
Eurographics Symposium on Parallel Graphics and Visualization (2019)
H. Childs, S. Frey (Editors)

Statistical Analysis of Parallel Data Uploading using OpenGL

M. Wiedemann1,2 and D.Kranzlmüller2,1

1Leibniz Supercomputing Centre, Bavarian Academy of Sciences, Germany
2MNM-Team, Ludwig-Maximilians-Universität, Germany

Abstract
Modern real-time visualizations of large-scale datasets require constant high frame rates while their datasets might exceed
the available graphics memory. This requires sophisticated upload strategies from host memory to the memory of the graphics
cards. A possible solution uses outsourcing of all data uploads onto concurrent threads and disconnecting prohibitive
data dependencies. OpenGL provides a variety of functions and parameters but not all allow minimal interference on
rendering. In this work, we present a thorough and statistically sound analysis of various effects introduced by choosing
different input parameters, such as size, partitioning and number of threads for uploading, as well as combinations of buffer
usage hints and uploading functions. This approach provides insight into the problem and offers a basis for future optimizations.

CCS Concepts
• Computing methodologies → Model development and analysis; Computer graphics; Parallel algorithms;

1. Introduction

Graphics and visualisation require powerful hardware to deliver
sufficiently good output for the users’ needs. Thanks to ongoing
development of graphics hardware driven by the entertainment in-
dustry, prices dropped and capabilities increased. This results in
even more powerful graphics hardware with interesting features
for rendering. Areas such as scientific visualization benefit from
these possibilities by being able to visualize bigger datasets with
more detail using commodity hardware. At the same time, target
data sets from simulations and Big Data analytics grow even bigger
and bigger. Yet, the increased amounts of data handled by graph-
ics card still need to adhere to the imperative of hard deadlines
for rendering, e.g. rendering individual frames in less than 16.7ms
to achieve 60Hz frame refresh rates, to enable smooth interactions
and to avoid cybersickness caused by lag. This disparity of grow-
ing datasets and hard real-time requirements calls for sophisticated
approaches in visualization software.
One idea is to limit the amount of data needed for rendering. In
most scenarios for visualizing large-scale datasets, not all data
points need to be rendered in every frame. Consequently, the
datasets can be partitioned by several criteria, eg. time or loca-
tion dependent. This is especially important when considering that
graphics card memory is only upgradeable by replacing the whole
card. In the context of having datasets that do not fit completely
into graphics memory and using partitioning, one must be able to
exchange parts of the datasets on the fly. Our goal is to minimize the
impact of this exchange on the rendering process by utilizing copy
engines and parallel uploading strategies. In order to accomplish
this, we developed a framework that disconnects data dependen-

cies between rendering and uploading and to utilize parallel threads
to concurrently upload data onto the graphics card. Building upon
this, we are able to measure the impact of various input parame-
ters on rendering and uploading, individually and in combination.
To be able to minimize impact on rendering, we perform a thor-
ough analysis and identify key parameters that can be used to fine
tune uploading and can have a great impact on performance. This
work provides a scientific foundation to the question of parallel
data transfers in order to avoid relying on guidelines and estimates
that are usually given (and "proven" by small experiments) in the
computer graphics community.

The rest of this paper is organised as follows. Section 2 gives an
overview on related work. Section 3 details our general framework
and the evaluated input space. The methodology and statistical ba-
sis of our evaluation as well as the experimental setup is described
in Section 4, followed by the presentation of its results in Section
5. Conclusions summarize our paper in Section 6.

2. Related Work

Visualisation of large-scale datasets need methods for partitioning
the data in order to render it at high frame-rates. One possibil-
ity is to have certain Level-Of-Details (LODs), where each level
represents different resolutions, i.e. how many triangles, of a mesh
model. Having discrete LODs might introduce situations where one
wants to exchange different LODs on the fly based on some evalu-
ation function, e.g. [GKM93] or [FS93].
For large-scale datasets, a lot of work has been done for render-
ing large terrain datasets, e.g. [Paj98], [Hop98] , [LP02], [SW06],

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/pgv.20191114 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-3366-0537
https://orcid.org/0000-0002-8319-0123
https://doi.org/10.2312/pgv.20191114


M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

[PG07]. [Joy09] gives a great overview on various techniques for
visualising large-scale datasets.
There are several preliminary works that address host-device up-
loading strategies. Grottel et al. [GRE09] investigated four differ-
ent methods using OpenGL to upload data from main memory to
graphics card memory. Their evaluation gives the time needed for
both rendering and uploading together and error bars that symbol-
ize the variation of their measurements. Hrabcak and Masserann
in the book OpenGL insights [HM12], show different strategies
for host-device uploading and evaluate them with multi-threaded
OpenGL. Their evaluation as well includes the mean time needed
for both rendering and uploading and furthermore the mean impact
on using multiple OpenGL contexts. Falk et al. [FGKR16] further
investigated data uploading strategies of [GRE09]. They include in
their evaluation the use of the newer OpenGL concept of buffer
storages and asynchronous data transfers and give in their evalua-
tion times needed for both rendering and upload. While all of those
works give a great overview on the average impact on rendering, we
want to deepen this analysis to give a more detailed view on what
the key factors are and how they apply on rendering and upload-
ing individually. Gómez-Luna et al. [GLiGLBG12] analyse CUDA
streams and derive through benchmarking an analytical model to
predict how many streams should be used depending on kernel
execution and data transfer times. They verify their model using
(adapted) example programs from the CUDA SDK. [FAN∗13] re-
searched different strategies for plain uploading of data using cuda
and the open source driver for nvidia graphics cards. In their evalu-
ation of different sized packages to be uploaded they could identify
that either using DMA engines or directly writing to / reading from
PCIe-address spaces proves to give the best performance, depend-
ing on the scenario. Van Werkhoven et al. [WMSB14] extend the
approach of Gómez-Luna et al. to a more sophisticated analytical
model for newer graphic cards.
Hoefler and Belli [HB15] give an extensive guide on how bench-
marks of execution times on parallel systems should be designed
and analysed. They focus on the high-performance computing field,
but this work can easily be applied to heterogeneous applications,
as it is the case for this work. Therefore, we follow their lead and
designed our analysis of different OpenGL functions for parallel
uploading data while rendering to adhere to statistical practises.
This also constitutes our contribution to the topic. As most com-
puter tasks are subject to random noise, introduced by various ef-
fects ranging from system interrupts to passive cooling techniques,
every measurement/benchmark is also subject to this random noise
and needs to be analysed in a statistical sound way. Therefore, we
present in this work a robust statistical analysis of parallel upload-
ing methods using OpenGL. Our goal is to give a detailed view
whether or not the different input parameters influence rendering
and uploading times, each individually and in combination. From
this, further research can be conducted that gives a detailed view on
how those parameters change performance for different scenarios.

3. Concept

There exists a wide range of possibilities how rendering and up-
loading times can be prioritised for 3d graphic applications. Exam-
ple requirements for parallel uploading data while rendering might
be:

(1) Lowest rendering times, uploading times irrelevant
(2) Lowest uploading times, rendering times irrelevant
(3) Lowest combination of uploading and rendering times
(4) Lowest deviation in rendering times (predictable delay)
(5) Lowest deviation in uploading times (predictable delay)
(6) Lowest deviation in combination of rendering and uploading

times (predictable delay)

This list shows boundary conditions on the vast possibilities that
can constitue the inputs space. Gradual weights that fine tune prior-
ities between the listed requirements are as well imaginable which
inflate the input space enormously. Based on this list we imple-
mented our own OpenGL based rendering framework that allows
us to work with multiple threads for uploading data while render-
ing. This framework will be described in the following subsection.
After that, we discuss the different input parameters whose impact
will be analysed in this work.

3.1. Framework

In this work we want to analyse the influence of different input
parameters on concurrent data uploading while rendering. For that
we implemented a software framework that allows us to measure
the times needed for rendering and uploading without one waiting
for the other. To accomplish this, the framework is build around to
the following requirements:

1. Rendering of arbitrary datasets (using rasterization approaches)
2. Upload in concurrent threads
3. Disconnect dependencies between rendering and uploading
4. Capability to vary the number of uploading threads
5. Exchange of functions used for uploading

To implement those requirements, the framework itself is structured
in four different tasks that are each implemented using their own
threads: Rendering, interface, preparation and uploading.

3.1.0.1. Rendering The rendering task renders the objects that
are already present in graphics memory. When an upload of a newer
object is finished, this worker uses them for the next frame and
deletes the replaced objects.

3.1.0.2. Interface The interface task is for checking if any object
needs to be updated, in other words, if a new time step (or LOD) is
needed. For that it iterates over the rendered objects and extracts all
necessary information for uploading and puts it into an uploading
queue. This queue is designed to be ordered via priorities, but for
the current use case the priority for each node is the same so that
the queue is processed in a FIFO fashion.

3.1.0.3. Preparation The preparation worker has three tasks:
Preparing the meta information needed for rendering (e.g. how the
data is structured in memory), generating VBOs for the elements
in the uploading queue, and to finish the uploading process. The
latter means that the uploaded object is given to the Rendering
worker to be used in the next frame. Generating VBOs is done via
the OpenGL function glGenerateBuffers. After preparation,
the elements are moved into a second queue, the process queue.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

102



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

3.1.0.4. Uploading The uploading worker can consist of 1 to n
thread(s). They process the elements of the process queue in a FIFO
fashion. Here, graphics memory is allocated and the host to device
data transfer is executed. The used functions are modularly imple-
mented and therefore can be exchanged easily.

3.2. Input Space

The general idea of this paper is to analyse the behaviour of differ-
ent parameters for uploading data using OpenGL from host to de-
vice memory while rendering. Those parameters consist of buffer
hints, the OpenGL functions used to copy the data and the proper-
ties of the data, i.e. size and partitioning. This input space is struc-
tured as follows:

• Dataset

– Size
– Partitioning

• Used functions

– OpenGL functions
– Buffer hints

• Number of threads for uploading

Varying sizes and numbers of partitions lies in the nature of 3D
rendering. 3D models have their individual number of vertices and
vertex properties, depending on how detailed they are and what
kind of properties are attached to them. For that we vary the size
of the tested datasets as well as the number of partitions. This also
sheds light onto the question if having one big block of data con-
taining all vertex properties, e.g. position, colour, texture coordi-
nates, gives better performance for rendering or uploading as well
as on the influence of the dataset size.
The used functions are highly driver and hardware dependent. Here
the idea is to analyse if there are differences in the implementation
of a used function and if the hints specified while creating a buffer
result in different performance numbers.
The number of threads that are used concurrently to upload data
blocks allows to investigate whether there are dedicated copy en-
gines on the graphics card and if and how they are used.

4. Methodology

In the following subsection, the structure of the evaluation of the
conducted experiments will be described. It is followed by the ex-
perimental setup.

4.1. Structure of Evaluation

In contrast to preceding works, we will rely on statistical methods
for the analysis of the measured data. Following the guidelines
of [HB15] we verified using the Shapiro-Wilk test that our mea-
surements are not normal distributed. This can also be deducted
from a theoretical point of view: There exists a threshold how fast
the data can be uploaded. One upper bound to this is the peak
transfer rate of the PCIe bus. Assuming there are effects causing
random noise that affecting the measurements, those effects can
only add to the measured time and never subtract, so there can’t

be a normal distribution of our measurements. Possible effects for
random noise might consist of race conditions, the asynchronous
nature of a graphics card, scheduling of CPU and GPU processes as
well as system interrupts. Obviously, this is by far not a complete
list of all possible effects causing delays for either rendering or
uploading data.
Following the central limit theorem, which implies that increasing
the number of sample sets (each consisting of several samples)
from a random distribution leads to the means of the sample sets
being normally distributed, we chose to sample 100 sample sets,
each consisting of at least 30 measurements. Again we used the
Shapiro-Wilk test and can conclude that not all of our measure-
ments fulfil the normality requirement. Furthermore, the variance
of our measurements is not constant among all the measure-
ments. Therefore, for further analysis we use quantile regression
which does not require a normal distribution or a constant variance.

Our hypotheses for the experiments are:

• The number of threads has an impact
• The combination buffer hint with chosen method impacts up-

loading/rendering times
• Partitioning of datasets influences the uploading/rendering times
• Size influences the uploading/rendering times

In order to be able to evaluate our hypotheses we designed in
total 3240 different experiments, each consisting of at least 30 up-
loads and 30 renderings in parallel and individually. This means,
for the parallel experiments, the exact number of either uploads
or renderings might be higher, depending on how long the respec-
tive other action takes. For the individual cases, where we either
uploaded data or rendered data, each experiment consisted of ex-
act 30 iterations. We conducted an exhaustive search within certain
limits of the described input space. This means, that in each of the
experiments, we only changed one of the following variables while
keeping the others unchanged:

• Buffer hint
• Function used
• Usage of PBOs
• Size of dataset
• Number of partitions
• Number of threads (for uploading)

Each of those experiments was conducted 100 times.

For the following analysis, we define a 0.05 significance level for
rejecting the null hypotheses, meaning if the p-value of the quan-
tile regression is less or equal to 0.05, we can reject the null hy-
potheses and can reject that this input variable has no impact on the
looked at process. In other words, if the p-value is less or equal to
0.05, we assume with 95% confidence that this input parameter has
an impact on rendering or uploading, respectively, with the shown
change-rates. As we calculate the quantile regression for 10 differ-
ent quantiles, we can only reject the null hypotheses if the p-value
for every quantile is below our significance level of 0.05.

4.2. Experimental Setup

In order to test a wide range of input parameters the following ex-
perimental setup was used:

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

103



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

For the dataset, we chose to artificially create one in order to
be able to fine tune GPU and PCIe bus usage. For that, we di-
vide a plane forming an OpenGL fullscreen quad, i.e. spanning
from (−1,−1,−0.5) to (1,1,−0.5), into 50×50 quads, with each
quad consisting of two triangles. This means, one plane consists
of 50× 50× 2× 3 = 15000 vertices. The triangles of this plane
are copied as needed to fill a dataset with a predetermined size. In
order to analyse the impact of partitioning a dataset, we copy the
dataset by the number of partitions and reuse it. By deactivating
depth tests, we force the rendering pipeline to render each triangle
and each generated fragment and consequently are able to maintain
a high GPU usage without optimizations.
The reasoning for the partitioning is that we are bound to having
a graphics cards with 2 copy engines and a CPU that has 4 cores
(and 4 threads). We want to investigate what effects are caused by
parallelising uploads and making use of both copy engines, but also
want to see if there are possible overlaps of CPU time by having 3
parallel copies when using enough threads and partitions.
Using different functions for uploading is bound to the

For sizes we used the factors s∈ 1,2,4. The sizes are determined
by the following formula:

Size = f actor ·4 ·3 ·85 ·1024 (1)

The 4 in this case stands for bytes per float, the 3 for floats per
vertex and the 85 to get near to 1024 in order to have roughly
1024 ·1024 bytes, i.e. 1MiB. For partitioning we split the sizes by a
factor p ∈ 1,2,4,8,16. This means, if we have a dataset of roughly
4MiB, it can consist of one 4MiB block or up to 16 block which
have the size of 255kiB. The reasoning for the partitioning is that
we are bound to having a graphics cards with 2 copy engines and a
CPU that has 4 cores (and 4 threads). As we wanted to investigate
what effects are caused by parallelising uploads and making use of
both copy engines, but also want to see if there are possible over-
laps of CPU time by having 3 parallel copies when using enough
threads and partitions, we chose to use one to 16 partitions to cover
the whole range.
The used functions depend on buffer hints that describe the planned
usage of a VBO and consist of mainly two parts: the frequency
of usage and the nature of access. Frequency can be one of three:
Stream - modified once and used at most a few times- , static - mod-
ified once, used many times- and dynamic - modified repeatedly
and used many times. Nature of access describes how the buffer is
accessed: Draw - modified by host and used by the device-, read
- modified by the device and read from the host (i.e. download)- ,
copy - modified by the device and used by the device. Any com-
bination of one of frequency and one from nature of access is pos-
sible, so in total there are the following nine possibilities as buffer
hints written as OpenGL enums:

• GL_STREAM_DRAW
• GL_STATIC_DRAW
• GL_DYNAMIC_DRAW
• GL_STREAM_COPY
• GL_STATIC_COPY
• GL_DYNAMIC_COPY
• GL_STREAM_READ
• GL_STATIC_READ
• GL_DYNAMIC_READ

For the actual uploading, we have implemented four different
methods using the OpenGL functions glBufferData,
glBufferSubData, glMapBuffer and
glMapBufferRange. The pseudo code for those is given
in Algorithm 1.

Algorithm 1 Used Uploading Functions
procedure UPLOADFUNCTION1(target, size, data, hint)

glBufferData(target, size, data, hint);
procedure UPLOADFUNCTION2(target, size, data, hint)

glBufferData(target, size, 0, hint)
ptr = glMapBufferRange(target, 0, size, mapRangeBit)
memcpy(ptr, data, size)
glUnmapBuffer(target)

procedure UPLOADFUNCTION3(target, size, data, hint)
glBufferData(target, size, 0, hint)
ptr = glMapBuffer(target, 0, size, mapBit)
memcpy(ptr, data, size)
glUnmapBuffer(target)

procedure UPLOADFUNCTION4(target, size, data, hint)
glBufferData(target, size, 0, hint);
glBufferSubData(target, size, data, hint);

In Algorithm 1 the following input parameters are used:

• target may be either GL_ARRAY_BUFFER or
GL_PIXEL_UNPACK_BUFFER
• size corresponds to the size in bytes which will be uploaded
• data refers to the actual data being uploaded
• hint is one of the before described buffer hints

Additionally, mapRangeBit stands for
GL_MAP_WRITE_BIT and mapBit for GL_WRITE_ONLY.
All four methods have in common that they use glBufferData
to allocate graphics memory, which is only initialised by up-
loadfunction4 where the data is directly uploaded. In all other
cases, different functions are used to transfer the data to device
memory. As both glBufferData and glBufferSubData are
asynchronous functions, we use OpenGL SyncObjects (glSync)
to determine when an upload is finished for uploadfunction3 and
uploadfunction4. Please note that this means if there is a draw
call submitted from a different thread inbetween the uploading
call and the creation of the glSync object, the time measured for
uploading will longer by the time needed for that rendering call.
For uploadfuntion1 and uploadfunction2 we do not need to use a
glSync object, as the memcpy functions blocks until it is finished.
Furthermore, we vary the number of uploading threads described
in section 3.1 from 1 to 3.

For the experiments we used Ubuntu 16.04.5 as operating
system and an Intel Xeon E5-1607 CPU with 3.10GHz and 64GB
DDR3 main memory working with 2133 MHz. As graphics card
we used a MSI Geforce GTX 1080 Gaming X 8G with the pro-
prietary nvidia driver in version 410.79. We deactivated Threaded
Optimizations as this lead to deadlocks within our application.
The rendering was done into an off screen framebuffer with the
size of 1920x1080 Pixels, four 32bit float colour channels and

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

104



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

a 24bit renderbuffer in order to avoid any visibility influences.
Furthermore, we used OpenGL Core Profile in version 4.5, GLX
1.4 and X.Org X Server 1.18.4 with X Protocol Version 11,
Revision 0. For context creation we use GLFW 3.1.2 from the
Ubuntu repository.

5. Results

In total we gained 23,245,904 observations for rendering and
17,278,237 for uploading in parallel. For the individual scenarios
we have exactly 9,720,000 measurements. As there are some ex-
treme outliers, we chose to use the R function boxplots.stats
with a coefficient of 50 to identify and remove those extreme out-
liers. This outlier removal is done as follows:
By default, the width of the box of a boxplot in R is defined as the
size between the 75th and 25th percentile of the data. In our case,
we chose to reject every measurement that is 50 times this width
farther away from the 75th or 25th percentile. In total we removed
0.46% of the measurements for the only uploading case, 1.57% for
the uploading and 1.07% for the rendering measurements in the
parallel scenario and 0.22% of the plain rendering scenario.
To further reduce the number of measurements and to make the
following analysis more robust, we calculated for each of the 100
samples the median of the 30 (or more) measurements and used
that for the further evaluation. This resulted in having 3,240,000
observations for each rendering and uploading, a sample size of
100 for all single experiments and to have a more robust data basis
with respect to outliers caused by different effects not part of the
rendering/uploading pipeline. As input formula to model the data
using quantile regression we use the following:

∆time = mode∗hint+ threads+npartitions + s (2)

Here, ∆time stands for time needed to upload/render in microsec-
onds. npartitions stands for number of partitions. mode, hint and
threads are categorical variables and treated as factors for the quan-
tile regression. They stand for functions used, buffer hint speci-
fied and number of threads, respectively. The mapping from mode
to function and hint to the used buffer hint are shown in table 1.
threads is defined as threads1 for one thread, threads2 for two
threads and threads3 for using three threads. s stands for the size
in MiB of the dataset.
This results in the following model formula:

∆time = b0 +
i=7, j=8

∑
i=1, j=1

(
b11+8·i+ j ·modei ·hint j

)
+

+
i=7

∑
i=1

(b4+i ·modei)+
j=8

∑
j=1

(
b4+7+ j ·hint j

)
+b1 · threads2 +b2 · threads3+

+b3 ·npartitions +b4 · s

(3)

Here, b0 stands for the intercept, meaning every quantitative in-
put variable is set to zero and for the categorical variables, mode0,
hint0 and threads1 is chosen. The remaining bl parameters stand
for the change-rate which in our case is variable and depending on

mode0 ⇒ UploadFunction1
mode1 ⇒ UploadFunction2
mode2 ⇒ UploadFunction3
mode3 ⇒ UploadFunction4
mode4 ⇒ UploadFunction1 + PBO
mode5 ⇒ UploadFunction2 + PBO
mode6 ⇒ UploadFunction3 + PBO
mode7 ⇒ UploadFunction4 + PBO
hint0 ⇒ GL_STREAM_DRAW
hint1 ⇒ GL_STATIC_DRAW
hint2 ⇒ GL_DYNAMIC_DRAW
hint3 ⇒ GL_STREAM_COPY
hint4 ⇒ GL_STATIC_COPY
hint5 ⇒ GL_DYNAMIC_COPY
hint6 ⇒ GL_STREAM_READ
hint7 ⇒ GL_STATIC_READ
hint8 ⇒ GL_DYNAMIC_READ

Table 1: Mapping of mode and hint to used method and to used
driver hint.

the quantiles. For all categorical variables, i.e. modeX , hintX and
threadsX , they are either 0 or 1 in case they are not or are present,
respectively. This means, if mode0 , hint0 and threads1 is chosen,
the formula can be simplified to:

∆time = b0 +b3 ·npartitions +b4 · s. (4)

For having mode1, hint1 and threads2 , it changes to:

∆time = b0 +b20 +b5 +b12 +b2 +b3 ·npartitions +b4 · s. (5)

Please note that in the second example, all three sums result in a bl
parameter, as the mode is different from mode0, the hint different
from hint0, and both in combination are different from mode0 and
hint0.

We divide the analysis in the following into three distinct sub-
sections. First we investigate the impact of the input parameters on
plain rendering, meaning there is no uploading happening in paral-
lel. As second we look at plain uploading without any rendering. In
the third part, we evaluate the parallel rendering while also upload-
ing data.

5.1. Plain Rendering

For the plain rendering scenario, the whole framework introduced
in section 3.1 is used but no updates of meshes are planned and
consequently, the uploading worker threads are idle.
We start by analysing the p-values. For all 10 quantiles, the p-value
of the intercept is below the significance value and therefore is
with 95% confidence the time needed for rendering no data using
mode0, hint0 and one thread is different to 0. This states the time
needed to use the framework.
Table 2 shows if the combination of a specific mode with a specific
hint makes a difference for the time needed for rendering (symbol-
ised by *). We see that we have not evidence that mode4 has any

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

105



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

* mode0 mode1 mode2 mode3 mode4 mode5 mode6 mode7
hint0 * * * · · * * ·
hint1 · · · · · · · ·
hint2 · · · · · · · ·
hint3 · · · · · * · ·
hint4 · · · · · · · ·
hint5 · · · · · * · ·
hint6 · * * * · * * *
hint7 · · · · · · · ·
hint6 · * * * · * * *

Table 2: Significance for all ten quantiles for different modes in
combination with a specific buffer hint for plain rendering. ”*”
stands for having an impact and ”·” for there is no evidence, that
choosing this parameter has an impact

Rendering 2 threads 3 threads partitions size
Significance · * * *

Table 3: Significance for all ten quantiles threads, partitioning and
size for plain rendering. ”*” stands for having an impact and ”·”
for there is no evidence, that choosing this parameter has an impact

impact on rendering times. This means that there is no evidence
that using or not using a Pixel Buffer Object in combination with
the function glBufferData for copying data from host to
device memory is changing the needed time for rendering. This is
also true for choosing either hint1, hint2, hint4 or hint7. Please note
that in table 2 mode0 together with hint0 constitutes the intercept
and the first row and first column describe the significance of the
impact of modes and hints individually.
Further, as in table 3 illustrated, we found evidence that using 3

threads, changing the number of partitions(submeshes) or the size
has an impact on rendering times.

5.2. Plain Uploading

For the uploading scenario, only data is exchanged and nothing ren-
dered. Table 4 shows if the p-values for all 10 quantiles are below
the significance level for the different combination of modes and
hints. Again, mode0 together with hint0 constitutes the intercept as
well as the first row and column show the significance of modes
and hints individually. The picture here is quite different. Except
for mode4, which is the same function as mode0 but with usage
of PBOs, choosing a different mode has an impact on uploading
times. The same yields for choosing a hint. Here only hint2 has no
evidence of changing the result.

For the remaining input parameters, choosing two or three
threads, as well as changing the size and number of submeshes,
evidence suggests that there is a significant impact on uploading
times, see also table 5.
Exemplarily, we found for the examined experimental setup that
choosing a different mode-hint combination can have a quite large
impact on the time needed for uploading data. For example, the
combination of choosing mode1 together with hint1 results (with
significant evidence) in lower uploading times, in best case scenar-
ios this can lower them by over 4000 microseconds. Please note,
that for a full prediction of change on uploading times, one would

* mode0 mode1 mode2 mode3 mode4 mode5 mode6 mode7
hint0 * * * · · * * ·
hint1 · * * · · * * ·
hint2 · · · · · · · ·
hint3 · * * * · * * *
hint4 · * * · · * * ·
hint5 · * * * · * * *
hint6 · · · * · · ·· *
hint7 · * * · · * * ·
hint8 · · · * · o o *

Table 4: Significance for all ten quantiles for different modes in
combination with a specific buffer hint for plain uploading. ”*”
stands for having an impact and ”·” for there is no evidence, that
choosing this parameter has an impact

Upload 2 threads 3 threads partitions size
Significance * * * *

Table 5: Significance for all ten quantiles threads, partitioning and
size for plain uploading. ”*” stands for having an impact and ”·”
for there is no evidence, that choosing this parameter has an impact

need to include the values from the individual parameters for modes
and hints, i.e. the ones represented in the first row and first column.

5.3. Rendering while Uploading

For the parallel scenario, meaning the GPU is busy rendering a
dataset, while another dataset is uploaded (which will replace the
rendered dataset once the upload is finished), we again take a look
on the p-values of our quantile regression model. We start with the
mode-hint combinations for the rendering times, see table 6. Here,
only choosing a combination using hint2 or mode4 has no evidence
supporting that it changes the time needed for rendering. For the re-
maining parameters, using two or three threads, changing the num-
ber of partitions and the size are also well supported to change the
resulting rendering times, see also table 7.

For the uploading, again, we have a quite different picture, see
table 8 and table 9. Only the following combinations have evidence
suggesting they impact uploading times: Either mode1, mode2,
mode5 or mode6 together with hint0, hint3, or hint5. The remaining
function-hint combinations are not supported to have an influence
on the uploading times. Changing the number of threads, partitions
and the size however, are within 95% confidence resulting in higher

* mode0 mode1 mode2 mode3 mode4 mode5 mode6 mode7
hint0 * * * · · * * ·
hint1 · * · · · * * ·
hint2 · · · · · · · ·
hint3 · * * · · * * ·
hint4 · * * · · * * ·
hint5 · * * · · * * ·
hint6 · * * * · * * *
hint7 · * · · · · * ·
hint8 · * * * · * * *

Table 6: Significance for all ten quantiles for different modes in
combination with a specific buffer hint for parallel scenario o ren-
dering times. ”*” stands for having an impact and ”·” for there is
no evidence, that choosing this parameter has an impact

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

106



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

Rendering 2 threads 3 threads partitions size
Significance * * * *

Table 7: Significance for all ten quantiles threads, partitioning an
size for parallel scenario - rendering times. ”*” stands for hav-
ing an impact and ”·” for there is no evidence, that choosing this
parameter has an impact

* mode0 mode1 mode2 mode3 mode4 mode5 mode6 mode7
hint0 * * * · · * * ·
hint1 · · · · · · · ·
hint2 · · · · · · · ·
hint3 · * * · · * * ·
hint4 · · · · · · · ·
hint5 · * * · · * * ·
hint6 · · · · · · · ·
hint7 · · · · · · · ·
hint8 · · · · · · · ·

Table 8: Significance for all ten quantiles for different modes in
combination with a specific buffer hint for parallel scenario - up-
load times. ”*” stands for having an impact and ”·” for there is no
evidence, that choosing this parameter has an impact

or lower times needed. Exemplarily for this particular test setup,
see fig. 1 for getting an idea how great this impact can be. For ex-
ample, choosing to use 3 threads instead of one for uploading can
improve the uploading times between 0 and 10ms. Considering a
frame refresh rate of 60Hz, this means that by choosing only one
thread instead of three can, in the worst case, slow down uploading
by more than half the time available to render one frame. Another
example is changing the used driver hint that can worsen or im-
prove uploading times by over 3ms. Please note, that again, for a
complete prediction, one would also need to include the parameters
for mode and hint individually. Additionally, increasing the number
of partitions can result in an increase of up to 1ms for uploading.

To summarize our experiments of all three scenarios, we see that
using three threads instead of one for uploading, changing the size
of the dataset or the number of the partitions have an impact on
the time needed for executing the particular task. In this case, that
impact can mean that uploading times are 5ms longer or shorter,
just depending on the used function and driver hint combination.
Other changes can lie within a couple hundred microseconds and
might have only marginal impact on the resulting times.

6. Conclusion

In this work we have implemented a general framework that en-
abled us to perform a thorough and statistical sound evaluation of

Upload 2 threads 3 threads partitions size
Significance * * * *

Table 9: Significance for all ten quantiles threads, partitioning an
size for parallel scenario - upload times. ”*” stands for having an
impact and ”·” for there is no evidence, that choosing this param-
eter has an impact

0.2 0.4 0.6 0.8

20
00

25
00

30
00

35
00

mode1:hint3

●

● ●

●
● ●

●

●

●

●

0.2 0.4 0.6 0.8

−
35
00

−
25
00

−
15
00

mode1:hint0

●

● ●

● ●

●
●

●

●

●

0.2 0.4 0.6 0.8

−
10
00
0

−
60
00

−
20
00

3 threads

●
●

●
●

●

●
●

●

●

●

0.2 0.4 0.6 0.8

0
20
0

60
0

10
00

partitioning

●

●
●

●

●

●

●

●

●

●

Quantile Quantile

Quantile Quantile

tim
e 

[µ
s]

tim
e 

[µ
s]

tim
e 

[µ
s]

tim
e 

[µ
s]

Figure 1: Change-rate in microseconds vs. quantiles for differ-
ent parameters in the parallel scenario - uploading times. 95%
confidence intervals are illustrated as grey bands around the es-
timated change-rate (black points) and the interpolation between
them (dashed lines).

using different parameters for uploading data from main memory
to graphics memory using OpenGL while simultaneously render-
ing. The presented results show evidence supporting that changing
the input parameters alter the corresponding time needed for up-
loading, rendering or both which confirm our hypotheses. By dis-
connecting rendering from the uploading process, we are able to
individually evaluate the influence of the examined input parame-
ters on either of those processes. Treating uploading and rendering
in isolation or running both in parallel result each in their own dis-
tinct combination of parameters that have a performance impact.
Furthermore, in the parallel scenario, choosing one set of param-
eters can evidently have an impact on, for example, uploading (or
rendering) while there is no support for altering the timings of the
respective other. This means that depending on the scenario and
priorities for either of those processes, different performance tun-
ing strategies might be necessary.
This also implicates future work: While we have evidence that
there are changes in timings when altering parameters, we do not
have explicit numbers on what the change looks like for differ-
ent systems. For that we need to broaden the experimental setup
and perform experiments with a range of different graphics cards,
drivers, operating systems and computing systems to extract a gen-
eral model describing parallel uploading mechanisms.

Acknowledgement

The authors thank Matthias Maiterth for his valuable input through
various discussions and feedback.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

107



M. Wiedemann & D. Kranzlmüller / Parallel Data Uploading

References
[FAN∗13] FUJII Y., AZUMI T., NISHIO N., KATO S., EDAHIRO M.:

Data transfer matters for gpu computing. In Parallel and Distributed
Systems (ICPADS), 2013 International Conference on (2013), IEEE,
pp. 275–282. 2

[FGKR16] FALK M., GROTTEL S., KRONE M., REINA G.: Interactive
gpu-based visualization of large dynamic particle data. Synthesis Lec-
tures on Visualization 4, 3 (2016), 1–121. 2

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive display algorithm
for interactive frame rates during visualization of complex virtual envi-
ronments. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques (1993), ACM, pp. 247–254. 1

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical z-buffer
visibility. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques (1993), ACM, pp. 231–238. 1

[GLiGLBG12] GÓMEZ-LUNA J., I. GONZÁLEZ-LINARES J. M., BE-
NAVIDES J. I., GUIL N.: Performance models for cuda streams on nvidia
geforce series. J. Parallel Distrib. Comput. 72, 9 (2012), 1117 – 1126. 2

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized data transfer for
time-dependent, gpu-based glyphs. In Visualization Symposium, 2009.
PacificVis’ 09. IEEE Pacific (2009), IEEE, pp. 65–72. 2

[HB15] HOEFLER T., BELLI R.: Scientific benchmarking of parallel
computing systems: Twelve ways to tell the masses when reporting per-
formance results. In Proceedings of the international conference for high
performance computing, networking, storage and analysis (2015), ACM,
p. 73. 2, 3

[HM12] HRABCAK L., MASSERANN A.: Asynchronous buffer transfers.
In OpenGL Insights, Cozzi P., Riccio C., (Eds.). CRC press, 2012. 2

[Hop98] HOPPE H.: Smooth view-dependent level-of-detail control and
its application to terrain rendering. In Visualization’98. Proceedings
(1998), IEEE, pp. 35–42. 1

[Joy09] JOY K. I.: Massive data visualization: a survey. Mathematical
Foundations of Scientific Visualization, Computer Graphics, and Mas-
sive Data Exploration (2009), 285–302. 2

[LP02] LINDSTROM P., PASCUCCI V.: Terrain simplification simpli-
fied: A general framework for view-dependent out-of-core visualization.
IEEE Transactions on Visualization and Computer graphics 8, 3 (2002),
239–254. 1

[Paj98] PAJAROLA R.: Large scale terrain visualization using the re-
stricted quadtree triangulation. In Visualization’98. Proceedings (1998),
IEEE, pp. 19–26. 1

[PG07] PAJAROLA R., GOBBETTI E.: Survey of semi-regular multires-
olution models for interactive terrain rendering. The Visual Computer
23, 8 (2007), 583–605. URL: http://dx.doi.org/10.1007/
s00371-007-0163-2, doi:10.1007/s00371-007-0163-2.
2

[SW06] SCHNEIDER J., WESTERMANN R.: Gpu-friendly high-quality
terrain rendering. WSCG 2006 International Programme Committee
(2006). 1

[WMSB14] WERKHOVEN B. V., MAASSEN J., SEINSTRA F. J., BAL
H. E.: Performance models for CPU-GPU data transfers. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM Interna-
tional Symposium on (2014), IEEE, pp. 11 – 20. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

108

http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.1007/s00371-007-0163-2
https://doi.org/10.1007/s00371-007-0163-2

