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Abstract

We study the problem of computing a spatial scatterplot on a large dataset for arbitrary zooming/panning queries. We intro-
duce a general framework called “Rainbow” that generates a high-quality scatterplot for a given result-size budget. Rainbow
augments a spatial index with judiciously selected representative points offline. To answer a query, Rainbow traverses the in-
dex top-down and selects representative points with a good quality until the result-size budget is reached. We experimentally

demonstrate the effectiveness of Rainbow.
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1. Introduction

Scatterplot is an important visualization method to explore spatial
data. To support arbitrary zooming, panning, and clicking opera-
tions, a typical visualization system adopts a client-server archi-
tecture. A frontend library on the client translates each user oper-
ation to a query to the server and renders the points returned from
the server. Every query should be served efficiently, preferably in
milliseconds [LH14]. However, when the data is large, computing,
transferring, and rendering the result points can be expensive, es-
pecially when the client is using a mobile device with limited re-
sources and connected to a slow network. One idea is to reduce
the number of points transferred and rendered through sampling or
aggregation. A natural requirement is that the rendering of the sam-
ple should be as similar as possible to the rendering of the original
result. The client using different frontend libraries such as Map-
box [map], Leaflet [lea], or Deck.gl [dec] may have different ren-
dering effects for the same set of spatial points, as shown in Figure 1
(a) and (b). This difference can be significant when different ren-
dering parameters are applied, such as the colors and sizes of the
points. Thus, the diversity of frontend libraries is a challenge for
developing general-purpose techniques that compute high-quality
scatterplots.

In this paper, we study how to efficiently compute a set of spa-
tial points from a dataset for an arbitrary spatial range query with
a result-size budget, e.g., sending up to 10,000 points to the client.
We introduce a general framework called “Rainbow,” which stands
for “Rendering-Aware Index for Big Scatterplot Workload.” Its
main idea is to augment a spatial index with judiciously selected
representative points to maximize the quality of the rendered result.
To answer a spatial query from the client with a result-size budget,
Rainbow traverses the spatial index top-down and greedily selects
representative points with a maximal quality of the rendered re-
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(b) Deck.gl [dec] library.

(¢) Original 254K points. (d) Rainbow-selected 10K points.
Figure 1: (a) Pixel Bitmap maps a point to a square of solid pixels.
(b) Deck.gl maps a point to a circle of pixels with opacity. (c) and
(d) are rendered by the same Deck.gl on (c) the original dataset of
254K points and (d) the 10K points selected by Rainbow.

sult until the number of points reaches the budget (Figures 1(c) and
(d)). This technique can not only generate a high-quality scatter-
plot within the budget, but also be applied with any user-specified
rendering function and quality metric.

2. Related Work

There are many studies of spatial visualization, and we focus on
techniques that support efficient zooming and panning operations.
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Pre-aggregation-based approaches pre-compute image tiles or
datacubes offline and then answer zooming/panning queries online
efficiently. (1) Image-tiling techniques [EMJ16,YZS18, CSK*13]
pre-compute image tiles and return pre-rendered images as query
results. For example, AID [GEJ19] and AID" [GE20] minimize the
index size and construction time by considering the costs of pro-
cessing and storing image tiles and data tiles. (2) Datacube tech-
niques [LKS13, MCW*20, LWSY20, TALPRC18] store a density
value (i.e., a count of objects) on each pre-defined cell and return
cell centers along with their density values as query results. These
approaches do not support frontend libraries (e.g., the scatterplot
layer in Deck.gl) that take the original points’ accurate coordinates
as input to render scatterplots. Also they do not allow an arbitrary
result-size budget provided by the client.

Sampling-based approaches [MFDW17, FPDmcs12, JS20,
GFCB18] return a sample of the original points for online
zooming/panning queries. (1) Offfine-sampling approaches (e.g.,
VAS [PCM16], Sample+Seck [DHC*16]) draw a sample on
the raw data offline, and run online queries on the sample
instead of on the raw data to achieve a high efficiency. (2)
Online-sampling approaches (e.g., RS-Tree [WCLY15] and
Pyramid [CZF*22]) build a hierarchical index offline with sampled
points on nodes and then return a sample of points for an online
query. For (3) 3D-point clouds, similar ideas have been proposed,
e.g., [Schl4, Sch21, SOW20]. The sampling strategies of these
approaches are tailored to some specific rendering effects and
quality measures, and they cannot adapt to new rendering or
quality functions. For example, as shown in [PCM16], random
and stratified sampling strategies do not provide high-quality
scatterplots for regression-analysis tasks. The proposed framework
can adapt to desired sampling schemes driven by user-defined
rendering and quality functions.

Other approaches include progressive visualization tech-
niques [MFDW17, CGZ*16, JLZ*16], prefetching-based tech-
niques [BCS16, YMS17, TLD*19], special indexes [EZBK16]
designed for histograms, systems [PSF12] designed specifically for
earth data, and query acceleration techniques [WLX19] specialized
for encrypted data. These techniques do not adapt to different
frontend libraries given a result-size budget while our approach

does.
In summary, the proposed framework is unique in three folds:

1) it supports arbitrary frontend libraries that require actual point
objects as input and render results on the fly; 2) it makes the best
effort to compute a high-quality sample given an arbitrary result-
size budget; 3) it adapts to different rendering and quality functions
by considering them in its offline index-building and online query-
processing phases.

3. Problem Formulation

We consider a client-server architecture consisting of a server and
multiple clients. Given a dataset D on the server, a rendering func-
tion R, and an error function A, the server loads D and builds an
in-memory data structure to answer arbitrary visualization queries
submitted by the clients. A client query is in the format of Q(r,x,b),
where r is a spatial range, x is a resolution, and b is a result-size
budget. In this paper, we focus on the problem of finding a set of
points S such that S C D, C D and |S| < b, where D, = {p:p €
DnNr}, and A(R(Dy),R(S)) is minimized. In other words, the server
selects a subset of points to minimize the error between the ren-
dered result of the subset and the rendered result of the original set
of points in the query range.

Rendering functions: There are various ways to render a spa-
tial point as a set of pixels on the client screen. For example,
Deck.gl [dec] utilizes WebGL to apply a series of geometric trans-
formations and projections, and then rasterizes a point on a set of
colored pixels (as shown in Figure 1(b)). The complex graphics
pipeline is not a focus of this paper. We can conceptually model
it as a rendering function that maps a spatial point to a set of col-
ored pixels, where the opacity value of each pixel can be decided
by the distance of the pixel to the projected location of the point.
For instance, as shown in Figure 1, to obtain a similar result, the
rendering function in (b) requires more points in dense areas than
the function in (a) because the opaque pixels in (b) are harder to be
over-plotted.

Error functions: To measure the quality of S, we compare the im-
age rendered from S with the image rendered from the original re-
sult set D,. Existing image similarity metrics such as MSE [PSC00]
and SSIM [WBS™*04] can be adopted. In applications that are more
concerned with geometric distances between spatial objects such as
clustering analysis, distance metrics comparing two sets of spatial
objects can also be used, such as Within-Cluster Sum of Squares
(WCSS) [DV*15]. Note that image similarities do not directly rep-
resent visualization faithfulness, and our framework can be adopted
if a faithfulness-oriented quality function is given.

4. Rainbow

Rainbow is a framework that achieves interactive visualization us-
ing an offline index-construction phase and an online tree-traversal
phase. During the offline phase, we build a spatial index on dataset
D. The index is a tree-based structure (e.g., K-D tree or quadtree)
that recursively partitions the spatial data into disjoint smaller re-
gions. We then apply the given rendering function R and the er-
ror function A to augment each internal node with representative
points. The goal is to minimize the error between the result of ren-
dering the representative points and the result of rendering all data
points in the subtree under the node. We also maintain the error
information on each node to be used in the online phase.

To answer a visualization query Q(r,x,b), we traverse the tree
top-down with an initial result set consisting of only the represen-
tative points at the root node. We expand the result set iteratively
until either the size budget is reached, or the error between the ren-
dering effect of the result set and the raw dataset within the query
range is small enough. A feasible result set is modeled as a tree cut
that consists of a set of disjoint nodes spanning the query range. We
iteratively expand the tree cut in a greedy manner to find a result
set that maximizes the visualization quality. We use quadtree as an
example spatial index in the following discussion.

4.1. Offline Index-Construction Phase

Rainbow extends the typical quadtree by adding representative
points on each node so that the error of rendering these represen-
tative points for the region compared to rendering all points under
the subtree is minimized. For simplicity, we consider the case of
selecting a single representative point per node in the following
discussion, and it can be generalized to select multiple points per
node.

We first build a quadtree on the entire dataset D, then traverse
the tree bottom-up to select a representative point for each node.
As shown in Figure 2, suppose Qy is the spatial region covered by
node N, and Dy is the set of points in D located inside €y, namely
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Figure 2: Rainbow selects a representative point on each tree node
and stores the error.

Dy ={p:p e DNQy}. We select a point py from Dy such that
Vpi € Dy : A(R(Dy),R(pn)) < A(R(DN),R(pi))-

In other words, the error of rendering py against rendering all
points under node N is minimized compared to rendering any other
point p; in Dy. We call py a representative point in the node N.
We also store this error A(R(Dy),R(py)) in node N, which will be
used in the online tree-traversal phase as explained in Section 4.2.
Computing R(Dy) needs to render all points in the subtree, which
can be costly. To solve the problem, we can approximate R(Dy) by
only rendering the representative points in N’s four children. We
can also reduce the candidate set size by selecting py only from
the representative points in N’s four children.

Different resolutions: A rendering function takes not only the
point to be rendered as input, but also the resolution of the output
image as a parameter. Different visualization queries can have dif-
ferent zoom levels that correspond to different resolutions. Given a
specific query range r and a resolution x, a node N in the tree repre-
sents a part of the final output image. N also has its own resolution
decided by r and x. If we only select the representative point for
a specific query resolution, it might not have the minimum error
for other resolutions. There are two ways to address this problem.
One is that on each node, for each zoom level, we select the best
representative point and its error. This approach is feasible when
the total number of zoom levels is small (e.g., Mapbox supports at
most 23 levels). Another strategy is to select a single representative
point for all the zoom levels to reduce the storage overhead, e.g.,
by using the most common point.

4.2. Online Tree-Traversal Phase

Given a query Q(r,x,b), we traverse the tree top-down and expand
the result set iteratively until either A(R(D;),R(S)) =0 or |S| = b.
Formally, let the index tree be 7. A feasible result set is modeled as
atree cut K where k = {n; :n; ET An;N\r £ASAVj #i,n;Nnj =g}.
In other words, a tree cut is a set of disjoint nodes from the tree
that overlap with the query range. A result set S is the union of all
representative points stored on each node in the tree cut k.

Query budget = 20

N Expand node
' with the largest benefit

Figure 3: In the tree-traversal phase, Rainbow iteratively expands
the tree cut by selecting the node with the largest benefit value and
replacing it with its four children, until the size budget is reached.

Best-first search: We do best-first search to expand the tree cut.
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For each node in the current tree cut, we compute a benefit value.
In each iteration, we select the node with the largest benefit value
and replace it with its four child nodes. The replacement will trig-
ger the computation of the benefit values for the four child nodes,
but will not affect all other existing nodes in the tree cut. We repeat
this process until we get enough result points (|S| = b), or all the
nodes in the tree cut have a zero benefit value, which means further
expanding the tree cut will not increase the quality of the visualiza-
tion. Figure 3 shows an example. Suppose the current tree cut K has
nodes {A,M,N, O, P,C,D} and the result set S has 7 points, smaller
than the budget 20. The benefit of each node is listed over its box.
We choose node N with the largest benefit among the nodes in K to
expand it to its four children U, V, W, and Z.

Computing benefit: The benefit value guides the search to expand
the node that reduces the error the most while adding the least num-
ber of points into the result set. We define a gain value that indicates
if a node N is expanded, how much error can be reduced between
the current result set and the original result set. Suppose En[x] is
the error stored in node N, which is computed by comparing the
rendered result of the representative point py against the rendered
result of the points in the subtree Dy using the query resolution
x in the offline building phase, namely Ey[x] = A(R(Dy),R(pn))-
Let U, V, W, and Z be the four child nodes of N. Then the errors
of rendering the representative point against the subtree using the
query resolution x on each node are Ey [x], Ey [x], Ew[x], and Ez[x],
respectively. The gain value of expanding node N is computed as:
gainy = Ex(x) — (Ey[x] + Ev [x] + Ew [x] + Ez[x]).

Then we define a cost value that reflects how many more points
will be added to the result set if we expand node N. Let Cy be the
number of representative points on node N, and Cy, Cy, Cy, and
C7 be the number of representative points in the four children of N,
respectively. The cost value of expanding node N is computed as:

costy = (Cy +Cy +Cw +Cz) — Cy.

We formally define the benefit value of expanding node N as
benefity = gainy [costy.

Since each node has all the information required in the definition,

the overhead to compute the benefit values is small, making the

online tree-traversal phase efficient.

5. Experiments

We evaluated Rainbow on 100 million (17GB) geo-located tweets
and compared it with three related approaches. (1) QuadTree +
RS. It indexed the dataset using a quadtree and stored points on
tree nodes. Given a range query with a size budget, it retrieved all
points in the range and returned a random sample (RS) within the
budget size; (2) Nanocubes [LKS13]. It indexed the dataset using
a quadtree and stored count of points on tree nodes. Given a query,
it returned the centroids of all tree nodes in the query range. Since
Nanocubes did not support a result-size budget, we used the result
size from Nanocubes as the budget to query Rainbow such that they
had the same result size. (3) AID" [GE20]. It is a hybrid index with
both image and data tiles embedded in an R-tree. We implemented
Rainbow in Java 8. All experiments ran on a Ubuntu 14 server with
4 Intel Xeon X5670 CPUs, 96GB RAM, and a 2-TB HDD drive.

5.1. Visualization Quality

We used two rendering functions. The first one (denoted as “R17)
mapped each point to a solid-colored pixel on the screen. We im-
plemented R1 using WebGL. The other (denoted as “R2”) mapped
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Figure 4: Quality and query time of Rainbow and Quadtree + RS
for different budget sizes using R1 and AED on 100M tweets.
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Figure 5: Quality and query time of Rainbow and Nanocubes for
the same budget sizes (35K, 43K, 48K, 52K, and 57K, respectively)
using R2 and MSE on different dataset sizes.

each point to a set of colored pixels, and each pixel’s opacity was
decided by its distance to the point. We used the ScatterplotLayer
API of Deck.gl as R2. We used two error functions to measure the
quality of the rendered results. One was Average Euclidean Dis-
tance (AED), a variation of WCSS [DV*15]. For each point in the
original query result set, we computed the distance between the
point and its nearest neighbor point in the rendered result of the ap-
proach under evaluation. The average distance of all points in the
original result set was the AED value of the rendered result. The
other was Mean Squared Error (MSE) [PSCO00], which computed
an average squared pixel-wise density difference. We used AED to
measure the quality of results rendered by R1 and MSE to measure
the quality of results rendered by R2.

R1+AED: We varied the budget size from 20K to 100K for the
100M tweet dataset and compared the quality of the results using
the same query, which was a scatterplot of the whole US. As shown
in Figure 4(a), Rainbow had a better quality compared to Quadtree
+ RS for the R1 rendering function and AED error function.

R2+MSE: We varied the raw dataset size from 20M to 100M.
As shown in Figure 5(a), Rainbow achieved a higher quality than
Nanocubes using the R2 rendering function and MSE error func-
tion. The reason was that Nanocubes used aggregated centroids as
the result points without considering the effects of the rendering
function.

5.2. Query Performance

To measure the query performance, we used the same aforemen-
tioned R1+AED and R2+MSE combinations. For the R1+AED
configuration, we varied the budget size from 20K to 100K on
the 100M tweet dataset, and the results are shown in Figure 4(b).
For the R2+MSE configuration, we varied the raw dataset size
from 20M to 100M, and the results are shown in Figure 5(b).
In these configurations, Rainbow outperformed both baseline ap-
proaches, and it was able to provide an interactive query perfor-
mance (< 500ms) for 100 million tweets on a single machine.

5.3. Construction Time and Index Sizes

We used the R1+AED configuration to evaluate the construction
time and index size of Rainbow and Nanocubes. We varied the

1000 " Rainbow
Nanocubes 3

Index size (MB)

20M 40M 60M 80M100M
Dataset size

20M 40M 60M 80M100M
Dataset size

Construction time
o

(a) Index construction Time. (b) Index Size.
Figure 6: Offline construction time and index size of Rainbow and
Nanocubes on different dataset sizes.

dataset size from 20M to 100M. As shown in Figure 6, the con-
struction of Rainbow was faster than Nanocubes, while Nanocubes
was more space-efficient. The reason was that Rainbow stored ad-
ditional information on intermediate nodes on the index.

5.4. Comparison with AID*

We constructed indexes offline on the 100M tweet dataset us-
ing Rainbow and AID". The performance of AID" depends on
the portion of tiles stored as images or data files. We showed
the results of two extreme cases using AID": one case (de-
noted as AIDi*) stored all tiles as pre-rendered images and the
other case (denoted as AIDd*) stored all tiles as raw data files.
It took Rainbow 209 seconds 45

to construct the index of size o4 Ral?ﬁg\i’! E
1,840MB. In comparison, it gg AID4* ]
took AID;" and AIDg" 1,025 571 H

seconds and 756 seconds to &0 lm—llm (-

build their indexes of sizes 5 Qu%ry zgom Igvel 9
7,520MB and 7,169MB, re- . e _
spectively. We used five queries Figure 7: Size-budget=100K.
with different zoom levels to evaluate all three approaches. As
shown in Figure 7, Rainbow had comparable query time with
AID;”. Both outperformed AIDd* significantly because AIDd* had
to scan the data in the query range to render the images on-the-fly.
Table 1: Query time and result quality of Rainbow and AID".

Query zoom level 5 6 7 8 9
Rainbow query time (s) 0.190 | 0.233 | 0.134 | 0.043 | 0.027
AID;” query time (s) 0.074 | 0.026 | 0.004 | 0.088 | 0.090
AIDy" query time (s) 4.684 | 3.598 | 1.923 | 0.890 | 0.167
Rainbow result MSE (K) | 1.693 | 1.249 | 0.168 0.0 0.0

As shown in Table 1, Rainbow outperformed AIDi* for zoom
levels 8 and 9. Both provided interactive query time (< 500ms) for
all zoom levels. AIDi* loaded the pre-computed images in parallel,
and Rainbow could be further optimized using multi-threads. The
last row shows the MSE of the approximate results (size-budget
= 100K) returned by Rainbow. The MSE of the results from AIDi*
and AIDd* were all zero since they did not do approximation.

6. Conclusion

In this paper, we developed a general framework called Rainbow
that generates a high-quality spatial scatterplot for a given result-
size budget. It augments a spatial index with judiciously selected
representative points offline, and traverses the index to select a
high-quality subset of points to answer queries online. Our experi-
ments demonstrated the efficacy and efficiency of Rainbow. Rain-
bow is open-sourced at https://github.com/ISG-ICS/
rainbow.
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