
Eurographics Symposium on Parallel Graphics and Visualization (2021)
M. Hadwiger, M. Larsen, F. Sadlo (Editors)

UnityPIC: Unity Point-Cloud Interactive Core

Y. Wu1, H. Vo1,3,4, J. Gong2, and Z. Zhu1,3

1Department of Computer Science, The CUNY Graduate Center
2Civil and Environmental Engineering, Rutgers University

3Department of Computer Science, The City College of New York
4Center for Urban Science and Progress, NYU

Abstract
In this work, we present Unity Point-Cloud Interactive Core, a novel interactive point cloud rendering pipeline for the Unity
Development Platform. The goal of the proposed pipeline is to expedite the development process for point cloud applications
by encapsulating the rendering process as a standalone component, while maintaining flexibility through an implementable
interface. The proposed pipeline allows for rendering arbitrarily large point clouds with improved performance and visual
quality. First, a novel dynamic batching scheme is proposed to address the adaptive point sizing problem for level-of-detail (LOD)
point cloud structures. Then, an approximate rendering algorithm is proposed to reduce overdraw by minimizing the overall
number of fragment operations through an intermediate occlusion culling pass. For the purpose of analysis, the visual quality of
renderings is quantified and measured by comparing against a high-quality baseline. In the experiments, the proposed pipeline
maintains above 90 FPS for a 20 million point budget while achieving greater than 90% visual quality during interaction when
rendering a point-cloud with more than 20 billion points.

CCS Concepts
• Large data visualization → point cloud visualization; • Spatial data structure → hierarchical data structure;

1 Introduction

Point clouds surged in popularity as a way to capture the real-world
environment. Accurate collection methods can produce point clouds
with millimeter precision, and mobile scanning systems are available
to perform city-scale bulk collection. Depending on the size of the
target and the resolution of the scan, the number of points in a point
cloud can exceed the billions. Although ineffective in its raw format,
point cloud data contain high and low level semantic information
that can be extracted via post-processing techniques. Such infor-
mation is useful across a wide array of applications such as urban
planning [UDGGR20, ZWW∗20], disaster evaluation [FGKG15],
and virtual site visits [MTRGGA∗11, RCB19]. Recent hot-topics
such as autonomous vehicles heavily leverage point clouds for lo-
calization and object-detection [CLF∗20].

This work is focused on a subclass of point clouds that exceed
the size of the available main memory, which will be referred to as
large point clouds. The visualization of large point clouds requires a
pre-processing step to generate an efficient out-of-core hierarchical
structure that supports LOD renderings. In the context of user-driven
interactive point cloud applications, a scalable rendering pipeline is
a shared commonality that forms the basis for interactions. Often
times, the support for large point clouds is a requirement to ensure
accessibility across machines with ranging performance specifica-
tions. However, the development of a scalable rendering pipeline

for point clouds is non-trivial and consumes a significant portion of
the application’s development timeline. There exists a motivation
to generalize the rendering pipeline as an implementable interface,
which will greatly expedite the development process. As an engi-
neering decision, the Unity Development Platform is chosen as the
platform for the interface due to its large existing framework and
diverse support for 3-D applications. Furthermore, Unity projects
are portable across popular operating systems and target platforms.

Many scalable point cloud visualization applications exist in the
current literature. However, their performances vary with respect
to their out-of-core data structure and the rendering technique used.
The data structure is often a tree structure where successive lev-
els represent higher resolutions of the point cloud, and the type
of structure used directly determines the cost of frustum culling,
which is equivalent to the number of nodes traversed. Deeper trees
allow for more precise LOD refinements, but are more costly to
traverse in comparison. On the other hand, the visual quality of the
scene is determined by the rendering technique and the available
point budget, which is the maximum number of points any scene
is allowed to have. Although interactive FPS can always be main-
tained by lowering the point budget, it is necessary to emphasize
that greater performance is essential in order to maximize visual
quality. Improving the GPU performance will raise the upper-bound
on the point budget and consequently raise the potential for higher

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/pgv.20211044 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/pgv.20211044

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

visual quality, given that the rendering technique has the capacity
for attaining higher visual quality.

The main contribution for this work is a Unity component which
encapsulates the proposed point cloud rendering pipeline. The pro-
posed pipeline allows for rendering large point clouds with im-
proved performance. To improve the visual quality and rendering
performance of the pipeline, two algorithmic improvements were
proposed: dynamic batching and delayed expansion. The proposed
dynamic batching scheme addresses the adaptive point sizing prob-
lem for LOD point cloud structures. Delayed expansion is an approx-
imate rendering algorithm that significantly reduces the number of
fragment operations. As a point of reference, we’ve achieved a 75%
FPS increase at 10 million points and a 130% increase at 20 million
points. The overall pipeline is then evaluated quantitatively in the
context of interactive visual quality. According to the experiments,
the pipeline maintained above 90 FPS for a 20 million point budget
while achieving greater than 90% visual quality during interaction
when rendering a point-cloud with more than 20 billion points.

2 Related Works

Unstructured point cloud formats are converted to out-of-core multi-
resolution hierarchical data structures to enable LOD interactive
rendering in real-time. In order to produce consistent LODs, an
effective sampling method is required. Sainz et al. [SPL04] provides
an overview of the basic hierarchical point cloud data structures,
and in the work of Potree, Schütz et al. [Sch16] included a survey
of various sampling techniques.

QSplat [RL00] was the earliest work to develop a multi-resolution
rendering system that can scale to large out-of-core point clouds.
Each node in the hierarchy is represented by a spherical bound-
ing volume and contains exactly one point. Sequential Point Tree
(SPT) [DVS03] is an ordered array structure optimized for GPU
rendering that allows LOD representations. XSplat [PSL05] is an
SPT based rendering system with an out-of-core extension. The
Layered point cloud (LPC) [GM04] was the first to introduce object-
space point clouds for each node in its hierarchy. Object-space point
clouds are subsamples of the original point cloud confined to specific
bounds. Nested octree [WS06] is similar to LPC, but uses an oc-
tree instead of a binary tree. Internal octrees are memory optimized
SPTs that allow quick LOD selection by rendering up to a particular
index. Instant Points by Wimmer et al. [WS06] achieved high GPU
throughput at an interactive FPS by leveraging block-based culling
and memory optimized SPTs. Modifiable nested octrees [SW11]
are an extension of nested octrees. The inner octree is replaced by
a grid, which allows fast insertions and deletions. The selection
octree is introduced to accommodate point selection with a volumet-
ric brush. Scheiblauer et al. [Sch14, SW11] proposed a large-scale
point cloud rendering system that supports editing of point clouds
with more than a billion points as part of the SCANOPY project.
Potree [Sch16] is a web-based point cloud renderer that supports
large point clouds. Its hierarchy is stored in chunks that can be
loaded on demand during run-time, granting even greater scalability
over the initial load time. The Potree file format chose a poisson-disk
sampling method after surveying various sampling methods, which
produced the best results visually. Other Unity-based large point

clouds have been proposed [Fra17, SNTO19]. However, they do not
focus on making novel improvements to the pipeline performance.

Schültz et al. [SMOW20] proposed a progressive rendering
pipeline without hierarchical acceleration structures. Although it
can only render point clouds that fit in GPU memory, it achieves
impressive throughput and pleasant visual convergence by using
randomization. The idea behind the reprojection technique intro-
duced in their work is similar to our proposed delayed expansion
rendering algorithm. It leverages the 2-D view-port space as the
basis for determining visibility (occlusion culling).

Recent advances in augmented reality and virtual reality technol-
ogy gave rise to immersive interactions in 3-D environments. Unity
has been central to augmented reality (AR) and virtual reality (VR)
applications, with the Mixed-Reality Toolkit (MRTK) [Mic16] at
the core of it. AR and VR also imposed stricter interactive require-
ments for 3-D applications. Applications must maintain 90fps on
a set of stereo displays, otherwise the interactive experience can
be nauseating. Recent work by Schültz et al. [SKW19] focuses on
maintaining continuous LOD and reducing clutters in high density
rendered regions. They suggest that these qualities can improve
the interactive experience. Stets et al. [SSCG17] proposed a VR
application for point cloud labeling.

Point splatting techniques determine the quality of the render-
ing. Screen-facing circles or squares are the simplest. However,
they lead to unstable visuals due to frequent spatial-aliasing and
z-fighting. To achieve higher visual quality, Botsch et al. [BHZK05]
proposed High-Quality Blending, a multi-pass rendering algorithm
that includes three passes: a visibility pass, an attribute pass, and a
normalization pass. The original work uses normal-oriented splats,
however, normals aren’t always available so a simplified version
with screen-facing splats is used instead in Potree [Sch16]. Schütz et
al. [Sch16] later proposed an interpolation method using paraboloids
to resolve overlapping points. The resulting one-pass algorithm im-
proved high resolution details such as texts in close-viewing, but it
does not address aliasing. Jump flooding [Far14,RT06] is an approx-
imation approach to rendering point clouds. However, the algorithm
requires many iterations and isn’t suitable for interactive rendering.

Per-point adaptive point sizing is difficult to achieve for Potree’s
data structure as a node may contain points belonging to multiple
LODs. Schütz et al. [Sch16] leveraged the GPU’s parallel processing
capabilities to determine the point sizes on a per-point basis. Meta-
data from the rendered part of the hierarchy is packed into an array
and sent to the GPU. Per-point adaptive point sizing is achieved by
traversing that hierarchy in the vertex shader.

3 Preliminaries

3.1 Standard Large Point Cloud Rendering Pipeline

The standard large point cloud rendering pipeline can be summarized
in three parts:

• Traversal: The traversal process determines the set of visible
points for a given camera position and orientation. For every new
camera position and orientation, the hierarchy of the internal data
structure is traversed until either all visible nodes are visited, or
the point budget is satisfied. The traversal order is typically prior-
ity driven and the priority metric is implementation dependent.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

52

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

• Loading: Points are loaded from the out-of-core structure for the
visible nodes determined by the traversal process. Loaded points
are queued for renderings.

• Rendering: The rendering step will upload the newly loaded
points to the GPU. The new scene is rendered with all the up-
loaded points.

Note that pipeline parallelism is easily achieved with the above
three processes. UnityPIC’s specialization of the standard rendering
pipeline will be discussed in Section 4.

3.2 Point Cloud Rendering in Unity

Unity is popularly known as a game engine in its infancy. However,
its platform has since been extended to support applications in vari-
ous fields such as automotive, film, architecture, and construction.
Furthermore, recent contribution from Microsoft, the MRTK, has
defaulted Unity as the main platform for AR and VR development.
The proposed rendering pipeline, UnityPIC, is implemented as a
Unity component in C#.

As per Unity’s default paradigm, the standard approach to render-
ing point clouds would be to create a GameObject for each visible
node. The node’s points would be stored in the MeshFilter assigned
to that GameObject. However, a major limitation of MeshFilters pre-
vents this from being a practical solution: there is an implementation
defined limit of 65,536 vertices per MeshFilter. It isn’t uncommon
for the point count in a single node to surpass that limit, and each
GameObject can only be assigned one MeshFilter. New GameOb-
jects would need to be created for the additional points, adding
more overhead to the rendering pipeline. It is common for the num-
ber of GameObjects to be in the hundreds or even the thousands
for a reasonable point budget (5 to 10 million). Each GameObject
participates in the internal frustum culling and comes with an as-
sociated overhead as there is a set of life-cycle functions that are
executed for each frame. Given the number of potential GameOb-
jects, this overhead can become significant. Another problem with
MeshRenderers and MeshFilters is that they are incompatible with
multi-pass rendering algorithms such as High-Quality Blending,
where an intermediate pass renders to a back-buffer.

The above overheads and limitations compel the use of Com-
mandBuffers and ComputeBuffers, which are extensions to Unity’s
graphics API that allow for more explicit control of the render-
ing pipeline. CommandBuffers are queues for graphics operations
that can be executed by either: 1) an explicit call to the graph-
ics API, or 2) attaching it to a particular stage in Unity’s render-
ing pipeline. ComputeBuffers are GPU storage units, which are
buffers with a specified size and stride. Contrary to MeshFilters,
there is no size limit to ComputeBuffers, and custom packing is
allowed, although the corresponding shader code would be re-
quired to process it. Data stored in ComputeBuffers can be visu-
alized through CommandBuffer.DrawProcedural(...) or Command-
Buffer.DrawProceduralIndirect(...), which maps to the correspond-
ing functions in the supported graphics API. These graphics com-
mands are specific and their executions are controlled by the de-
veloper, allowing more complex rendering algorithms. With Com-
mandBuffers and ComputeBuffers, the only overhead is the draw-call
allocations for each frame. Even so, the resulting overhead is signif-
icantly reduced in comparison to MeshRenderers and MeshFilters.

3.3 Internal Data Structure

UnityPIC conforms to the widely used Potree file format [Sch16].
PotreeConverter [Sch15] is an open-sourced tool that can convert
raw point cloud file formats, such as LAS, LAZ, and PTX, to the
format used by Potree. The Potree file format is an octree with cubic
bounding boxes. A point spacing value is set for the root, and it
is halved for nodes on each subsequent level. The point spacing is
the minimum spacing that must be maintained between any two
points, thus it essentially defines the resolution of the node. Internal
nodes of the octree maintain the point spacing constraint, while
leaf nodes act as buckets, ignoring the constraint. The points for
internal nodes are sampled without replacement using a poisson-disk
sampling method. Therefore, no copies of the points are stored, and
the original point cloud can be retrieved through the union of all the
nodes. The points for each node are stored in their own separate file,
and the meta-data for the hierarchy is stored separately from the
point data file. Rather than storing the meta-data in a single file, it is
partitioned into multiple smaller files that can be loaded on demand.

Potree’s file format addresses the issue of unbounded initial load
time for the hierarchy meta-data. The size of the hierarchy is negligi-
ble compared to the size of the point data, but if the entire hierarchy
is demanded at the start, it can cause significant delay. This format is
currently the most suitable for large point clouds in terms of acces-
sibility and scalability. The main drawback of on-demand hierarchy
loading is the halting of the traversal process due to the loading itself.
IO operations can take longer than one frame (assuming 60 FPS),
and visually, it can be noticeable during erratic and rapid camera
movements. In that case, the inconsistency in the scene convergence
speed can be disruptive to the interactive experience. A potential fix
for this is to load the demanded hierarchy chunk asynchronously
as done in Potree’s work [Sch16]. During traversal, nodes whose
hierarchy requires loading will be skipped. However, doing so can
cause some nodes to be queued for rendering but later can be can-
celled. As the skipped nodes become available for traversal, they
may replace some already loaded but less significant nodes in order
to maximize the utility of the available point budget.

4 UnityPIC: Rendering Pipeline

4.1 Hierarchy Traversal

The hierarchy traversal iteratively adjusts a cut on the octree struc-
ture, where the cut divides the visible and non-visible nodes. The
process starts from the root of the tree and proceeds following a
priority metric. The metric used is the projected area of a node. The
metric only matters in a relative sense so using dps

z is sufficient for
perspective projection, where dps is the point spacing defined in
Potree for each hierarchical level and z is the distance from the node
to the camera along the z-axis. Frustum culling is performed by pro-
jecting its vertices to the viewport and then finding overlap between
the convex hull of the vertices and the viewport. However, this will
only produce accurate results if the vertices don’t fall behind the
near clipping plane. In that case, the bounding-box is cut using the
near clipping plane. The vertices behind the near clipping plane are
discarded, and new vertices are generated along the edges at the
point of intersection with the near clipping plane.

An attention mechanism is simulated by introducing two multi-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

53

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

(a) min-weightxy = 1.0 (uniform weight)

(b) min-weightxy = 0.5

(c) min-weightxy = 0.1

Figure 1. Renderings of a top-down view over city blocks in Manhat-
tan with varying values of min-weightxy, a user defined parameter
that specifies the weight applied to a node’s traversal priority based
on its 2-D projected position.

plicative weights to the node priorities. In immersive 3-D interac-
tions, we assume that the user focuses on the center of the rendering.
Hence, the nodes closer to the center of the rendering are more
heavily weighted. The first weight is computed as:

wxy = 1− (σ

√
x2 + y2)2 (1)

where x,y are screen coordinates ranging from -1 to 1, which are
acquired by projecting the centroid of the node’s bounding-box. σ

is computed based on min-weightxy, a user specified parameter that
specifies the value of the weight when the distance is 1. Thus, the ap-
propriate σ can be computed by substituting wxy and

√
x2 + y2 with

the values min-weightxy and 1, respectively. Figure 1 demonstrates
the effects of different min-weightxy values. It presents a trade-off
between details around the center versus near the edges. It should
be noted that if min-weightxy is too small, the transition between
LODs can become noticeable. In Figure 1c, the transition between
LODs near the boundaries of the image becomes noticeable. The
top-left corner of the orange zoom-box shows a higher resolution,
and a clear diagonal line can be drawn to separate the 2 different
LODs. Setting both parameters to 0.5 works well in practice. Fig-
ure 1b demonstrates min-weightxy = 0.5, where the center of the
rendering is visibly sharper while the transition around the edges
remain smooth.

The second weight is based on the depth of the node so that closer

Figure 2. An example hierarchy is given on the left image. The
middle image shows the rendering results if done without dynamic
batching. The color of the points corresponds to the color of the
node they belong to. The right image shows the rendering results
after dynamic batching is applied.

points are prioritized. It is computed as:

wz = 1− (σz)2 (2)

where z linearly increases from 0 at the near clipping plane to 1 at the
far clipping plane. Another user specified parameter, min-weightz,
specifies the value of the weight at the far clipping plane. The weight
functions are chosen such that the decay of the weight increases as
the distance increases.

4.2 Point Loading: Integration with Dynamic Batching

Point loading involves IO and parsing. The proposed dynamic batch-
ing algorithm is integrated with point loading in order to maximize
cache coherency.

The goal of the dynamic batching scheme is to address the adap-
tive point sizing problem, and the main obstacle to achieving adap-
tive point sizing is that the points within a single node may need to
be rendered with different point sizes. Figure 2 demonstrates this
problem in the 2-D space. The left image presents a hierarchy with 6
nodes. Rendering all the points from the nodes using adaptive point
sizing yields the middle image. Notice that this rendering is difficult
to achieve. For instance, the node that contains the green points
spans 3 different resolutions, and thus the points are required to be
rendered with 3 different point sizes in order to achieve adaptive
point sizing.

The idea behind the dynamic batching scheme is to allow a node
to only render points that belong to its LOD, and delegate the ren-
dering of other points to its descendants. The proposed dynamic
batching algorithm generates, for each node, an augmented point
list which includes the original points that belong to the node, and
additional points inherited from its ancestors. Moving forward, the
following terms are defined for the sake of clarity:

• Original points - The points that belong to a node as defined in
Potree’s file format.

• Inherited points - The points that a node inherits from its parent.
It’s simply all the points from its parent that falls within the node’s
bounds. Note that this includes the points that the parent inherited
from the parent’s parent as well, and so on. This definition is
recursive, and the node essentially inherits points from all of its
ancestors.

• Augmented point list - The list of points including original

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

54

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

points and inherited points. The list is partitioned such that all the
points that belong to the same octant are contiguous.

To see how adaptive point sizing can be achieved with the aug-
mented point list, consider the green and yellow nodes from Fig-
ure 2. Notice how the augmented points of the yellow node already
includes the green points that fall within its bounds. For the yellow
node, all of its augmented points are rendered. For the green node,
only the points in the top two quadrants are rendered. The points
in the bottom right quadrant are rendered by the yellow node, and
the points in the bottom left quadrant are rendered by the other de-
scendants. The right image of Figure 2 shows the rendering results
after dynamic batching. Notice that all the nodes only render with
one point size. The rendering of augmented point lists will be fur-
ther discussed in Section 4.3.1. To summarize, the work of Schütz
et al. [Sch16] computes point sizes on the fly, while the dynamic
batching algorithm acts as a pre-processing step to simplify point
sizing to a per-node basis.

Algorithm 1: Dynamic batching algorithm

1 Function get_octant(p)
2 return the octant that p belongs to;

3 Procedure dynamic_batching(Ap,np,Ao,no)
4 Aaug[0...np +no−1]; // Augmented point list.
5 C[0...7] = 0; // Point counts of each partition.
6 O[0...7] = 0; // Offset of each partition.

7 Compute offsets for each octant and store them in O;

8 for i← 0 to np−1 do
9 q←get_octant(Ap[i]);

10 Aaug[C[q]+O[q]] = Ap[i];
11 C[q] =C[q]+1;
12 end
13 for i← 0 to no−1 do
14 q←get_octant(Ao[i]);
15 Aaug[C[q]+O[q]] = Ao[i];
16 C[q] =C[q]+1;
17 end
18 return Aaug;

Algorithm 1 presents the pseudo-code for the dynamic batching
algorithm. Ap and Ao are the inherited and original points, respec-
tively, and np,no are their respective sizes. Due to the way that
the points are stored, retrieving Ap from the node’s parent doesn’t
require any computations. Lines 8 to 17 copies the points from Ap
and Ao into their respective octant partitions.

Memory Overhead: Memory usage is estimated to increase by
roughly 33%. Consider the fact that point clouds are typically scans
of surfaces, we hypothesize that the number of original points for a
node is roughly 4 times larger than the number of points inherited
from the parent’s original points. Extrapolating this relationship, the
number of original points of a node is roughly 16 times larger than
the number of points inherited from its parent’s parent, and so on.
The approximate size increase of the augmented point list is then:

d

∑
i=1

1
4i ≤

1
3

(3)

Id occupancy visibility inheritance render
1 11101111 01110111 10000001 00000001
2 00110111 11110000 00000111 00000000
3 10101001 11111111 10100001 10100001

Table 1. Additional meta data stored for each node in order to de-
termine the visible points for rendering. The render mask is derived
from the other three.

where d is the hierarchical depth of the node. To assess the signif-
icance of this increase, consider the typical memory usage during
run-time. For instance, 20 million points at 20 bytes per point (12
for position, 4 for color, and 4 for other attributes) takes about 400
MB, and that increases to about 533 MB when using the dynamic
batching scheme. We argue that the increase is acceptable given that
a 20 million point budget is already an overestimate of typical point
budgets used for interactive point cloud rendering.

CPU Overhead: The increased CPU overhead sums up to 2 ad-
ditional iterations over the original and inherited points. Therefore,
given that the number of points is increased by a constant factor,
the running time of point loading remains the same asymptotically,
which is O(n). In practice, this overhead is trivial when compared
to the IO time. Also, the procedure is run in parallel with the appli-
cation’s main thread, thus the application’s rendering performance
is not affected.

4.3 Point Rendering

In Potree’s file format, the original point cloud can be retrieved from
the union of all the nodes. Rendering a scene is simply rendering
the most prioritized nodes that fit within the point budget.

4.3.1 Rendering Augmented Point Lists

With the proposed dynamic batching algorithm, a node can be ex-
cluded if all of its visible points are inherited and rendered. In order
to perform these checks, each node maintains an additional 3 bytes
of meta-data, with each byte containing information that pertains to
the eight octants:

• The occupancy mask specifies occupancy of the octants within
each node. If at least one point fall within the octant, the bit is set
to 1, otherwise it is 0.

• The visibility mask maintains the visibility of its octants. Visible
octants have their bits set to 1.

• The inheritance mask specifies the points that have been inher-
ited. Points within an octant are inherited when that child node is
loaded for rendering. If the points within the octant are inherited,
the bit is set to 0. The inheritance mask is initialized with the oc-
cupancy mask and updated when the children nodes are rendered
or removed.

Table 1 showcases an example of the meta-data. Looking at the
render mask, node 1 has one octant rendered, node 2 is excluded
from rendering, and node 3 has three octants rendered. Each octant
is mapped to a specific bit, consistent with Potree’s standard. The
render mask encapsulates the rendering information and is computed

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

55

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

(a) Paraboloids with 300 million points

(b) Paraboloids, increasing LOD

(c) High-Quality Blending with 300 million points

(d) High-Quality Blending, increasing LOD

Figure 3. A rendered scene from the Dublin city data-set. Figure 3a
and Figure 3c show the difference in quality between paraboloids
and high-quality blending. Figure 3b shows that the rendering qual-
ity may stop improving despite higher LOD when using paraboloids.
Figure 3d shows that high-quality blending consistently improves
upon higher LOD.

as:

render = visibility ∧ inheritance (4)

A node is rendered if render 6= 0, but only the points from octants
with a 1-bit are rendered. The 1-bits indicate visible but un-inherited
octants. Note that only one draw-call is allocated for each node,
not one for every visible octant. Doing so causes the vertex shader
to process every point, but the points that belong to non-visible
octants are dropped by outputting no geometry from the geometry
shader. Rendering augmented points causes increased vertex shader
and geometry shader calls. However, the performance impact is
small given that fragment shaders occupy significantly more GPU
bandwidth, and the number of fragment operations remain the same
since redundant points are dropped in the geometry shader.

4.3.2 Point Splatting Technique

The interpolation method from Schütz et al. [Sch16] and high-quality
blending from Botsch et al. [BHZK05] were implemented and tested
with UnityPIC. While interpolation can resolve overlapping points
and achieve results that resemble a Voronoi diagram when the ren-

dered surface is perpendicular to the camera, it remains disadvan-
taged as the method doesn’t permit sub-pixel representation. As a
result, interpolation is incapable of leveraging larger point budgets
to create more detailed renderings.

Figure 3 showcases the difference in quality between interpolation
and high-quality blending. As shown in Figure 3a, despite having a
point budget of 300 million points, interpolation with paraboloids
was unable to obtain good visual quality. Surfaces appear noisy
and edges are unrefined. Figure 3b shows the center part of the
scene rendered in increasing LODs. Upon reaching sub-pixel point
sizes, further increasing the LOD yields no visual improvement. On
the other hand, Figure 3c and Figure 3d shows that high-quality
blending has a higher capacity for more detailed renderings. The
rendering from the 300 million point budget produced noise-less
surfaces, and the edges are sharper and smoother in comparison.
Similarly, the increasing LODs show continuous refinements. As
an important note, the visual differences between the interpolation
method and high-quality blending are further amplified during inter-
action. The aliasing in the interpolation method results in frequent
flickering, and far-away objects appear as silhouettes of white noise.
In summary, high-quality blending contains a higher capacity for
visual quality. Section 5.1 further explores the capacity difference
and characteristics of high-quality blending empirically.

Adaptive Blend Depth: High-quality blending is parameterized
by the blend depth value. If the blend depth is too small, aliasing
will persist. If the blend depth is too large, the occluded parts of a
scene may appear on the occluding surface. The base scaling for
UnityPIC uses a factor that scales with linear-depth. However, as the
blend depth approaches 0 at the near clipping plane, nearby points
may not benefit from the blending. To account for nearby points,
we leverage the point density information embedded in Potree. In
addition to the linear-depth scaling, the radius of the point, which is
set to the point spacing, is used as a constant that offsets the blend
depth. Conceptually, this can be visualized as the point overlapping
with the linear-depth map in 3-D space. The final blend depth is
defined as:

blend-depth = radius + factor ∗ linear-depth (5)

4.3.3 Delayed Expansion & Occlusion Culling

The main bottle-neck for GPU performance is the rasterization and
fragment shader cost. In the case of point cloud rendering, each
vertex is transformed into two triangles using the geometry shader,
resulting in a large number of fragment operations. Furthermore, due
to the lack of effective occlusion culling methods for point clouds,
over-draw is inevitable on say, a consumer-grade display with a full-
HD resolution (~2 million pixels) with a 5 million point budget. We
present an approximate rendering algorithm which delays any non-
trivial rasterization until all occlusions are resolved. The algorithm
yields a significant boost in GPU performance while sacrificing
minimal rendering accuracy.

Algorithm: The approximate rendering algorithm consists of two
passes: a point to-pixel pass and an expansion pass. The point to-
pixel pass renders the points as single pixels to the a high dynamic
range (HDR) texture. For each point, its clip space position, radius,
color, and depth are outputted to the target texture at the projected
pixel location of the point center. The resulting graphics buffer con-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

56

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

Figure 4. Tradition point cloud rendering pass (left) versus two pass
delayed expansion rendering (right).

tains the attributes of front-most point for each pixel. Notice that the
geometry shader is not necessary for this pass. The expansion pass
then treats each pixel as a point and performs a normal rendering
pass. Figure 4 illustrates the delayed expansion process in compar-
ison to a traditional rendering pass. The clip space positions are
required to prevent noticeable snapping during interaction. Without
it, the expansion pass can only assume the center of the pixel to be
the position of the point. The snapping between pixels is noticeable,
especially when a point moves diagonally on the 2-D screen, where
it is perceived to move in a staircase fashion instead. A collective
of points exhibiting this behaviour looks noisy. Also, the intra-pixel
position of a point can influence its rasterization results.

Performance: The point-to-pixel pass executes less graphics
operations than a traditional point cloud rendering pass. First, the
geometry shader is omitted since points are rendered as pixels. Sec-
ond, the number of fragment operations is the same as the number of
points. On the contrary, for a traditional point cloud rendering pass,
the number of fragment operations is typically several times that.
Furthermore, algorithms such as high-quality blending recommends
a minimum point size of 2x2 pixels, in which case the number of
fragment operations is at least 4 times that of the point-to-pixel pass.
On the other hand, the expansion pass renders up to as many points
as the number of pixels on the target resolution. The amount of work
done in this pass is independent from the number of points rendered.
Although delayed expansion incurs an overhead from the expansion
pass, the cost saving from the point-to-pixel pass is expected to over-
come it. Also, notice that the cost of the expansion pass becomes
less significant as the number of points increases, which means that
the percentage of performance gain increases along with it.

Visual Loss: A visual loss is incurred due to the approximation
errors. Figure 5 illustrates the 2 types of potential errors: occlusion
error (left), and intra-pixel error (right). When a point with a smaller
projected size occludes a point with a larger projected size. Any
information beyond the projected size of the point in the front is
lost. On the right, intra-pixel positions are disregarded, and slight
differences in intra-pixel position can affect rasterization. Note that
the occlusion error is only relevant when using adaptive point sizing.
When the point size is static, more distant points are guaranteed to
have a smaller projected size. For the intra-pixel error, when the
projected points are the same size, the maximum offset is 1 pixel.

Figure 5. Occlusion error (left) occurs when a point with a smaller
projected radius occludes a point with a larger projected radius, in
which case only the point in the front is rendered. Intra-pixel error
(right) occurs when rasterization is slightly different between points
that render to the same pixel.

From Figure 4, the generated frame using delayed expansion has
more holes due to the intra-pixel error. One potential fix for this is
to have slightly higher point sizes.

5 Experiments & Analysis

The experiments are performed on Windows (Intel(R) Core(TM)
i9-9900K CPU @ 3.60GHz; 64GB RAM; NVIDIA Titan XP). The
data is stored on a hard disk drive (HDD) The point clouds used
are from 2015 Aerial Laser and Photogrammetry Survey of Dublin
City [LAV∗17] and 2017 New York City Topobathymetric LiDAR
Data [Cor17]. The Dublin City data-set contains 1.4 billion points
(18.5 GB), and the NYC data-set contains 22.8 billion points (297
GB). Both data-sets contain only intensity values and no colors. All
metrics of rendering quality will be based on intensity values.

Configurations: All renderings are done on FHD resolution
(1920x1080). The minimum point size is set to 2 x 2 pixels, as
recommended by [BHZK05] to facilitate sufficient blending, and
maximum point size is set to 24 x 24 pixels. The blend depth factor
is set to 0.01, which scales well with both data-sets. The maxi-
mum CPU-to-GPU transfer rate is set to 400,000 points per frame.
min-weightxy and min-weightz are both set to 0.5 for the traversal
process.

Intensity Normalization: Unlike color, the range and magni-
tude of intensity values may vary across data-sets. Normalization is
required in order for standardized comparison as well as visualiza-
tion. To normalize the intensity values, a dynamic range is calculated
based on the points in the current scene, and then the values in the
range are mapped uniformly to [0,1]. Specifically, first a local dy-
namic range is computed per node, and then the global range is
derived as a weighted average of the ranges, where the weight is
the number of points in the node. For each node, we assume the
distribution of the intensity values to be normal, and the minimum
and maximum are taken as two standard deviations to the left and
right of the mean, respectively. Based on normal distribution, 4% of
the points on the tail ends are expected to saturate.

Metric: In order to measure the interactive visual quality, the
interactive renderings for each technique are compared against a 300
million point budget baseline rendered with the respective technique.
The similarity metric is the mean pixel error, as

1
hw

h

∑
i=0

w

∑
j=0
|Bi j−Ri j| (6)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

57

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

(a) Dublin City (b) NYC

Figure 6. The convergence of the mean pixel error towards the high
resolution baseline.

where h and w are the width and height of the image, and Bi j and
Ri j are the pixel values in the ith row and jth column of the baseline
and the interactively rendered image being measured, respectively.

Metric Justification and Significance: The metric relies on an
important assumption. It assumes that the baseline, which is ren-
dered with a significantly higher point budget, is indeed of higher
resolution and visual quality. To avoid confusions, we emphasize
that a separate baseline is generated for each point splatting tech-
nique, and that the interactive renderings for each point splatting
technique is compared with their own respective baseline. As there
is no objective metric that determines the quality difference between
different rendering techniques, the quality difference can be ob-
served visually as in Figure 6. However, this does not impact the
significance of our experiments as we intend to measure how well
the interactive renderings can approach their higher quality baseline.
The results are independent across different rendering techniques.
Finally, it is important to note that mean pixel error does not mea-
sure noisiness of the renderings during interaction, since the mean
pixel error does not implicate any relationship between neighboring
frames.

5.1 High-Quality Blending: Visual Capacity

To further explore the capacity and efficiency of high-quality blend-
ing, the convergence towards the high quality baseline is observed.
Figure 6 plots the convergence from a 10 million point budget
towards the 300 million point budget baseline. For the sake of com-
parison, the results using the interpolation method are also included.
As expected, the interpolation method starts from a higher mean
pixel error and maintains a more linear descent towards its base-
line. This implies that 1) the baseline is less sufficiently represented
with a low number of points, and 2) the points added later in the
convergence are creating more pixel changes. The convergence of
high-quality blending exhibits more desirable behaviour. The 300
million point baseline can be represented with less than 10% error
using 10 million points. Over the course of the convergence, new
points are added on the basis of contribution rather than replacement,
thus explaining the slow down in its convergence.

5.2 Dynamic Batching: Memory Usage

The dynamic batching scheme results in increased memory usage
due to the redundancy of storing points in multiple LODs. An ex-

(a) Point Counts, 10 Mil (b) Point Counts, 30 Mil

Figure 7. Plotted results from a camera sequence in the Dublin data-
set with point budget set to 10 million and 30 million. A moving
average is computed for the sake of visualization.

(a) Approximation Error (b) FPS Difference

Figure 8. Figure 8a shows the error for delayed expansion when
compared against the original. Figure 8b shows the FPS gain as a
result of delayed expansion.

periment is performed to empirically confirm the percent increase
using the Dublin City data-set. A camera path is used and the origi-
nal point counts and augmented point counts are captured for each
frame. Figure 7 shows the percent of increase for 10 million and 30
million points. The increase remains approximately within the range
of 33% to 36% for the 10 million, and increases to approximately
35% to 38% for the 30 million. The results shown here are consistent
with the hypothesis in Section 4.2.

5.3 Delayed Expansion: Performance Gain & Visual Loss

The potential sources of error for delayed expansion as mentioned
in Section 4.3.3 are studied empirically, with high-quality blending
as the point splatting technique. Figure 8a measures the rendering’s
deviation from the original after integrating delayed expansion. The
mean pixel error ranges from about 1.0 (0.4%) at 2 million points
to about 7.2 (2.8%) at 100 million points. The rate of increase in
the error decreases with respect to the point count. It converges
after 40 million points and hovers around 7.2. This is justified when
considering that the occlusion error is unlikely to occur due to
additional points being far away, and the intra-pixel error is bounded
for each pixel and thus constant overall.

The effectiveness of delayed expansion is contingent on a rea-
sonable trade-off between visual quality and GPU performance
gain. Figure 8b presents the GPU performance gain after integration.
Contrarily to its accumulated error, the performance gain scales
positively with the increase in point count, which is consistent with
the analysis in Section 4.3.3. Even at 2 million points, there is still a

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

58

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

(a) Top-down View

(b) Grazing View

Figure 9. For each view, from left to right: 1) scene visual, 2) differ-
ence image using 10 million point budget, and 3) difference image
using 20 million point budget. The images being compared are not
shown due to them being nearly identical. The scene visual is in-
cluded as a visual aid for the analysis of the difference images. The
difference images are generated using FLIP [ANA∗20].

visible performance gain of 19%. The FPS is 75% higher at 10 mil-
lion points and 130% higher at 20 million points. With a 100 million
point budget, the rendering algorithm still maintains an interactive
FPS of 23 FPS.

As a global indicator, mean pixel error doesn’t give any insight
into how the errors manifest in different scenarios. A difference eval-
uator for alternating images, FLIP [ANA∗20], is used to visualize
and analyze the local errors. Figure 9 shows the generated difference
images. A top-down view is compared in Figure 9a. The difference
image shows that the errors are subtle but spreads across the entire
view relatively uniformly. The grazing view in Figure 9b shows
errors being concentrated at the far-away points. And the nearby
points appear less erroneous, as they are sparse in comparison. In
general, the difference images with the 20 million point budget ex-
hibits more errors. This concludes that the occurrences of the errors
are positively correlated with the amount of occlusion.

5.4 Interactive Performance

For the experiments, a single camera path is used and two camera
sequences are captured: one for the baseline and the other for the
interaction. The camera path is captured at 90 FPS. The frames
for the baseline are generated by rendering until either when: the
300 million point budget is reached, or all the visible points are
rendered. The frames of the interaction sequence are captured at the
end of the frame regardless of the point count. Note that capturing
the frame uses up a portion of the CPU and GPU bandwidth, so
the FPS for the interaction sequence may be slightly lower than in
practice. As a result, frames are dropped occasionally to synchronize
with the captured camera path. The statistics for the skipped frames
are derived through linear interpolation. Due to the relatively high
point budgets used (10 & 20 million), only the high quality blending
technique is used, as we have previously concluded that interpolation
with paraboloids is insufficient when rendering a large number of
points.

Interactive Visual Quality: Figure 10a and Figure 10d displays

the interactive visual quality for a 10 million and 20 million point
budget. For the most part, the mean pixel error is maintained below
25, suggesting that above 90% of the visual quality is preserved.
The upward spikes correspond to fast rotations and accelerated
movements (5x) of the camera. The drop in visual quality could be
caused by two main reasons: the delayed adjustment of the point
sizes due to the asynchronous traversal thread, and the IO bottle-
neck. Incorrect point sizes can only occur when the traversal thread
is busy performing work from the previous frame. The IO bottle-
neck leaves a portion of the point budget unused and thus the drop
in quality. The valleys correspond to instances where the camera
moves into a closer up view of the point cloud. Smaller area of
focus suggests that the total number of visible points is smaller,
leading to the 300 million point budget to be under-utilized, and
thus generating a more attainable baseline. Delayed expansion with
high-quality blending is slightly worse in quality than normal high-
quality blending, as expected. The mean pixel error worsens when
the point budget is increased to 20 million points. However, as
shown in Figure 8, the error converges and is relatively small.

Point Counts: The locations where an IO bottle-neck is en-
countered can be identified by examining the drops in point counts
through out the camera path. Figure 10b and Figure 10e plots the
point counts per frame. The drops in point count correspond directly
to rapid camera movements, in which the points exit the scene at
a rate faster than they’re loaded. Interestingly, delayed expansion
allows the interaction sequence to maintain a slightly better point
count. The differences are more apparent with the 20 million point
budget. We suspect that it is due to its better GPU performance. The
increased FPS results in less camera positions being dropped and
allows the main thread to synchronize more closely with the traver-
sal thread. More camera positions being dropped leads to greater
changes during camera updates, to a greater number of points being
added or removed. For the 10 million point budget, such differences
are less likely as both rendering methods are able to maintain an
FPS above 90.

FPS: The FPS statistic is necessary to gain a more in-depth un-
derstanding of the interactive performance. It is easy to maintain
an interactive FPS by adjusting various aspects of the rendering
pipeline, such as the point budget and CPU-to-GPU transfer rate.
However, doing so sacrifices interactive visual quality. Figure 10c
and Figure 10f plots the FPS for the same camera paths as the
previous two. A moving average is taken to smooth the plot. Evi-
dently, the integration with delayed expansion yields a significant
performance boost.

In summary, the proposed pipeline maintains above 90 FPS for
a 20 million point budget while achieving greater than 90% visual
quality during interaction. As a final note, it is necessary to empha-
size the significance of delayed expansion. The addition of delayed
expansion allowed the pipeline to render 20 million points at a
higher FPS than the traditional method at 10 million points.

6 Conclusion

The proposed large point cloud rendering pipeline, UnityPIC, is
an standalone module with the goal of accelerating the point cloud
application development process. While doing so, it improves per-
formance to maintain scalability in its extension to a wide variety of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

59

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

(a) Interactive Visual Quality, Dublin City (b) Point Count, Dublin City (c) FPS, Dublin City

(d) Interactive Visual Quality, NYC (e) Point Count, NYC (f) FPS, NYC

Figure 10. Interactive performance for the Dublin City and NYC data-sets.

point cloud applications with various other processing requirements.
To ensure good visual quality, a dynamic batching algorithm is pro-
posed to address the adaptive point size problem. GPU performance
is improved significantly through the delayed expansion rendering
algorithm. Although its potential is limited in out-of-core point
cloud rendering due to the IO bottle-neck, the FPS gain is signifi-
cant for practical point budgets, as shown empirically. Finally, the
performance of the proposed pipeline is justified by a quantitative
methodology of assessing interactive performance.

7 Acknowledgements

The research is supported in part by the National Science Foundation
Awards #1827505 and #1737533, and Alfred P. Sloan Foundation
Award G-2018-11069. Additional support is provided by Air Force
Office for Scientific Research (Award #FA9550-21-1-0082), the In-
telligence Community Center of Academic Excellence (IC CAE) at
Rutgers University (Awards #HHM402-19-1-0003 and #HHM402-
18-1-0007), and Vingroup Innovation Award VINIF.2019.20.

References
[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-

KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3, 2 (2020), 15:1–15:23. 9

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M., KOBBELT L.:
High-quality surface splatting on today’s GPUs. In Proceedings of the
Second Eurographics / IEEE VGTC Conference on Point-Based Graphics

(Goslar, DEU, 2005), SPBG’05, Eurographics Association, p. 17–24. 2,
6, 7

[CLF∗20] CHEN S., LIU B., FENG C., VALLESPI-GONZALEZ C.,
WELLINGTON C.: 3D point cloud processing and learning for au-
tonomous driving, 2020. arXiv:2003.00601. 1

[Cor17] CORVALLIS Q.: Nyc topobathymetric data, 2017. URL: https:
//gis.ny.gov/elevation/NYC-topobathymetric-DEM.htm. 7

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER M.: Se-
quential point trees. ACM Trans. Graph. 22, 3 (July 2003), 657–662.
URL: https://doi.org/10.1145/882262.882321, doi:10.1145/
882262.882321. 2

[Far14] FARIAS R.: POINT CLOUD RENDERING USING JUMP
FLOODING. PhD thesis, 07 2014. 2

[FGKG15] FERNANDEZ-GALARRETA J., KERLE N., GERKE M.: Uav-
based urban structural damage assessment using object-based image anal-
ysis and semantic reasoning. Natural Hazards and Earth System Sciences
15 (06 2015), 1087–1101. doi:10.5194/nhess-15-1087-2015. 1

[Fra17] FRAISS S. M.: Rendering large point clouds in unity, Sept. 2017.
URL: https://www.cg.tuwien.ac.at/research/publications/
2017/FRAISS-2017-PCU/. 2

[GM04] GOBBETTI E., MARTON F.: Layered point clouds: A simple
and efficient multiresolution structure for distributing and rendering
gigantic point-sampled models. Comput. Graph. 28, 6 (Dec. 2004),
815–826. URL: https://doi.org/10.1016/j.cag.2004.08.010,
doi:10.1016/j.cag.2004.08.010. 2

[LAV∗17] LAEFER D. F., ABUWARDA S., VO A.-V., TRUONG-HONG L.,
GHARIBI H.: 2015 aerial laser and photogrammetry datasets for dublin,
ireland’s city center, 2017. URL: https://geo.nyu.edu/catalog/
nyu-2451-38684, doi:10.17609/N8MQ0N. 7

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

60

http://arxiv.org/abs/2003.00601
https://gis.ny.gov/elevation/NYC-topobathymetric-DEM.htm
https://gis.ny.gov/elevation/NYC-topobathymetric-DEM.htm
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.5194/nhess-15-1087-2015
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010
https://geo.nyu.edu/catalog/nyu-2451-38684
https://geo.nyu.edu/catalog/nyu-2451-38684
https://doi.org/10.17609/N8MQ0N

Y. Wu, H. Vo, J. Gong, & Z. Zhu / UnityPIC

[Mic16] MICROSOFT: Mixed reality toolkit. https://github.com/
microsoft/MixedRealityToolkit-Unity, 2016. 2

[MTRGGA∗11] MANCERA-TABOADA J., RODRÍGUEZ-GONZÁLVEZ P.,
GONZÁLEZ-AGUILERA D., FINAT J., ALONSO J. I., FERNANDEZ J.,
MARTÍNEZ-RUBIO J., MARTÍNEZ R.: From the point cloud to virtual
and augmented reality: Digital accessibility for disabled people in san
martin’s church (segovia) and its surroundings. vol. 6783, pp. 303–317.
doi:10.1007/978-3-642-21887-3_24. 1

[PSL05] PAJAROLA R., SAINZ M., LARIO R.: Xsplat: External memory
multiresolution point visualization. Proceedings of the 5th IASTED In-
ternational Conference on Visualization, Imaging, and Image Processing,
VIIP 2005 (09 2005), 628–633. doi:10.5167/uzh-47730. 2

[RCB19] RAHAMAN H., CHAMPION E., BEKELE M.: From photo to
3d to mixed reality: A complete workflow for cultural heritage visualisa-
tion and experience. Digital Applications in Archaeology and Cultural
Heritage 13 (05 2019). doi:10.1016/j.daach.2019.e00102. 1

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Techniques
(USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing
Co., p. 343–352. URL: https://doi.org/10.1145/344779.344940,
doi:10.1145/344779.344940. 2

[RT06] RONG G., TAN T.-S.: Jump flooding in gpu with applica-
tions to Voronoi diagram and distance transform. In Proceedings of
the 2006 Symposium on Interactive 3D Graphics and Games (New
York, NY, USA, 2006), I3D ’06, Association for Computing Machinery,
p. 109–116. URL: https://doi.org/10.1145/1111411.1111431,
doi:10.1145/1111411.1111431. 2

[Sch14] SCHEIBLAUER C.: Interactions with Gigantic Point Clouds.
PhD thesis, Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna,
Austria, 2014. URL: https://www.cg.tuwien.ac.at/research/
publications/2014/scheiblauer-thesis/. 2

[Sch15] SCHÜTZ M.: Potreeconverter. https://github.com/potree/
PotreeConverter, 2015. 3

[Sch16] SCHÜTZ M.: Potree: Rendering Large Point Clouds in Web
Browsers. Master’s thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Favoritenstrasse 9-11/E193-02, A-1040
Vienna, Austria, Sept. 2016. URL: https://www.cg.tuwien.ac.at/
research/publications/2016/SCHUETZ-2016-POT/. 2, 3, 5, 6

[SKW19] SCHÜTZ M., KRÖSL K., WIMMER M.: Real-time continuous
level of detail rendering of point clouds. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR) (2019), pp. 103–110. 2

[SMOW20] SCHÜTZ M., MANDLBURGER G., OTEPKA J., WIM-
MER M.: Progressive real-time rendering of one billion points
without hierarchical acceleration structures. Computer Graphics
Forum 39, 2 (2020), 51–64. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.13911, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911,
doi:https://doi.org/10.1111/cgf.13911. 2

[SNTO19] SANTANA NÚÑEZ J. M., TRUJILLO A., ORTEGA S.: Visual-
ization of Large Point Cloud in Unity. In Eurographics 2019 - Posters
(2019), Fusiello A., Bimber O., (Eds.), The Eurographics Association.
doi:10.2312/egp.20191050. 2

[SPL04] SAINZ M., PAJAROLA R., LARIO R.: Points Reloaded: Point-
Based Rendering Revisited. In SPBG’04 Symposium on Point - Based
Graphics 2004 (2004), Gross M., Pfister H., Alexa M., Rusinkiewicz S.,
(Eds.), The Eurographics Association. doi:10.2312/SPBG/SPBG04/
121-128. 2

[SSCG17] STETS J. D., SUN Y., CORNING W., GREENWALD S. W.:
Visualization and labeling of point clouds in virtual reality. In SIGGRAPH
Asia 2017 Posters (New York, NY, USA, 2017), SA ’17, Association for
Computing Machinery. URL: https://doi.org/10.1145/3145690.
3145729, doi:10.1145/3145690.3145729. 2

[SW11] SCHEIBLAUER C., WIMMER M.: Out-of-core selec-
tion and editing of huge point clouds. Computers Graph-
ics 35, 2 (2011), 342 – 351. Virtual Reality in Brazil Vi-
sual Computing in Biology and Medicine Semantic 3D media and
content Cultural Heritage. URL: http://www.sciencedirect.
com/science/article/pii/S0097849311000057, doi:https://
doi.org/10.1016/j.cag.2011.01.004. 2

[UDGGR20] URECH P. R., DISSEGNA M. A., GIROT C., GRÊT-
REGAMEY A.: Point cloud modeling as a bridge between
landscape design and planning. Landscape and Urban Plan-
ning 203 (2020), 103903. URL: http://www.sciencedirect.
com/science/article/pii/S0169204619316536, doi:https://
doi.org/10.1016/j.landurbplan.2020.103903. 1

[WS06] WIMMER M., SCHEIBLAUER C.: Instant points: Fast rendering of
unprocessed point clouds. pp. 129–136. doi:10.2312/SPBG/SPBG06/
129-136. 2

[ZWW∗20] ZHAO Y., WU B., WU J., SHU S., LIANG H., LIU
M., BADENKO V., FEDOTOV A., YAO S., YU B.: Mapping 3D
visibility in an urban street environment from mobile lidar point
clouds. GIScience & Remote Sensing 57, 6 (2020), 797–812.
URL: https://doi.org/10.1080/15481603.2020.1804248,
arXiv:https://doi.org/10.1080/15481603.2020.1804248,
doi:10.1080/15481603.2020.1804248. 1

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

61

https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity
https://doi.org/10.1007/978-3-642-21887-3_24
https://doi.org/10.5167/uzh-47730
https://doi.org/10.1016/j.daach.2019.e00102
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/1111411.1111431
https://doi.org/10.1145/1111411.1111431
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://github.com/potree/PotreeConverter
https://github.com/potree/PotreeConverter
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13911
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13911
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911
https://doi.org/https://doi.org/10.1111/cgf.13911
https://doi.org/10.2312/egp.20191050
https://doi.org/10.2312/SPBG/SPBG04/121-128
https://doi.org/10.2312/SPBG/SPBG04/121-128
https://doi.org/10.1145/3145690.3145729
https://doi.org/10.1145/3145690.3145729
https://doi.org/10.1145/3145690.3145729
http://www.sciencedirect.com/science/article/pii/S0097849311000057
http://www.sciencedirect.com/science/article/pii/S0097849311000057
https://doi.org/https://doi.org/10.1016/j.cag.2011.01.004
https://doi.org/https://doi.org/10.1016/j.cag.2011.01.004
http://www.sciencedirect.com/science/article/pii/S0169204619316536
http://www.sciencedirect.com/science/article/pii/S0169204619316536
https://doi.org/https://doi.org/10.1016/j.landurbplan.2020.103903
https://doi.org/https://doi.org/10.1016/j.landurbplan.2020.103903
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.1080/15481603.2020.1804248
http://arxiv.org/abs/https://doi.org/10.1080/15481603.2020.1804248
https://doi.org/10.1080/15481603.2020.1804248

