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Abstract
Over the last 20 years, flooding has been the most common natural disaster, accounting for 44.7% of all disasters, affecting
about 1.65 billion people worldwide and causing roughly 105 thousand deaths†. In contrast to other natural disasters, the
impact of floods is preventable through affordable structures such as dams, dykes and drainage systems. To be most effective,
however, these structures have to be planned and evaluated using the highest precision data of the underlying terrain and current
weather conditions. Modern laser scanning techniques provide very detailed and reliable terrain information that may be used
for flood inundation modelling in planning and hazard warning systems. These warning systems become more important since
flood hazards increase in recent years due to ongoing climate change. In contrast to simulations in planning, simulations in
hazard warning systems are time critical due to potentially fast changing weather conditions and limited accuracy in forecasts.
In this paper we present a highly optimized CUDA implementation of a numerical solver for the hydraulic equations. Our
implementation maximizes the GPU’s memory throughput, achieving up to 80% utilization. A speedup of a factor of three is
observed in comparison to previous work. Furthermore, we present a low-overhead, in-situ visualization of the simulated data
running entirely on the GPU. With this, an area of 15 km2 with a resolution of 1 m can be visualized hundreds of times faster
than real time on consumer grade hardware. Furthermore, the flow settings can be changed interactively during computation.

CCS Concepts
• Human-centered computing → Scientific visualization; Geographic visualization; • Computing methodologies → Real-
time simulation; Massively parallel and high-performance simulations; Massively parallel algorithms;

1. Introduction

Flood hazard and flood inundation protection are governmental
tasks. Agencies exploit flood hazard warning systems based on
gauges for precipitation and discharge. Warning systems leverage
computer software to forecast the runoff in rivers and creeks. In
recent years flood hazard has received more attention due to on-
going climate change. Flash flood hazard is one new parameter
estimated permanently and entering routine computations. A well
known example in Germany for its unexpectedness and severeness
is the event at the river Ahr with over 170 victims [SMD∗21].
Improvements in the field of remote sensing provide very detailed
and reliable terrain information in the form of digital elevation
maps (DEM). For flood routing purposes a detailed description of
the terrain is essential when the flow depth is small. Every small
obstacle may reroute the water flow at every stage of the flooding
that may result in very different scenarios. In this respect, the high
resolution of the laser scan data may significantly improve the ac-
curacy of forecast results. As shown in Figure 1 the flow changes

† Statistics based on annual disaster report [CRE21] and summary report
over the years 2000 – 2019 [CU20].

its state to hypercritical in the field at many places. This is a local
energy dissipation that would otherwise need to be modelled by the
bed friction term. A high resolution thus significantly improves the
water level results.
In the presented software application, the hydraulic inundation

problem is solved on the basis of the full unsteady two-dimensional
Saint-Venant equations including wetting and drying. The two-
dimensional domain is discretized on an equidistant orthogonal
grid. The grid structure improves the speedup of using highly par-
allel computing devices [MHSG∗20]. With the massive computa-

Figure 1: Inundation at the Kinzig in 2021. A small paved road is
overflown from right to left.
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tional power of GPUs, it is possible to calculate complete catch-
ments of small rivers. On a 12GB card an area of 35 km by 10 km
can be kept in the card memory at resolution of 1 m2. With a resolu-
tion of 10 m2, the area is 100 times larger. The high computational
speed let the engineers watch the flood development in situ. In our
current implementation, the simulation parameters can be changed
interactively but modifications to the terrain, such as interventions
or catastrophic dam failures, could easily be implemented as well.

2. Related Work

Efforts to accelerate solvers for the shallow water equations on
massively parallel devices have been made since the mid 2000s
[HHL∗05]. In recent years new solvers and more efficient im-
plementations have emerged to accommodate for the evolving
GPU hardware. Multiple second-order shallow water schemes have
been implemented on GPUs for flood risk assessment [HPW∗16]
[SKN∗21] [CCSL21]. The same equations are also used for
tsunami modelling [GKS∗20]. Horváth et al. [HBKK∗20] have
shown that the results produced by first-order schemes are com-
parable in accuracy, while reducing computation duration signifi-
cantly. Sharif et al. [SGH∗20] ran a GPU accelerated implemen-
tation of an explicit first-order upwind scheme on a multi-node
GPU computer cluster. While the aforementioned schemes work
on structured cartesian grids, efforts are also made to accelerate
solvers working on non-uniform grids. Liu et al. [LQL18] have
shown GPU acceleration of a shallow water model on an unstruc-
tured mesh. Vacondio et al. [VPF∗17] propose a non uniform struc-
tured grid based on the Quadtree data structure to provide speedup
in areas where high resolution is not necessary. Visualization is pre-
dominantly achieved after computation using intermediate or final
results saved to the disk during simulation. Cornel et al. [CKS∗15]
visualize damage inflicted at buildings and their vicinity from pre-
computed flooding events.
Most recent schemes described here make use of character-
istic speeds (Riemann solver). Upwind schemes however (van
Leer [vL92]; Kurganov, Noelle and Petrova [KNP01]; Liu et al.
[LQL18]; Ginting and Mundani [GM19]) are Riemann-solver-free
and may have all the needed properties.

3. Shallow Water Equations

The shallow water wave equations or Saint-Venant equations
[Vre94] are the vertically integrated momentum and continuity
equations that describe the motion of a thin film of water neglect-
ing the vertical momentum conservation [Mew13]. Written in the
discharge form the momentum equations resemble the exact sup-
porting force equations.

∂qx
∂t +

∂(u·qx+0.5·g·h2)
∂x +

∂(v·qx)
∂y +g ·h · ∂B

∂x + g
h4/3·k2

St
· |⃗v| ·qx− f ·qy = 0

∂qy
∂t +

∂(u·qy)
∂x +

∂(v·qy+0.5·g·h2)
∂y +g ·h · ∂B

∂y + g
h4/3·k2

St
· |⃗v| ·qy+ f ·qx = 0

∂h
∂t +

∂qx
∂x + ∂qy

∂y = 0

Here qx, qy are the specific discharges in x and y direction. h is
the water depth and B is the elevation of the terrain or river bed
above a horizontal datum. The position of the free water surface
is ζ = B+ h. f is the Coriolis parameter and kSt is the Manning-
Strickler coefficient for the bed friction.

(a) Computational stencil for ζ
t+∆t
i, j .

Blue symbols represent water levels
and discharges at current timestep.
Red symbols at next timestep. Yellow
arrows represent impulse fluxes.

(b) A warp comprising 32 threads it-
erates over 54 rows. Only the high-
lighted cells are written out. The
outer cells are not computed, as
some of the required data is missing.

Figure 2: (a) Computational stencil of our numerical solver and
(b) cells processed by a single warp.

To keep the resolution as large as possible a very slim numerical
solver is implemented. This solver uses a very simple first order
upwind scheme on a staggered mesh with explicit time integration.
It is robust, positivity preserving, well-balanced and reproduces hy-
draulic jumps well. The verification of the scheme for several test
cases is described in more detail in a paper in preparation. The com-
putational stencil of the solver is shown in Figure 2a.

4. CUDA Implementation

In this section we introduce our implementation of the proposed
time integration scheme in CUDA. The shallow water simulation is
implemented from scratch in C++ and CUDA Toolkit 11.4. It is a
standalone application that simulates a flooding event on the GPU
while optionally visualizing the terrain and computed water levels
simultaneously using OpenGL.

4.1. Implementation Details

For the simulation, eight buffers with the size of the grid are re-
quired. The buffers store the water level ζ and fluxes qx, qy at
the current and next timestep and the terrain height and rough-
ness, respectively. These buffers are initialized on the CPU as lin-
ear float arrays in row-major order and transferred to the GPU’s
device memory at the beginning of the execution. Further transfers
between the host and device are avoided by keeping the buffers in
device memory and swapping the pointers to old and new buffers
between consecutive kernel launches.
Our implementation comprises two kernels that are launched suc-
cessively. The first kernel implements constraints on ζ

t , qxt−∆t/2

and qyt−∆t/2 at the grid’s boundaries. The second kernel is
launched afterwards and performs the actual time integration com-
putation. This separation allows for flexibility, since the same com-
pute kernel can be used in different scenarios where other boundary
constraints are needed.
To make efficient use of the GPU’s resources the underlying archi-
tecture must be taken into account. The threads running on the GPU
are grouped into units of 32 threads named warps. Given that the
threads in a warp agree on their execution path, all threads execute
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Figure 3: Simulation steps involved in computing ζ
t+∆t
i, j visualized for a single thread. The highlighted row illustrates which nodes the threads

participating in the corresponding warp are currently computing. The cyan symbols in steps 1-6 represent values that are not currently used
for computation, but prefetched from global memory simultaneously for the next row iteration beginning with step 7.

instructions simultaneously [NVI22]. Memory accesses of a warp
are coalesced into as few transactions as needed, depending on the
memory address distribution of the request. Our structured grid fa-
cilitates this, as successive threads access successive memory ad-
dresses. Up to 32 warps are further grouped into thread blocks.
Warps in a thread block can communicate data via on-chip shared
memory, however this requires thread block synchronization as the
warps do not execute concurrently. This warp-cooperative approach
is favored in related work to subdivide the domain into blocks with
thread block dimensions [HPW∗16] [VPF∗17] [SKN∗21]. How-
ever, these schemes tend to be latency bound.
In contrast, our implementation does not rely on shared memory
and therefore does not require thread block synchronization. This
lack of memory barriers allows us to fully overlap computation
with data fetching. This is essential in achieving high utilization of
the GPU’s resources, since memory operations, particularly when
accessing device memory, introduce high latencies. These latencies
must be hidden by executing instructions independent of the ac-
cessed data [NVI22]. For this purpose, we subdivide the domain
into blocks of 28 × 50 cells, that are processed by one warp each,
as illustrated in Figure 2b. The width of these blocks is limited by
the warp size of 32, while the height can be chosen arbitrarily. Two
ghost cells are required on each side of the block, due to the data
dependencies of the stencil shown in Figure 2a. A warp computes
one row at a time while prefetching the data required for the next
one. This happens concurrently, since the computation is indepen-
dent of the prefetched data.
Similar to related schemes, a dry-wet mask is used to further reduce
computation times [HPW∗16]. The compute kernel leverages this
mask to determine the first and last wet row in the current block.
Only those and the rows in-between are fetched and computed.

4.2. Simulation Steps

In this section the steps involved in the computation kernel are out-
lined. Figure 3 gives an overview of the data dependencies and
operations in each step in the context of a single CUDA thread.
The kernel’s row loop described in the previous section is shown in
steps 1 - 7 . They are preceded by step 0 in which initial fields
are fetched from device memory and shuffled between threads. The
following describes the steps necessary to compute ζ

t+∆t
i, j in the re-

sponsible thread.

0. Load all required fields from previous time step into registers.

These are shown in blue in Figure 3.0. The values in column
i are loaded from device memory. Required values in columns
i−1 and i+1 are then shuffled up and down, respectively.

1. Start prefetching the required values for the subsequent warp
iteration ζ

t
i, j+3, qxt−∆t/2

i, j+2 , qyt−∆t/2
i, j+2 , Bi, j+2 and Ri, j+1. These are

partially shown in cyan in Figure 3.1. This does not result in a
stall in the following computations, since these do not depend
on the registers used to store the prefetched values.

2. Compute the momentum fluxes f xi, j, f yi, j, gxi, j and gyi, j+1.
They are shown in yellow and green in Figure 3.2.

3. Shuffle up momentum flux f yi−1, j and shuffle down f xi+1, j.
The momentum fluxes gxi, j−1 and gyi, j were computed in the
previous warp iteration and are available in their respective reg-
isters.

4. Compute the fluxes qxt+∆t/2
i, j and qyt+∆t/2

i, j shown in red in Figure
3.4. The results are written to global memory.

5. Flux qxt+∆t/2
i−1, j is shuffled up from west neighbor thread. Flux

qyt+∆t/2
i, j−1 is available from previous warp iteration.

6. With all fluxes neighbors at t +∆t/2 now available, the water
level ζ

t+∆t
i, j is computed. The result is written to global memory.

7. The warp now advances north by one row by utilizing the values
prefetched in step 1. All data required for this operation is avail-
able in the registers of the warp. Values for which a northern
neighbor is available in registers of the same thread adopt their
value and are shown in solid blue in Figure 3.7. The remaining
values are then shuffled up and down. Finally, the thread contin-
ues with step 1 or exits when the desired number of rows have
been computed.

4.3. In Situ Visualization

The computed results for the water level ζ, the fluxes qx, qy and the
terrain B can optionally be visualized in 3D during simulation. For
this, CUDA interoperability functions for OpenGL are used to keep
the data on the GPU. This avoids latency-heavy GPU-CPU com-
munication and allows for an efficient implementation. We achieve
this by rendering an equidistant orthogonal mesh with the size of
the simulated area. Each device buffer of the simulation data is
treated as a texture which are sampled in the GLSL shaders to de-
termine vertex positions and fragment colors. An example of the in
situ visualization of the Kinzig dataset is shown in Figure 4. Wet
cells are rendered in different colors, for which the user can specify

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

33



A. Rak, S. Guthe, P. Mewis / Massively Parallel Large Scale Inundation Modelling

Figure 4: Screenshot of user interface for in situ visualization.

whether these are computed from the water level or velocity. The
inflow parameter manipulates the amount of water flowing into the
river at the border of the grid, allowing observation of the flooding
behaviour under different conditions. The application can also be
used to demonstrate historical flooding events, such as the collapse
of the Malpasset Dam.

5. Results

RTX 2060M GTX 1080TI RTX 3080 RTX 3090

Mem BW 336 GB/s 484.4 GB/s 760.3 GB/s 936.2 GB/s

Cores 1920 3584 8704 10496

Kinzig 1609 s 1242 s 636 s 512 s

Malpasset 1133 s 840 s 410 s 340 s

Table 1: Performance measurements for different GPUs. Mem BW
is the theoretically achievable memory bandwidth of the device.
Cores is the number of CUDA Cores.

Table 1 shows the performance measurements of different data
sets on multiple consumer-grade GPUs. The Kinzig is a river in
southwestern Germany. Our terrain dataset covers an area of 4800
× 3000 meters with a resolution of 1 m [Mew21]. The simulation
runs with a time step of ∆t = 0.1s. In this area the Kinzig river
flows from the eastern to the western edge. In our Kinzig test case
the terrain starts entirely dry while a constant inflow is applied to
the influx area. Within three simulated days the water levels reach
a stationary state, which is shown in Figure 5. This time period is
computed within 512 s on a RTX 3090, which is 506 times faster
than real time.
In the Malpasset test case the Malpasset Dam collapse of 1959 is
simulated for one hour. The terrain data comprises an area of 17.5
× 8.5 km at a resolution of 1 m. The simulation runs with a time
step of ∆t = 0.01s. The simulated time period is computed within
340 s on an RTX 3090.
Table 1 shows the relationship between memory bandwidth and
computation duration. The memory bandwidth of the RTX 3090
is roughly three times higher than the RTX 2060M. Likewise, the
computation is roughly three times faster. This is due to a memory
bandwidth-bound kernel with a DRAM utilization of up to 80%.

Figure 5: Water levels of the Kinzig river after a simulated period
of three days or 2592000 iterations.

Horváth et al. [HBKK∗20] implemented the Chen-Noelle scheme
(CN) [CN17], a first-order upwind shallow-water scheme, in
CUDA on a cartesian grid. They simulated a flooding event of the
Danube river in the Lobau area with a size of 8.1 km × 5 km at
a resolution of 3 m. This amounts to 4.5 million cells in contrast
to the 14.4 million cells of our Kinzig domain with a similar per-
centage of wet cells. Their simulation was run on a GTX 1080, the
specifications of which are comparable to our RTX 2060 Mobile.
Their implementation computes one simulated second in 6.2 ms.
In contrast, one simulated second in our Kinzig case study takes

1608.7s
2592000·∆t ≈ 6.2ms to compute on the RTX 2060M for a domain
with three times the amount of cells.
This result suggests a speedup of three compared to Horváth et
al. [HBKK∗20]. We confirmed this by recreating their Marchfeld
test case, in which an area of 17 km × 19.5 km with a resolution
of 3 m is simulated for twelve days, and running it on a GTX 1080.
While their CN implementation took 27372 s to compute this test
case, ours took 10096 s, resulting in a speedup of 2.71.

6. Conclusion

We presented a system to forecast flood inundation problems. Ex-
tensive testing showed that it produces accurate results of the hy-
draulic problem. Furthermore, the software is tested against historic
flood events and showed good results in these tests. We showed that
our system is very efficient and faster than the available state-of-the
art. With this forecasts are even possible on consumer grade hard-
ware within a few minutes. A three day forecast for a medium sized
river with 15 million cells takes just 8 minutes on an RTX3090
GPU. For demonstration purposes or studies of different building
designs the software can be applied interactively and the parame-
ters can be changed on the fly. This way our system may contribute
to counteract one of the most severe natural disasters.
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