should also be aligned with the
disk’s physical sector size. This would allow data to be accessed
directly through unbuffered file I/O (i.e., the CreateFile and
ReadFile API with the FILE_FLAG_NO_BUFFERING flag on
Windows), resulting in better streaming performance. Additionally,
the block size used in the data file can also be different from the
block size used for streaming (e.g., stream multiple blocks per I/O
request). This is possible because blocks are uniformly aligned in
both memory and the disk. This feature allows one to try multiple
different block sizes for minimum zero-padding, while streaming

with a different block size for better I/O performance. In our im-
plementation, we use blocks of roughly 64KB because it yields a
good balance between streaming performance and data scalability.

3.1.2. Treelet Optimization

The block structure enables more efficient streaming and guaran-
tees that all the data associated with a brick can be obtained in
at most one stream operation, even for arbitrarily ordered bricks.
However, just as the performance of a hardware cache can vary
drastically under different access patterns, the ordering in which
bricks are stored can also affect rendering performance. In partic-
ular, a suitable brick ordering can significantly reduce the average
number of streaming requests needed for traversal, resulting in a
better rendering performance and lower cache miss rate.

One solution is to group bricks following the hierarchy order
and create treelets (small sub-trees as shown in Figure 4). Differ-
ent treelet designs suit different scenarios. For example, depth-first
treelets may be good for visualizing voxelized surfaces because
the ray tracing algorithm typically traverses the hierarchy in depth-
first-order. However, breadth-first treelets would allow for quick fil-
tering over multiple child nodes and thus can be advantageous for
visualizing volumes with lots of empty spaces. In our design, we
developed a treelet-based optimization to combine both orderings.

In this scheme, we create treelets by dividing the brick hierar-
chy once every N levels using a breath-first-traversal (Figure 4a,
where N is fixed). In our TAMR implementation, we choose N = 4
as each TAMR brick occupies 72B, and so a full TAMR octree of
more than five levels can potentially occupy more than 64KB space
(our chosen block size), whereas a 4-level-full-octree can only oc-
cupy to (84 − 1)/7× 72B ≈ 42KB. Similarly, in our RBF particle
volume implementation, we choose N = 9 as an RBF particle BVH
brick can occupy up to 112B, a 9-level-full-binary-tree can only
take (29 − 1)× 112B ≈ 57KB. Obviously, we cannot always con-
struct full treelets, so we use a depth-first traversal to collect mul-
tiple treelets for each block (Figure 4b). For different datasets, we
tried slightly different block sizes to minimize zero-paddings.

3.2. Data Management System

Although modern SSDs are fast, the bandwidth provided is still not
enough by itself to fully utilize the processing power of a mod-
ern CPU. Therefore, in addition to supporting streaming, we also
implemented a page table and an LRU cache that can efficiently
support concurrent and SIMD-vectorized accesses. Thanks to the
brick abstraction, changing low-level details such as the scalar type
will not affect the behavior of the data management system, allow-
ing us to use the same data management system to support multiple
volume structures.

3.2.1. Block Page Table

The block page table is a 64-bit integer array supporting random ac-
cess, with each table entry associated with one block in the data file.
The primary purpose of the block page table is to translate a block
index in the file space to a block index in the RAM buffer space.
This is necessary as we store only a small fraction of the file in

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

40

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

a) Treelets b) Packed
Treelets

Figure 4: a) A bigger tree can be decomposed into multiple smaller
treelets, distinguished by different colors. Having multiple incom-
ing links is not allowed for a treelet. Each treelet is created follow-
ing a breath-first-traversal order. b) Because filling a block with
exactly one treelet can result in inefficient use of space, multiple
treelets are packed before forming blocks. Treelets are packed us-
ing a depth-first-traversal order.

RAM at any one time. This operation is heavily used in our traver-
sal implementation, as streaming often causes blocks to be shuffled.
Such a shuffling breaks connections between a parent block and its
children. Address translation automatically fixes these connections
without the need to explicitly edit any brick values.

Within each block page table entry, we reserve two bits as flags
as shown in Figure 5a, and the remaining bits are used to store the
translated block index (i.e., the location of the block in the RAM
LRU cache). The first flag (i.e., the status flag in Figure 5a) en-
codes whether the corresponding block in file has been cached. If
the block is not loaded, we use the second flag (i.e., the request
flag in Figure 5a) to encode whether a streaming request has been
sent for this block. If the block is indeed loaded and cached, the
request flag encodes whether the cache age data corresponding to
this block has been updated. Essentially, the design purpose of the
request flag is to guarantee that only one streaming request will be
sent if the block is missing, and only one cache update will be made
per frame if the block is presented in our cache. However, it is pos-
sible that multiple rays can be updating the same flag concurrently,
which causes race conditions, repeatedly streaming the same block
and repeatedly updating the same cache entry. Therefore atomic
operations are used to update this flag.

We use this atomic method in all of our performance benchmarks
and evaluation in this paper. However, having one atomic operation
for each data access can reduce rendering performance due to syn-
chronization overhead. For this reason, we also implemented an
alternative method that does not utilize any atomic operations. On
Windows, simple reads and writes to properly-aligned 32-bit vari-
ables are atomic operations [WSC∗]. We utilize this feature and
align our block page table and the LRU cache to 32-bit, and only
use simple reads and writes to update the flag. Because threads all
write the same value, values will not become corrupted. Although
this method cannot eliminate all duplicate requests, our measure-
ments indicate that it can eliminate most duplicated streaming re-
quests and cache updates per frame. While the remaining small
number of duplicated cache updates will not significantly affect
rendering performance, repeatedly streaming the same data block
can still be bad. So we also implemented a filtering algorithm in our
asynchronous I/O queue implementation to further prevent this. In
our preliminary experiments, we saw some small performance ad-
vantages brought by this method (up to 40% speedup in terms of
minimum FPS for RBF particle volumes, and up to 5% for TAMR
volumes). However, we stick with the atomic method for our pri-
mary results.

Cache Line Flag
1 15bit Age

Cache Set 𝑖

𝑘th Line𝑘 − 1th Line 𝑘 + 1th Line

b) LRU Cache Data

Block Index 0 1

Request Flag

Status Flag…
…

a) Block Page Table

……
…

…

Figure 5: Our page table and LRU cache design. In particular, we
use a 64-bit integer to encode each cache line and each block page
table entry for address translation.

3.2.2. LRU Cache

We use the least recently used (LRU) algorithm to manage cached
blocks. In particular, our LRU cache maintains two data structures:
A cache table containing N ×M entries and a pre-allocated data
buffer for holding maximum N ×M blocks. Each row within the
table represents an associative set containing M cache lines, thus
there are N sets in the cache. Each cache line is a 16-bit integer
and is associated with a block in the pre-allocated data buffer (as
shown in Figure 5b). The first bit of the cache line is used as a flag
to indicate whether the current cache line is in use. If it is in use,
the remaining bits are used to encode the corresponding block’s age
(i.e., the number of frames since the the block has been accessed).
Notably, our cache table does not store tag bits, this is because the
same information has already been stored by the block page table.
Although this approach leads to a larger memory footprint, it can
significantly simplify the data access process if a cache hit is found,
thus improving the rendering performance.

In our design, the LRU algorithm is executed in between frames.
First, when a streaming request is finished, the least recently used
cache line will be searched. We copy over the loaded data into the
cache line’s corresponding buffer space. Finally, once all the fin-
ished requests are resolved, we increment all the cache line’s ages
by one. Although the entire operation is processed synchronously
with respect to rendering, we did not observe a significant perfor-
mance overhead caused by it in our CPU-based implementation.
For a GPU-based implementation, a different LRU implementation
should probably be used.

3.2.3. Data Streaming with Asynchronous I/O

All streaming requests are handled using a concurrent queue and
a fixed-sized data streaming pool, operating in a dedicated I/O
thread. The thread concurrently receives raw requests sent out by
rays using the mechanism described in previous subsections. If the
streaming pool is not full, these requests are consumed and asyn-
chronously executed by the I/O thread using OS-dependent sys-
tem calls. Data streamed from disk are temporarily staged in ad-
ditional RAM buffers, one allocated for each I/O request. These
data will not participate in rendering until they are committed to
our LRU cache used by the renderer. For simplicity, we only com-
mit these data changes between frames, and in our evaluation, we
did not see this simplification becoming a performance bottleneck.
However, we believe that an entirely concurrent commit mecha-
nism should be possible. During human interaction, the rendering
parameters are changed, and thus streaming requests made by pre-
vious frames should be canceled. In our implementation, we found
that canceling a streaming request can create a small OS overhead.
When too many requests are executed during interaction, the ac-
cumulated time to remove all invalid streaming requests can sig-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

41

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

Min Max

163bit Voxel Value

Address 0Mask

1

000001101
000001111

1
1
1
1

(empty space)

1

1
1

(empty space)

Leaf Brick (B3)Leaf Brick (B2)

c) Sparse OctreeInternal Brick (B1)

B3

B2

Internal Brick B1

a) Our TAMR encoding Scheme b) Value Definitions

64bit

Unloaded Data Bricks

Figure 6: a) Our brick design for TAMR and c) the corresponding
octree structure. b) Within an internal brick, there can be inter-
nal nodes linking to other bricks. These links can be either a RAM
space index (green) or a file space index (blue). For a leaf node, a
63 bit value is encoded (orange). Zero-value empty slots will be in-
serted for empty children. Each brick also contains the value range
of itself (yellow).

nificantly impact system interactivity. In our implementation, up to
20k streaming requests can be executed simultaneously.

3.3. Rendering

We couple our streaming system with an an efficient ray-tracing
renderer supporting LoD control and progressive rendering to
achieve interactive visualization of large volumetric datasets.

LoD control in our renderer is achieved as follows. A tree traver-
sal with a certain LoD requirement will be terminated under three
conditions: (a) a leaf brick is reached, (b) an internal brick with
LoD level smaller than the the requested one is reached (in our
context, a “smaller” LoD = higher resolution), or (c) an unavailable
brick is reached. For (a), the most accurate sampling result can be
returned. For (b), an approximated value for the sample can be re-
turned. For (c), not only will the approximated value be calculated,
the traversal algorithm will also return to the renderer the mini-
mum LoD level found during the traversal. We refer to this process
as the traversal feedback loop as shown in Figure 2. In our imple-
mentation, these feedback values are returned using additional ray
payloads, and we leverage this traversal feedback mechanism to
further achieve interactive progressive rendering. In particular, two
progressive rendering methods are implemented.

The first method is called interval accumulation, inspired by sev-
eral previous works [FK10, WBUK17], which conducts progres-
sive volume rendering by dividing the entire volume integral into
K smaller segment integrals. By allowing each ray to calculate only
one segment per frame, interactivity can be improved. For each seg-
ment, samples will be evaluated and integrated as normal, and the
results for each segment are stored in an array of size K. The result
from the Kth segment should be stored in the Kth array entry. Such
an array is allocated for every pixel at initialization, essentially cre-
ating a K-buffer. The final pixel color to display at each frame will
be calculated by compositing all the currently cached colors from
the K-buffer. However, since a sampling request posted by the ren-
derer may not be fulfilled (due to data streaming), simply caching
segment colors is insufficient. To compensate for this, for each seg-
ment, we also store the maximum of minimum LoD levels (as re-
turned by the traversal feedback loop) of all samples taken within
the segment. The K-buffer is reinitialized when the viewport or any

Min Max

Address

Lower X Upper X

Lower Y Upper Y

Lower Z Upper Z

Child 0 Address

Child 1 Address

Child 0
Bounding Box

Internal Brick (B1)

Child 1
Bounding Box

BVH Node Header

Primitive
Bounding Box

Primitive Data

BVH Node Header

Leaf Brick (B2)

𝜙 𝑥⃗ = 𝑤 exp[−
𝑥⃗ − 𝑐
2𝑟

!

]

Leaf Brick (B3)

Primitive
Bounding Box

Primitive Data

BVH Node Header

B3Child 1

Child 0

b) BVH encoding Schemea) Value Definitions

c) BVH

𝜙 𝑥⃗

𝜙 𝑥⃗

B2

𝜙 𝑥⃗
Internal Brick B1

Leaf Brick (B2)

Leaf Brick (B3)

Unloaded Data Bricks

Figure 7: a) Our brick design for RBF particle volumes. c) In par-
ticular, we pack the entire BVH into the streaming structure, and
allow the BVH to be also progrssively streamed. b) We have two
basic bricks: the internal brick which describes an internal BVH
node containing two children, and the leaf brick which contains a
BVH leaf node and the corresponding particle data.

scene parameters are changed, and a lower quality rendering will be
displayed (by increasing LoD) to improve interactivity during this
period. This method allows our implementation to significantly re-
duce the memory footprint during rendering because data required
to complete each frame is reduced.

The second method is tile accumulation, which achieves progres-
sive rendering by dividing the frame into multiple smaller tiles, and
tracing rays within one tile in one frame. In particular, tile accu-
mulation can be combined with interval accumulation, so that the
renderer will focus on the current tile and will continue to render
the tile across multiple frames until the tile fully converges (i.e.,
all the samples are accurate), at which point the renderer moves to
the next tile. This approach can further reduce the amount of data
required by each frame, thus avoiding cache congestion.

Finally, we consider that a frame is “converged” when all the
traversal requests are fulfilled (i.e., the minimum LoD value re-
turned by the traversal feedback is no greater than the requested
LoD for the traversal). An additional figure to illustrate our render-
ing strategy is provided in the supplementary material.

4. Applications to Different Volume Organizations

As previously discussed, we use an abstract hierarchical representa-
tion to represent volumes. We emphasize flexibility as a key feature
of our design, and consequently only a small amount of traversal
code must be changed in order to render different kinds of volume
data once the data is properly prepared.

In Section 5, we will demonstrate our system operating with two
different volume organizations: large-scale octree-accelerated vol-
ume rendering (represented by TAMR) and BVH-accelerated vol-
ume rendering (represented by RBF particle volume data). We now
describe the brick formats and associated traversal algorithms for
these two organizations. Additionally, we also illustrate here how
a brick format and associated traversal algorithm could be imple-
mented for regular grid volumes. However, for our evaluation we
focus on TAMR and particle data, as existing volume streaming
systems can already handle regular grid volumes efficiently.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

42

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

struct NodeState {
bool isLeaf; uint8 childrenMask; uint64 childrenOffset;
union { vec2f range; T value; } data;

};
T SampleTAMR(vec3f position, Payload* payload) {

TraversalStack stack[64];
TraversalStack* stackPtr = /* push root */
while (stackPtr > stack) {
--stackPtr;
NodeState state = accessNode(stackPtr, payload);
if (not state.isLeaf) stackPtr = /* push children */
else return state.data.value; /* leaf & cache miss */

}
return INVALID_VALUE;

}

Listing 1: Pseudo-code to traverse our TAMR data. We require
only slight modifications (highlighted in red) to the standard
octree traversal algorithm to enable streaming. The accessNode
function can be found in the supplementary material.

struct NodeState {
Node* node; bool isLeaf; ParticleData data;
uint64 child0; uint64 child1;

};
T SampleRBF(vec3f position, Payload* payload) {

uint64 stack[32], index = 0, stackPtr = 0;
while (1) {
NodeState state = accessNode(index, payload);
if (state.isLeaf) {
return evaluateRBF(state.data, position);

} else {
InnerNode* inner = InnerNode* state.node;
/* test with Axis-Aligned Bounding Box (AABB) */
if (inAABB(inner->bounds[0], position)) {

if (inAABB(inner->bounds[1], position)) {
stack[stackPtr++] = state.child1;
index = state.child0; continue;

} else {
index = state.child0; continue;

}
} else if (inAABB(inner->bounds[1], position)) {

index = state.child1; continue;
}

}
if (stackPtr == 0) return;
index = stack[--stackPtr];

}
}

Listing 2: Pseudo-code to traverse our RBF particle volume data.
We only need to slightly modify (highlighted in red) the BVH
traversal algorithm. The accessNode function can be found in
the supplementary material.

4.1. Octree: TAMR Volumes

We start with a compact TAMR format based on previous work by
Wang et al. [WMU∗20], and consider each octant in the octree as a
brick, so one brick contains exactly eight octree nodes in this case.
If an octant contains empty nodes, zero-valued entries will be used.
For each octree node, a 64-bit integer is used to encode its informa-
tion (as illustrated in Figure 6). Particularly, the least significant bit
of each node is used as a flag to indicate whether the node is a leaf
node or not. For an inner node, an 8-bit value encoding the exis-
tence information of its eight potential children is stored, followed
by a 55-bit index pointing to its first child (i.e., the child brick, as
child nodes are stored contiguously). For a leaf node, instead of
storing a mask and an index, the voxel’s value is encoded using the
remaining 63-bit. For a double-precision volume, one mantissa bit
will be given up. In this paper we used single-precision volumes.

However, since the core idea of our method is to continuously
stream and cache new data from high-performance storage, while
also aggressively evicting unused data, we must make some mod-

ifications to the basic structure. First, at the end of each brick, we
add two floating point values (yellow boxes in Figure 6) to store
the value range of the brick (i.e., eight nodes). Then, we need to
convert each child index into a block index and a block offset.
Since we are using 64KB-worth-sized blocks, we reserve 16 bits
for each block offset. Finally, we can use the standard octree traver-
sal algorithm [WMU∗20] to traverse the hierarchy with some slight
modifications as shown in Listing 1. In our implementation, we use
the value range’s middle value to approximate the voxel value if a
traversal is terminated at a inner node.

4.2. BVH Volumes: RBF Particle Volumes

A radial basis function (RBF) is a continuous scalar function φ(d)
of distance d from a center of a particle. A RBF scalar field is de-
fined by summing the kernels for all particles i contributing to a
point x in space: di(x) = ||x− xi||, Φ(x) = ∑i φi(di(x)). In our im-

plementation, φ is defined as a Gaussian: φi(x)=wi exp[− 1
2

di(x)2

r2],
where wi is the weight and ri is the Gaussian radius. Thus, in our
context, a particle is defined by a position, a radius and a weight.

In this subsection, we present another specialized brick format
for RBF volume rendering. This particular implementation is de-
veloped based on the “particle” volume defined by the OpenVKL
library. In particular, a binary BVH is constructed over all particles,
with exactly one primitive (i.e., the particle) per leaf node. Each
node contains a BVH node header which defines common proper-
ties such as the pointer to the parent node, and data to determine
whether a node is a leaf or not. For an inner node, two child point-
ers and two bounding boxes are stored. For a leaf node, a bounding
box and a primitive index is stored.

To enable streaming, first we need to pack each primitive data
that describes a particle into the corresponding leaf node (as illus-
trated by Figure 7b). This is because we want to stream a part of
the BVH together with all the corresponding particle attributes us-
ing one I/O operation. Then, we need to convert all pointers into
byte distances relative to the root node. Next, we need to define an
operation to create approximated values for traversals terminated
at inner nodes. In our case, a “fake” particle is created by using the
node value range’s middle point as the particle weight, the bound-
ing box’s center as the particle coordinate, and the bounding box’s
size as the particle radius. Finally, we slightly modify the BVH
traversal algorithm to enable streaming (as shown in Listing 2).

4.3. Regular Volumes

Although we focus on TAMR and RBF particle data in this work,
we describe here how regular volumes could be implemented in
our system. Regular volumes can be represented as a hierarchy of
smaller grids. Each grid is a brick; therefore, the grid size is de-
termined by the brick size (e.g., 163). For each voxel in a low-
resolution brick, an address pointer and a value range are stored.
The address pointer points to the child brick of this voxel, and the
value range is the value range of the child brick. An encoded value
is stored directly for each voxel in the highest resolution bricks (i.e.,
the leaf brick). Note that an internal brick occupies twice as much
space as a leaf brick. Such a size difference does not affect the cor-
rectness of streaming and rendering as long as we always store two

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

43

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

Table 1: We tested each dataset using 8 methods. Because our data
streaming techniques provide better scalability, they were also eval-
uated with upsampled data (marked with ∗). In this table, we report
the data file size and the memory footprint (mem. for short) during
rendering. Results were measured in GB.

Disney Cloud S3D-AMR Meteor-20k Meteor-46k Exajet
File Mem. File Mem. File Mem. File Mem. File Mem.

Immed. Static 17.7 20.1 14.7 16.9 1.85 2.99 3.31 4.56 7.70 9.29
Prog. Static 17.7 20.1 14.7 16.9 1.85 2.99 3.31 5.65 7.70 9.30

Immed. Block 17.7 6.01 14.7 - 1.85 5.41 3.31 5.49 7.70 6.32
Prog. Block 17.7 5.49 14.7 6.00 1.85 5.31 3.31 5.31 7.70 5.73

∗Prog. Block 139 6.32 118 - 118 5.81 212 6.19 72.0 6.67
∗Tile Block 139 5.48 118 5.79 118 5.39 212 5.58 72.0 5.91

Immed. Treelet 22.7 6.66 18.4 - 2.43 5.51 4.25 5.76 9.06 6.64
Prog. Treelet 22.7 5.62 18.4 6.27 2.43 5.31 4.25 5.31 9.06 5.99

∗Prog. Treelet 178 6.69 148 - 147 5.97 267 6.19 61.5 6.69
∗Tile Treelet 178 5.61 148 6.18 147 5.44 267 5.84 61.5 6.09

Table 2: The frame converging times for different rendering meth-
ods. Results are measured in seconds. For both static methods, data
are loaded into the system before rendering, therefore the results
are reported as “X +Y = Z”, where X is the data loading time and
Y is the rendering time of the 1st frame.

Disney Cloud S3D-AMR Meteor-20k Meteor-46k Exajet

Immed. Static 31.7 + 11.1 29.4 + 50.0 2.7 + 2.9 4.9 + 4.0 11.1 + 5.0
= 42.8 = 79.4 = 5.6 = 8.9 = 16.1

Prog. Static 29.4 + 15.9 29.1 + 61.9 2.9 + 3.9 4.8 + 4.6 11.2 + 7.8
= 45.3 = 91.0 = 6.8 = 9.4 = 19.0

Immed. Block 207.9 - 66.4 45.0 100.6
Prog. Block 42.9 240.2 10.6 12.4 21.7

∗Prog. Block 137.8 - 69.4 72.1 173.1
∗Tile Block 182.3 728.8 112.7 120.1 94.3

Immed. Treelet 69.9 - 34.6 16.2 43.3
Prog. Treelet 22.0 95.7 6.4 7.5 12.2

∗Prog. Treelet 66.3 - 36.9 40.7 111.8
∗Tile Treelet 99.6 314.9 72.1 79.7 61.7

leaf bricks together (or pad some empty space). To traverse the hi-
erarchy, the standard traversal algorithm for traversing a N3 tree
can be used [CNLE09].

5. Results and Evaluation

We implemented our streaming design in the Intel Open Volume
Kernel Library (OpenVKL), and evaluated the system with a thor-
ough analysis. We chose OpenVKL because it’s a part of the OS-
PRay library, which has been used by production software tools
such as ParaView [AGL05] and VisIt [CBW∗12], such that our sys-
tem can be leveraged directly by domain scientists for rendering
large-scale TAMR and RBF particle volume data. In this section,
our evaluation focuses on TAMR data, whose format is more com-
pact allowing us to evaluate our design using large datasets. Limited
by space, the RBF particle volume rendering results can be found
in supplementary materials. We evaluate several critical aspects of
our system from the perspectives of image accuracy, image con-
verging speed, rendering performance, memory footprint, and I/O
bandwidth utilization. Notably, we measured the memory footprint
by recording the process’s peak memory consumption before exit
through the PeakPagefileUsage statistics available on Win-
dows. Then, we utilized an external system monitoring tool [MM]
to record the I/O bandwidth utilization.

To mainly test the scalability of our system, we performed our

benchmark entirely on a mid-range desktop running Windows 11,
with an Intel i5-10500 CPU and 16GB RAM clocked at 2133MHz.
The operating system was installed in a Sabrent Rocket 4 plus 1TB
SSD running at PCI-E Gen3 speed. All datasets used for bench-
marking were loaded from an Intel 660p 1TB SSD. By default,
Windows will setup its virtual memory in the Sabrent SSD and may
utilize it to accelerate file I/O. To achieve controlled experiments,
we always preloaded a large data before each experiment, and we
also monitored the activity of all SSDs during all experiments to
guarantee that significant disk activity was observed only on the
Intel SSD. We ran all the experiments with a 4GB LRU cache, 32
progressive intervals, and tiles of size 128× 128 if tile accumula-
tion is enabled. We evaluated our system’s rendering performance,
interactivity, and scalability using four datasets:

• Disney Cloud [Stu] is a sparse volumetric cloud dataset. We
converted it into a TAMR of 1.48B voxels and 12 levels.

• S3D-AMR is a multivariate combustion simulation produced by
the S3D framework [TBB∗17]. The data contains 1.26B voxels.
We used the mass fraction field of OC12H23OOH.

• Meteor is the deep water impact dataset from LANL [PG17].
We used two timesteps, each containing 283M voxels.

• Exajet is a simulation of the airflow around a jet produced
by NASA [CH14]. This model contains 656M voxels across 4
AMR levels, representing half of the plane.

We performed our benchmark by varying the strategies for
TAMR volume traversal and progressive volume rendering.
For traversal, we first created the baseline algorithm by re-
implementing the work of Wang et al. [WMU∗20] (which is re-
ferred to as the static method). Then we enabled data streaming
and tested it with two configurations. The first configuration ap-
plied the treelet optimization method mentioned in Section 3.1.2,
and aligned all blocks with 64KB in both file and RAM (treelet).
The second configuration did not apply this optimization and uses
blocks without additional padding (block). For rendering, we have
three choices: disable progressive rendering (immediate), enable
progressive rendering with just interval accumulation (progres-
sive), or enable progressive rendering with both interval accumu-
lation and tile accumulation (tile). To stress the scalability of our
system, we also upsampled all the datasets. Disney Cloud, S3D-
AMR and Exajet were upsampled by 8×, while Meteor-20k and
Meteor-46k were upsampled by 64×.

5.1. Image Accuracy and Converging Speed

We compared images rendered by our streaming and progressive
rendering methods with the baseline images generated on a much
larger machine. We observe that our results are accurate: The treelet
and block methods produce the same image. Images generated with
progressive rendering can produce pixel differences. These differ-
ences are expected: When rendering with a normal ray marching
algorithm, samples along the ray are taken regularly. When pro-
gressive rendering is used, each frame will only render a smaller
segment, thus taking samples at different positions and creating
a slightly different final result. In the supplementary material, we
provide the image difference between an image rendered using the
progressive treelet method and an image generated using the im-
mediate static method (which implements a normal ray marching

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

44

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

Table 3: Framerate comparisons between different methods. For
immediate methods, only one framerate is reported per method. For
other methods, because their framerates can vary, framerate results
are reported as “X ~Y (Z)” where X is the maximum framerate, Y
is the minimum, and Z is the framerate during a user interaction.

Disney Cloud Meteor-20k Meteor-46k Exajet

Immed. Static 0.09 0.35 0.25 0.20
Prog. Static 68~0.67 (4.25) 54~3.49 (5.15) 48~2.59 (3.36) 67~0.92 (6.16)

Immed. Block 0.04 0.15 0.12 0.10
Prog. Block 60~0.29 (1.60) 53~1.45 (1.74) 56~1.45 (1.20) 60~0.41 (2.47)

∗Prog. Block 60~0.09 (1.29) 52~0.23 (1.08) 51~0.32 (0.83) 65~0.33 (1.82)
∗Tile Block 60~0.47 (-) 52~0.89 (-) 49~1.17 (-) 58~0.53 (-)

Immed. Treelet 0.07 0.24 0.19 0.16
Prog. Treelet 59~0.55 (3.40) 53~2.29 (3.58) 52~2.10 (2.48) 61~0.62 (4.75)

∗Prog. Treelet 61~0.18 (2.52) 53~0.36 (2.05) 51~0.46 (1.63) 60~0.44 (3.53)
∗Tile Treelet 59~0.77 (-) 55~1.51 (-) 48~1.80 (-) 60~0.80 (-)

algorithm). The images are different, but no obvious visual differ-
ences can actually be found.

Another important aspect of our evaluation is the frame converg-
ing speed. In Table 2, we show the time needed to complete the first
fully converged frame in each experiment. Particularly, for static
methods, we reported both data loading time and the first frame
time, and we consider their sum as the frame converging time. For
streaming methods, since the data loading process is overlapped
with rendering, we reported the total elapsed time when the first
converged frame was produced. In our implementation, this frame
converging time is generally affected by the number of progressive
intervals (i.e., the K-buffer depth) and the tile size. Increasing the
intervals number (or decreasing the tile size) essentially decreases
the rendering workload per frame, leading to a higher framerate,
but we would need more frames to produce a converged image,
which often leads to a longer converging time. Thus, one should do
so only when the computation power is limited.

5.2. Compared with Baselines

To evaluate the rendering performance, we compared our method
with the OpenVKL’s unstructured volume rendering algorithm. In
particular, we use the equilateral hexahedron as the base primitive
to represent TAMR voxels in this experiment, with one primitive
per BVH leaf. Because the geometry information of every primi-
tive is explicitly stored and a BVH is built during the rendering,
the memory footprint of the unstructured algorithm is enormous. In
fact, in our experiment, for the full resolution Disney Cloud dataset,
OpenVKL’s unstructured algorithm required nearly 100GB mem-
ory space during rendering. Therefore, we conducted this compari-
son using a 8× downsampled version of the Disney Cloud dataset.

The work done by Wang et al. [WMU∗20] (i.e., the static
method) represents the state-of-the-art for CPU-based TAMR ray
tracing. We compared it to our implementations with results shown
in Figure 9. We found that the progressive method can significantly
improve rendering FPS as the blue, green and red lines are well
above the dotted line in the grey-shaded area, and the yellow line is
also well above the dashed line in the same area. However, treelet
and block streaming methods can increase the rendering complex-
ity, thus the red and green lines are mostly below the blue line.
Moreover, our streaming implementation also allows the TAMR

0
200
400
600
800
1000

Prog.
Static

Prog.
Treelet

Prog.
Block

Immed.
Static

Immed.
Treelet

Immed.
Block

Prog.
Treelet
(*)

Prog.
Block
(*)

Tile
Treelet
(*)

Tile
Block
(*)Disney Cloud Exajet Meteor-20k Meteor-46k

MB/s

Figure 8: The peak I/O performance of different configurations.
For static methods, the sequential read bandwidth is reported. For
other (streaming) methods, the peak I/O rate can be comparable
with or even faster than sequentially reading the data.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

FP
S

Frame Count

immediate static progressive static
progressive unstructured immediate unstructured
progressive block progressive treelet

Figure 9: Rendering performance comparison with two baselines.
The first baseline uses OpenVKL’s unstructured volume rendering
method to render TAMR voxels (dashed line). The second method
uses the TAMR method proposed by Wang et al. [WMU∗20] (dotted
line). The 8× downsampled Disney Cloud data was used in this
test, because OpenVKL unstructured algorithm requires a lot of
system RAM to process the full resolution version. Our progressive
rendering takes the first few frames to warm up its K-buffer.

rendering to generally outperform OpenVKL’s unstructured vol-
ume rendering method as the orange and green lines are mostly
above the dashed line.

5.3. Streaming Algorithm and Treelet Optimization

Our streaming method can significantly reduce the memory foot-
print of volume rendering. As indicated by Table 1, the memory
footprint of the streaming experiments (i.e., the treelet and the block
methods) did not increase linearly as the total data size increased.
For experiments with large data, they produce a memory footprint
as low as 2.2% of the data size (as highlighted by the blue color).
Note that all the streaming experiments are performed with a 4GB
cache (i.e., Figure 2c). Because the memory footprint is measured
as the peak value in bytes of the Commit Charge during the life-
time of a process, it is reasonable to see experiments with an even
smaller memory footprint if the cache is not fully utilized.

Our streaming implementation can also utilize the I/O band-
width efficiently. Figure 8 showcases the peak data read rate mea-
sured using the system monitoring tool. For baseline experiments
(i.e., static methods), data are loaded sequentially using the stan-
dard blocking I/O API call with file buffering and memory pag-
ing enabled. Their sequential read bandwidths are reported in the
comparison. Sequential data access is usually significantly faster
than random accesses that occur naturally during rendering. How-
ever, for some streaming experiments, the peak I/O rate measured
during rendering can be comparable with or even faster than se-
quentially reading the data. Our treelet optimization further en-
hances this result as the I/O bandwidth utilization for treelet ex-
periments are virtually higher than all the corresponding block ex-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

45

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

periments. Notably, the simple I/O method used in the baseline ex-
periments cannot utilize all the bandwidth provided by the SSD. To
achieve the maximum read performance, a well-engineered low-
latency queuing mechanism that can simultaneously execute many
asynchronous read tasks is required. However, as many visualiza-
tion systems do not provide such a sophisticated mechanism for se-
quential I/O, the simpler (and more representative) method is being
compared in our experiments. Moreover, using such a mechanism
might improve the data loading times for the baseline methods, but
would not improve rendering speed itself.

Streaming can also improve rendering performance. As indi-
cated by the green entries in Table 2, the progressive treelet method
can produce a converged image faster than the static methods. Al-
though the static method offers a higher rendering rate, it requires
a significant amount of time to load the data before rendering can
even start. The treelet optimization contributes significantly to this
result because it outperforms almost all the block experiments in
terms of framerates in Table 3, and the progressive block method
generally underperforms compared against the static method.

5.4. Progressive Rendering Improves Scalability

Data streaming (with caching) alone cannot entirely solve the big
data challenge. This is because the algorithm cannot guarantee a
converged image when the cache is completely filled with data re-
quired by the current frame. In this situation, newly loaded data
cannot be committed into the cache without evicting data required
by other parts of the same frame. This dilemma essentially pre-
vents the image from converging. Such a situation was frequently
observed when experimenting with the immediate treelet and the
immediate block methods (for the S3D-AMR data as well as all the
upsampled data, which are not shown in Table 1 and Table 2).

Progressive rendering solves this issue because it can limit each
individual frame’s total amount of data. The result of this is that the
progressive treelet and progressive block can render most of the up-
sampled datasets successfully. This is because the rendering work-
load for each frame is also reduced by the interval accumulation
method. Moreover, although more frames would be needed to get
a fully converged image, the rendering system can be more inter-
active and allow users to tweak rendering parameters before a fully
converged frame is produced. For the upsampled S3D-AMR data,
we found that using interval accumulation alone could not produce
a converged image due to cache congestion. However, they can be
rendered after enabling tile accumulation.

Generally speaking, tile accumulation will further increase the
frame converging time. However, an outlier was observed for the
upsampled Exajet data as indicated by the blue entries in Table 2,
where experiments with tile accumulation converged faster than ex-
periments without tile accumulation. Figure 10 provides more de-
tails for this case. For the data without upsampling, the dip in Fig-
ure 10A is caused by having rays waiting for streaming requests,
and more rendering workloads are required after data is loaded. In
this case, because all the required data can fit into the data cache
simultaneously, exactly one FPS dip can be found for each experi-
ment. When it comes to upsampled data, the data required by each
interval no longer fits into the cache. Some streaming requests are

A B

C D

Figure 10: Real-time framerates of our system rendering the Exajet
data. a) Framerates for the original resolution data. b) Using the
progressive treelet and the progressive block methods to render the
8× upsampled data. c) The 8× upsampled data with the tile treelet
method. d) The 8× upsampled data with the tile block method.

suspended temporarily until some of the data are evicted from the
cache. Therefore, multiple dips can be found. However, because
the suspension of streaming requests is not carefully scheduled, the
same data might be repeatedly loaded and evicted by different rays.
This causes the rendering performance to deteriorate. For tile accu-
mulation, this problem is solved because by further reducing the
per-frame data requirement. This also allows data to be accessed
with better locality, thus improving the cache performance and the
rendering performance.

6. Conclusion

We present a flexible data streaming design for interactive visu-
alization of large-scale volume data. In particular, our design is
generalizable and can simultaneously utilize asynchronous data
streaming, a concurrent LRU cache, and high-performance pro-
gressive rendering. We demonstrate our data streaming design with
both tree-based AMR volume rendering and RBF particle volume
rendering examples. Our test results show that the system design
and implementation for TAMR scale well and can render large
TAMR volumes up to 10× the host system’s RAM capacity.

However, we also find limitations in our work. First, our sys-
tem design is currently created for CPU-based ray tracing. Recent
advances in GPU-based ray-tracing hardware have demonstrated
great potential. Moving our design to GPU can be an exciting topic
for new research. Second, our system currently does not support
multivariate volumes. All scientific simulations produce multivari-
ate data. Extending our design and implementation to support the
rendering of multivariate data will benefit a broader user group.

Acknowledgments

This work was sponsored in part by the U.S. Department of En-
ergy through grant DE-SC0019486 and an Intel oneAPI Center of
Excellence grant.

References
[AGL05] AHRENS J., GEVECI B., LAW C.: ParaView: An End-User

Tool for Large-Data Visualization. In The Visualization Handbook,
Hansen C. D., Johnson C. R., (Eds.). Elsevier, 2005, pp. 717–731. 8

[BBCS19] BERGMAN S., BROKHMAN T., COHEN T., SILBERSTEIN
M.: Spin: Seamless operating system integration of peer-to-peer dma
between ssds and gpus. ACM Trans. Comput. Syst. 36, 2 (2019), 1–26. 4

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

46

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh refinement
for shock hydrodynamics. J. Comput. Phys. 82, 1 (1989), 64–84. 3

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-art in
gpu-based large-scale volume visualization. In Computer Graphics Fo-
rum (2015), vol. 34, Wiley Online Library, pp. 13–37. 2

[BO84] BERGER M. J., OLIGER J.: Adaptive mesh refinement for hy-
perbolic partial differential equations. J. Comput. Phys. 53, 3 (1984),
484–512. 3

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J.,
NÁVRATIL P.: VisIt: An End-User Tool for Visualizing and Analyzing
Very Large Data. High Performance Visualization (2012). 8

[CH14] CASALINO D., HAZIR A.: Lattice boltzmann based aeroacoustic
simulation of turbofan noise installation effects. In 23rd International
Congress on Sound and Vibration (2014), pp. 1–8. 8, 14

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel render-
ing. In Proceedings of the symposium on Interactive 3D graphics and
games (2009), pp. 15–22. 2, 8

[DL19] DUBOIS J., LEKIEN J.-B.: Highly efficient controlled hierar-
chical data reduction techniques for interactive visualization of massive
simulation data. In EuroVis (Short Papers) (2019), pp. 37–41. 3

[Eng11] ENGEL K.: Cera-tvr: A framework for interactive high-quality
teravoxel volume visualization on standard pcs. In IEEE Symposium on
Large Data Analysis and Visualization (2011), pp. 123–124. 2

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Efficient high-
quality volume rendering of sph data. IEEE transactions on visualization
and computer graphics 16, 6 (2010), 1533–1540. 3

[FK10] FOGAL T., KRÜGER J. H.: Tuvok, an architecture for large scale
volume rendering. In VMV (2010), vol. 10, pp. 139–146. 2, 6

[FSK13] FOGAL T., SCHIEWE A., KRÜGER J.: An analysis of scal-
able gpu-based ray-guided volume rendering. In 2013 IEEE Symposium
on Large-Scale Data Analysis and Visualization (LDAV) (2013), IEEE,
pp. 43–51. 2

[GMG08] GOBBETTI E., MARTON F., GUITIÁN J. A. I.: A single-pass
gpu ray casting framework for interactive out-of-core rendering of mas-
sive volumetric datasets. The Visual Computer 24, 7 (2008), 797–806.
2

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: In-
teractive volume exploration of petascale microscopy data streams using
a visualization-driven virtual memory approach. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (2012), 2285–2294. 2

[JFSP10] JANG Y., FUCHS R., SCHINDLER B., PEIKERT R.: Volumet-
ric Evaluation of Meshless Data From Smoothed Particle Hydrodynam-
ics Simulations. In IEEE/EG Symposium on Volume Graphics (2010),
Westermann R., Kindlmann G., (Eds.). 3

[KJM21] KNOLL A., JOHNSON G. P., MENG J.: Path tracing rbf particle
volumes. In Ray Tracing Gems II. 2021, pp. 713–723. 3

[KWN∗14] KNOLL A., WALD I., NAVRATIL P., BOWEN A., REDA K.,
PAPKA M. E., GAITHER K.: Rbf volume ray casting on multicore and
manycore cpus. In Computer Graphics Forum (2014), vol. 33, Wiley
Online Library, pp. 71–80. 3

[LCPT12] LABADENS M., CHAPON D., POMARÉDE D., TEYSSIER R.:
Visualization of octree adaptive mesh refinement (amr) in astrophysical
simulations. Astronomical Data Analysis Software and Systems XXI 461
(2012), 837. 3

[LHJ00] LAMAR E., HAMANN B., JOY K.: Multiresolution techniques
for interactive texture-based volume visualization. Proceedings of the
International Society for Optical Engineering (11 2000). 2

[LLY06] LJUNG P., LUNDSTRÖM C., YNNERMAN A.: Multiresolution
Interblock Interpolation in Direct Volume Rendering. In EuroVis (2006),
Santos B. S., Ertl T., Joy K., (Eds.). 3

[LSMT99] LAW C., SCHROEDER W., MARTIN K., TEMKIN J.: A multi-
threaded streaming pipeline architecture for large structured data sets. In
Proceedings Visualization (1999), pp. 225–232. 2

[LVI∗13] LEAF N., VISHWANATH V., INSLEY J., HERELD M., PAPKA
M. E., MA K.-L.: Efficient parallel volume rendering of large-scale
adaptive mesh refinement data. In IEEE Symposium on Large-Scale Data
Analysis and Visualization (2013), pp. 35–42. 3

[MM] MARTIN MALIK R.: Hwinfo - free system information, monitor-
ing and diagnostics. URL: https://www.hwinfo.com. 8

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics. Annual
review of astronomy and astrophysics 30, 1 (1992), 543–574. 3

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with dy-
namic topology. tog 32, 3 (2013), 1–22. 2

[Mus21] MUSETH K.: Nanovdb: A gpu-friendly and portable vdb data
structure for real-time rendering and simulation. In ACM SIGGRAPH
2021 Talks (2021), SIGGRAPH ’21. 2

[PG17] PATCHETT J., GISLER G.: Deep water impact ensemble data set.
Tech. rep., Los Alamos National Laboratory, 2017. 1, 8, 14

[RKN∗13] REDA K., KNOLL A., NOMURA K.-I., PAPKA M. E., JOHN-
SON A. E., LEIGH J.: Visualizing large-scale atomistic simulations in
ultra-resolution immersive environments. In LDAV (2013), pp. 59–65. 3

[SCRL19] SARTON J., COURILLEAU N., RÉMION Y., LUCAS L.: In-
teractive visualization and on-demand processing of large volume data:
a fully gpu-based out-of-core approach. IEEE transactions on visualiza-
tion and computer graphics 26, 10 (2019), 3008–3021. 2

[SM05] SCHROEDER W. J., MARTIN K. M.: The visualization toolkit.
In The Visualization Handbook, Hansen C. D., Johnson C. R., (Eds.).
Elsevier, 2005, pp. 593–614. 2

[Stu] STUDIOS W. D. A.: Clouds data set - walt disney animation studios.
URL: https://www.disneyanimation.com/data-sets. 8,
14

[TBB∗17] TREICHLER S., BAUER M., BHAGATWALA A., BORGHESI
G., SANKARAN R., KOLLA H., MCCORMICK P. S., SLAUGHTER E.,
LEE W., AIKEN A., ET AL.: S3d-legion: An exascale software for direct
numerical simulation of turbulent combustion with complex multicom-
ponent chemistry. In Exascale Scientific Applications. 2017, pp. 257–
278. 8, 14

[WBUK17] WALD I., BROWNLEE C., USHER W., KNOLL A.: Cpu vol-
ume rendering of adaptive mesh refinement data. In SIGGRAPH Asia
2017 Symposium on Visualization (2017), SA ’17, pp. 9:1–9:8. 6

[WJA∗16] WALD I., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRÁTIL P.: Ospray-a cpu
ray tracing framework for scientific visualization. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 931–940. 3

[WMU∗20] WANG F., MARSHAK N., USHER W., BURSTEDDE C.,
KNOLL A., HEISTER T., JOHNSON C. R.: Cpu ray tracing of tree-based
adaptive mesh refinement data. In Computer Graphics Forum (2020),
vol. 39, pp. 1–12. 3, 7, 8, 9

[WSC∗] WHITE S., SHARKEY K., COULTER D., BATCHELOR
D., AIGNER R., SATRAN M.: Interlocked variable access -
win32 apps. URL: https://docs.microsoft.com/en-us/
windows/win32/sync/interlocked-variable-access. 5

[WWJ19] WANG F., WALD I., JOHNSON C. R.: Interactive rendering
of large-scale volumes on multi-core cpus. In IEEE 9th Symposium on
Large Data Analysis and Visualization (2019), pp. 27–36. 2

[ZWE∗00] ZIMMERMANN K., WESTERMANN R., ERTL T., HANSEN
C., WEILER M.: Level-of-detail volume rendering via 3d textures. In
IEEE Symposium on Volume Visualization (2000), pp. 7–13. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

47

https://www.hwinfo.com
https://www.disneyanimation.com/data-sets
https://docs.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access
https://docs.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access

