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Abstract
Acceleration structures are key to high performance parallel ray tracing. Maximizing performance requires configuring the
degrees of freedom (e.g., construction parameters) these data structures expose. Whether a parameter setting is optimal depends
on the input (e.g., the scene and view parameters) and hardware. Manual selection is tedious, error prone, and is not portable.
To automate the parameter selection task we use a hybrid of model-based prediction and online autotuning. The combination
benefits from the best of both worlds: one-shot configuration selection when inputs are known or similar, effective exploration of
the configuration space otherwise. Online tuning additionally serves to train the model on real inputs without requiring a-priori
training samples.
Online autotuning outperforms best-practice configurations recommended by the literature, by up to 11% median. The model
predictions achieve 95% of the online autotuning performance while reducing 90% of the autotuner overhead. Hybrid online
autotuning thus enables always-on tuning of parallel ray tracing.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types

1. Introduction

Performance and image quality are the linchpin metrics of ray trac-
ing. In its widespread application in movie production, architecture,
or video games, its users are often forced to prioritize one over the
other. The metrics are contradicting. Advances in both hardware
and software however seek to accelerate the rendering performance
while retaining quality as much as possible. Parallel processors and
specialized hardware features such as NVIDIA’s recent RTX tech-
nology [HA19] open new and exciting ways to accelerate ray trac-
ing.

On the software side, heavily optimized ray tracing such as
OSPray [WJA∗17] benefits from spatial data structures, such as
Bounding Volume Hierarchies (BVH) [KK86] which are the fun-
damental accelerators of ray tracing.

State-of-the-art acceleration structures offer a multitude of tun-
able parameters such as the leaf size or the depth of BVH trees.
Finding the optimal configuration for these parameters is essential
to achieve best performance. To date, this is a manual task left to
the engineers who build the ray tracing application. Most of the
time they simply use configurations recommended by experts. If
the cost of the application is not dominated by ray tracing, using
a standard configuration can well be an adequate choice. On the
other hand when the application cost is heavily impacted by ray
tracing, the standard configuration may turn out to be unsatisfac-
tory [TPKT16]. This is not because the experts made poor guesses,

but because the recommendation is static. The recommendations
were made based on experiences or experiments on specific hard-
ware, specific ray tracing applications, and specific inputs. The rec-
ommended configurations are optimal for those observed contexts.
But they cannot be expected to generalize in the sense that they are
optimal for different hardware, applications, or even inputs. These
three aspects of the context all affect the quality of any particular
configuration. A scene with small and large triangles next to each
other would highly benefit from triangle splitting, but a scene with
uniform triangle size will see its overall performance decrease be-
cause of the overhead of splitting. This example demonstrates that,
to obtain best performance, configurations need to be selected dy-
namically and the context needs to be taken into account.

Autotuning is a method that deals with finding optimal param-
eter configurations. Its fundamental idea is to repeatedly sample
the performance of configurations and employ an intelligent search
scheme to traverse the configuration space. Doing this online (i.e.,
at application runtime ) allows adapting to the context: Whenever
the context changes tuning simply restarts. However there are sev-
eral caveats. First and foremost, autotuning uses heuristic search
algorithms. The configuration space is generally too large to be ex-
haustively explored. As a consequence, the configurations found
by tuning are only locally optimal. Secondly, autotuning intro-
duces overhead. Some autotuning methods have a notion of con-
vergence, where the search algorithm eventually produces a single
final point. Others simply search until a time or iteration budget is
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exhausted. In either case the search will inevitably sample config-
urations whose performance is (substantially) worse than both the
default and the global optimum. This opportunity cost accumulates
during tuning and can introduce a significant overhead. Addition-
ally, when used in a production environment application users may
notice the decreased performance and changing frame rate.

Contributions. In this paper we integrate parallel ray tracing
with a novel tuning technique we call Hybrid Online Autotuning.
It combines classical search-based tuning with online learning. We
use the search to explore the configuration space and to train a pre-
dictor simultaneously. The predictor maps inputs to configurations.
We quantify the input through a set of metrics, which we refer to as
indicators. Example indicators are the number of triangles, the total
surface area, or the camera position. Upon changes in the input, hy-
brid tuning decides whether to search or to exploit the predictor. We
show that classical search achieves a performance speedup of up to
11% median over the recommended default configuration. More-
over, the predictor trained during the search reduces the overhead
introduced by the search by up to almost 90% while achieving up
to 95% of the performance of the configuration found by searching.

We further focus on changing inputs in this paper because it is
the most dynamic aspect of the changing context. However, our
technique easily generalizes to include hardware- and application-
specific indicators as well. Furthermore, although we implemented
and evaluated our approach for parallel ray tracing only, we are
confident that the same technique will be successful for sequential
applications as well.

2. Related Work

Several works established the link between scene properties and
acceleration structure quality. Such properties can be the distribu-
tion and overlap of triangles in a scene [SFD09] or the visibil-
ity [VHS12]. Dammertz et al. [DHK08] evaluated the impact of the
number of triangles per leaf node of several BVH implementations
and found substantial variations.

Recent work focuses on an incremental or iterative construc-
tion process. This process involves quickly building a low-quality
data structure and then refining it over multiple iterations. Bittner
et al. [BHH15] presented an incremental data structure where the
number of modified nodes and the fraction of nodes to be updated
are free parameters. Wodniok et al. [WG17] hand pick several val-
ues for their BVH’s partitioning strategy. More recently, Meister
et al. [MB18] expose a configurable parameter for the density of
search nodes in their reinsertion strategy. These recent examples
show that the work on acceleration structures is ongoing. Never-
theless, new approaches still expose performance-critical parame-
ters for which a configuration must be selected.

In the following sections we first present approaches which aim
at optimizing ray tracing and acceleration structures automatically
for given inputs or hardware. Second, we report recent works in
the wider field of autotuning which also approach context-sensitive
tuning.

2.1. Optimizing Ray Tracing and Acceleration Structure
Parameters

Although the importance of ray tracing and acceleration structure
parameters is known, only few works aim at automating the search
for configurations.

Ganestam et al. [GD12] employ a model-based online autotuner
to optimize GPU ray tracing. They measure how the acceleration
structure is queried by evaluating the number of cache hits and the
number of hits per node of the BVH. To ensure a constant frame
rate, image quality is adapted when the complexity of the scene
increases. In their work, the quality is variable while our approach
aims at keeping a constant quality and speeding up rendering.

Targeting the GPU, Weber et al. [WG14] employ autotuning to
optimize the memory layout of the binning of kD-trees. They build
a decision tree based on empirical measurements that halves con-
struction time. The approach is orthogonal to ours. It could however
be used in conjunction, as the authors only modify the memory lay-
out by the acceleration structure and none of its exposed parame-
ters.

A number of works established the benefits of machine learn-
ing for rendering. Vorba et al. [VKŠ∗14] used Gaussian Mixture
Models (GMM) to represent sampling distributions. They show
improvements in convergence rate for path tracing, bidirectional
path tracing, and Metropolis light transport. Similarly, Dahm et
al. [DK17] improved the sampling scheme by using Q-learning,
a model-free Reinforcement Learning (RL) technique. They per-
form training during rendering and learn to find light source paths.
They successfully reduce the number of zero contribution paths and
reduce the average path length. Our approach employs a concept
related to GMMs, but uses it to optimize acceleration structure pa-
rameters without modifying the underlying image synthesis algo-
rithm.

Search-based online tuning has successfully been used to opti-
mize parallel acceleration structures for a ray tracing application by
Tillmann et al. [TPKT16]. This work demonstrates that autotuning
is effective in accelerating ray tracing performance beyond what
expert-recommended parameter configurations offer. The authors
report speedups of up to 1.96× over the standard configuration of
an SAH kD-tree. However, they do not investigate techniques to
reduce the autotuning overhead. Like in our approach, Tillmann et
al. use the Nelder-Mead search algorithm, but use it to optimize a
different acceleration structure.

2.2. Input-Sensitive Autotuning

Autotuning as a tool to optimize program parameters automati-
cally has been around for two decades. It was made popular by
the ATLAS library [WD98], which optimizes BLAS primitives
during installations using training examples shipped with the soft-
ware. Today, the most widely used general purpose autotuning tools
are ActiveHarmony [ŢCH02] and OpenTuner [AKV∗14]. Both use
heuristic search to navigate the configuration search space and are
oblivious to changing program inputs. ActiveHarmony uses the
Nelder-Mead algorithm, whereas OpenTuner employs an ensemble
of different search methods concurrently.
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An idea similar to ours in design was developed by Bergstra et
al. [BPC12]. They combine heuristic search and regression trees to
optimize the parameters of a CUDA implementation of a numerical
kernel. Their combination approach however operates in a different
manner than the one we present: The regression tree model is built
on training data and then serves as a surrogate for empirical search.
Autotuning approaches that build and refine prediction models on-
line are called “active learning” in the literature. The basic princi-
ple of active learning is to use the prediction model itself to rec-
ommend samples to refine the model [Set09]. A recent instance of
this method was presented by Balaprakash et al. [BGW13]. They
build a performance model using dynamic trees. As part of a com-
piler, the model is applied to loop optimization of numerical ker-
nels and to predict the performance of MPI codes. The Nitro sys-
tem [MSH∗14] is an approach to select optimal code variants in
an input-dependent manner. Programmer-defined features are com-
puted from program inputs and are used to query an SVM model.
The model is built during an offline-training phase from input data.
Bao et al. [BHC∗16] apply model-based tuning to minimize energy
consumption by selecting optimal CPU frequency at program run-
time. They use a compiler to determine relevant features for the
program and create a set of profiling benchmarks to stress individ-
ual features. From the profiling benchmark their approach builds a
decision tree.

These related works either build their models offline or online.
In the former case, a-priori training data is required. In the latter
case, the model is used to select training data. The performance of
the configurations sampled by a still-training model are subpar. Our
approach provides a target-oriented way to train the model and to
optimize performance even during training.

3. Autotuning Parallel Raytracing

In this section we present the design and implementation of our par-
allel renderer, its acceleration structure, and its integration with the
autotuner. We also discuss the various tuning parameters exposed
by the acceleration structure and the indicators the renderer reports
to the tuner.

3.1. Renderer

Ray tracing [Kaj86] and especially path tracing are now a stan-
dard of the movie industry [CFS∗18] [BAC∗18]. It is extensively
used for interactive applications [NHD10] to help rasterization with
global illumination [TO12]. Interactive ray tracing is also available
on CPU thanks to OSPray [WJA∗17] for instance, Intel’s optimized
ray-tracer. In real-time applications, it is common to use one sam-
ple per pixel (spp) and then process the image with denoising tech-
niques.

The purpose of our renderer is to compare tuning parameters of
acceleration structures. For our study we implement a Monte-Carlo
progressive path tracer. To achieve real time performance we de-
compose the image into tiles and process them in parallel. Our path
tracer supports Multiple Importance Sampling [Vea98] for area
lights. We also support dielectrics, specular, diffuse and glossy ma-
terials. Glossy materials are implemented using anisotropic GGX
distribution [WMLT07]. To stay within real time constraints we

Name Default
Value Description

quality 2 1: Morton codes 2: binned
SAH 3: primitive split

branchingFactor 2 Max number of child nodes
maxDepth 32 Max depth of the BVH tree

sahBlockSize 1 Nb of considered nodes for
SAH

minLeafSize 1 Min nb of triangles per leaf
maxLeafSize 32 Max nb of triangles per leaf

travcost 1 Cost of node traversal
intcost 1 Cost of triangle intersection
static false Optimize for static scene

compact false Optimize memory usage
robust false Robust intersection algorithms

Table 1: Embree parameters. Branching Factor has 2, 4 and
8 as possible values. Because traversal can be optimized with
AVX, the branching factor is hardware dependent. intcost and
travcost are SAH-related parameters and are real numbers be-
tween 0 and 20.

limit the path length to three bounces. A shorter path length is detri-
mental to the quality of the measurements, since it overemphasizes
the importance of primary rays. Primary rays are coherent com-
pared to subsequent rays in the path. Coherent rays query the accel-
eration structure from homogeneous directions. While it is possible
to optimize for coherent rays, that is not the purpose of our study.

3.2. Parameters and Indicators

In this section we discuss the choice of the acceleration structure
and explain the parameters and indicators of our method.

We adopt Embree [WWB∗14] as our acceleration structure
framework. Embree is Intel’s open source implementation of state-
of-the-art BVHs. Embree targets high performance and provides a
large set of parameters to tailor the BVH to any need. It includes
algorithms for low, medium and high quality BVHs. Embree ex-
poses eleven tunable parameters. We summarize them in Table 1.
These parameters will affect the construction of the BVH and they
are interdependent. For instance, reducing the number of triangle
per leaf (min/max leaf size) is linked to the maximum depth. The
tree will expand significantly more if the leaf size is small. The
quality parameter selects the subdivision algorithm. It can either
be Morton codes, binned SAH or binned SAH with primitive split-
ting, which allows for tighter bounding boxes. For Morton codes
the sahBlockSize, travcost and intcost parameters are
not used. These eleven parameters will be modified by the tuner
to optimize the rendering or the building time. Embree supplies a
recommended configuration for these parameters. For our analy-
sis it is important to have a starting configuration. As we want to
compare to expert knowledge, we use the recommended values of
Embree. This standard configuration is versatile and adapts well to
most scenes and most use cases.

We compute 17 indicators as listed in Table 2 to describe the in-
put. We roughly estimate the complexity of the scene with the fol-
lowing indicators: the number of triangles, the number of meshes
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Name Range

Number of meshes 0 to 105

Number of triangles 0 to 107

Number of lights 0 to 105

Camera Position −10 to 10 (x,y and z)
Target Position −10 to 10 (x,y and z)
Vertical FoV 0 to 180
Diffuse Ratio 0 to 1

Extent 0 to 105

Total area 0 to 10
Area of lights 0 to 10
Area per Mesh 0 to 10

Mean of VarTriSize 0 to 10−2

Variance of VarTriSize 0 to 10−2

Table 2: Indicators. The camera uses the target position to extract
the orientation relatively to an up vector (0,1,0). VarTriSize is a
list containing the variance of triangle sizes for each mesh.

(triangularly tessellated surfaces) and the number light sources.
However, scenes with the same number of triangles can have dif-
ferent optimal configurations. Triangle size varies depending on
the meshes in the scene, as walls for instance have large triangles
while detailed objects have smaller ones. In other words, the tri-
angle size vary among meshes. In addition, triangle size can vary
within a mesh and BVHs are susceptible to this variation. To take
this into account, we compute the variance of the triangle size for
each mesh and name this set VarTriSize. As we cannot afford to
have one indicator per mesh, we compute the average and variance
of VarTriSize. These indicators are named Mean of VarTriSize and
Variance of VarTriSize. Additionally, we computed the average
area per mesh and the total area of the scene. For scaling reasons,
we divided any surface-related value by the square of the diagonal
of the scene’s bounding box. This normalization is not accurate but
sufficient for our needs. The bounding box diagonal is also used
as an indicator for the scene’s extent. The diffuse ratio indicator is
a measure of the average specularity of the surfaces using mate-
rial properties. The diffuse ratio is between zero and one except for
transparent or mirror-like objects, where it is zero. We also added
camera parameters: position, orientation and the vertical field of
view to account for visibility.

3.3. Tuner integration

Integrating the tuner in the ray tracing code is straightforward. Fig-
ure 1 provides an overview of the tuning scenario. First we register
the tuning parameters of Embree with the autotuner. Then we start
iterating over each camera position. As the camera is part of our
indicators we need to recompute them for each position. Then we
start the tuning loop. The autotuner starts its measurement and sets
the new values for the tuning parameters. The acceleration structure
is built using the new parameters. After rendering, the autotuner
completes its measurements and computes a new Configuration for
the next iteration. We use the tuner to optimize either the rendering
time or the total time, sum of rendering and acceleration structure
building time. The choice of the time measurement affects the tuner
behavior, as shown in Figure 2. When the search-based tuner is op-

Register Tuning
Parameters

Start Measurement
&

Set Parameters

Build BVH

Query BVH

Stop
MeasurementAdvance Camera

Compute Indicators
on Input

iterate until desired
quality is reachedfor each

camera position

for each
ray

Tuning Loop

Figure 1: The tuning scenario. Integration of the tuner in the ray
tracing workflow.

timizing for rendering time, the resulting rendering time improves
over the default configuration. The total time, however, increases.
When total time is used as the measurement value, we see a smaller
improvement to the resulting rendering time. As expected, the total
time is now substantially smaller than what the default configura-
tion achieves. The hybrid tuner will learn from this exploration to
compute efficient configuration in exploitation mode. During ex-
ploitation no search is performed. Instead the learned model pre-
dicts a configuration based on the current indicators.

4. Hybrid Online Autotuning

The main obstacle to practical deployments of machine-learning or
model-based methods is training. Pure offline techniques require
massive amounts of samples a-priori to build the models. The qual-
ity of the models depends on the representativeness of the samples.
Online approaches on the other hand learn from new data that ac-
tually occurs in the deployment context. The main question then
becomes how to construct the initial model. Starting with an im-
precise initial model means sub-optimal predictions and decreased
performance. While offline training is certainly viable to seed an
online approach, it still requires input samples, which can be hard to
obtain in particular given the heterogeneity of 3D scenes. As a com-
promise, we propose hybrid online autotuning, combining classical
search-based tuning with model-based prediction. The high-level
tuning process is shown in Figure 3. The tuner observes the pro-
gram and the system state through the indicators, which serves as
an approximation to the true program and system state in the re-
mainder of the paper. We therefore use the term “state” to refer to
the current indicator values in the remainder of the paper. For ev-
ery change in program or system state, the hybrid tuner chooses
to either exploit the model or to explore the configuration space.
In either mode, performance feedback from the application for ev-
ery sampled configuration is used to update the model. Observed
states, sampled configurations, and the performance feedback can
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Figure 2: Changing the feedback function drastically affects the tuning results. Red optimizes the rendering time only, whereas green targets
the total time of rendering and building the acceleration structure. Blue is the configuration recommended by the literature.
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Figure 3: The hybrid online tuning workflow.

be stored in the tuning database to avoid sampling the same state-
configuration pair twice. Choosing between exploration to gather
new data and exploitation of known information is a central opera-
tion in Reinforcement Learning (RL) [SB18]. To implement the de-
cision making we borrow an algorithm from that field, namely the
ε-Greedy algorithm. The ε-Greedy algorithm is remarkably sim-
ple: With a probability of ε, choose to explore, otherwise greedily
exploit.

A key difference between exploring and exploiting is that ex-
ploitation is one-shot. For a new state the autotuner produces ex-
actly one configuration which once applied is kept until the next
state change. Exploring on the other hand samples multiple con-
figurations per state. That contrast is important because for ray
tracing, updating the configuration incurs cost: Changing the BVH
parameters requires rebuilding the data structure, which is an ex-
pensive operation. For exploration, we use a variant of the Nelder-
Mead simplex algorithm [NM65]. Our version is similar to that of
Chang [Cha12], using Latin Hypercube sampling [MBC79] as an
initialization method.

We investigate two different types of models in this paper. The
first one is a naive tabular approach and the second is based on a
generalized reinforcement learning method. Both approaches are
described in detail in the following two sections.

4.1. Nearest-Neighbor Prediction

The naive way to predict configurations is to record a table of pre-
vious states, configurations, and the observed runtime of those con-
figurations. When the application enters a known state, the best
known configuration can be selected from the table. Although this
solution is obvious, it is also obviously limited: The state space is

practically unbounded and too large to store let alone explore in its
entirety. Even if it could be stored, we have to assume that for most
states the table query would be unsuccessful, at least until the table
is sufficiently complete. Therefore, a successful predictor must be
able to service queries for unknown states. To realize such a pre-
dictor on the tabular model, we use a nearest neighbor approach:
If the current state is unknown, respond with the best configuration
for the state that is closest regarding Euclidean distance in the state
space.

4.2. Prediction Through Function Approximation

Even when using nearest-neighbor predictions, achieving high ac-
curacy may require enormous tables, which are expensive to store
and query. Fortunately, that problem has been investigated in the
past in the field of Reinforcement Learning. Generalized RL meth-
ods offer control (i.e., state-sensitive decision making) for large,
both discrete and continuous state spaces through function approx-
imation [SB18]. One more recent such algorithm is Greedy-GQ
[MSBS10]. The algorithm is an off-policy gradient-based temporal
difference learning method. It is relevant to our use-case because of
a set of interesting properties: Off-policy learning enables learning
from samples obtained using a different method than the predictor.
In particular that allows us to learn from offline data (e.g., from
past experiments or tuning searches) but also during online search,
and even to eventually disable exploration entirely. Additionally,
Greedy-GQ supports incremental online training and imposes no
limits on the features we can use to represent the model inputs. Fea-
tures encode properties of the model input in an application specific
way. Both the memory and runtime complexity of the Greedy-GQ
algorithm is linear in the number of features. The number of fea-
tures is both constant and much smaller than the cardinality of the
search space. Greedy-GQ is thus an improvement in terms of size
over the tabular approach.

At its core, Greedy-GQ manages the linear value function
Qθ(s,a), which assigns every state s and “action” a a value. In-
tuitively, the value estimates the benefit of choosing the action
a in state s. What is called an action in RL terminology corre-
sponds to one of the configurations produced by the tuning search
in the past. We thus use the terms interchangeably here. During
exploitation, the predictor selects the action that maximizes Qθ

for the current state. The Greedy-GQ value function is defined as
Qθ(s,a) =~θ ·ϕ(s,a), where ϕ(s,a) is a vector of real-valued fea-
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tures, and~θ are the coefficients to be learned. When a state-action
pair st ,at is evaluated, the coefficients are updated based on the “re-
ward” Rt+1 observed by the application, which is just the inverse
of the runtime the configuration at produced.

The update equations for ~θ are controlled by three hyper-
parameters: α, β, which are learning rates, and γ, which is a dis-
count factor governing the influence of expected future values. The
latter parameter has a particularly interesting semantic in our use
case. In the basic RL framework, actions taken in a given state
influence the states that will be assumed in the future. However
in our application, state changes are unaffected by the parameter
configuration we pick. This means that we can set γ to zero, cre-
ating an algorithm that is sometimes called a “myopic” [SB18].
The update rule in our implementation of Greedy-GQ thus becomes
~θt+1 =~θt +α(Rt+1−~θt ·ϕ(st ,at))ϕ(st ,at).

As features we use radial basis functions [KA97]. A radial ba-
sis function (RBF) is a Gaussian curve ϕi(x) = exp(−ωi||x− ci||),
where x = (s,a) is the concatenation of the state and action vec-
tors. The RBF is centered at ci with a width determined by ωi. The
hyper-parameters of our RBF model are the number of features and
each feature’s center and width. Based on preliminary experiments
we chose 3.5 times the number of parameters and indicators as fea-
ture count, which results in 100 features. The widths are set to a
fixed value of 1. The embedding of the indicator states and parame-
ter configurations into the feature representation and the generation
of the feature centers is described in the following.

To realize the feature embedding we must preprocess our model
inputs. The scales of the indicators vary drastically. Because the
distance metric is scale-variant, indicators spanning on larger scales
will carry more weight in the distance computation than smaller
ones. Before passing them into the RBF model, we thus need to nor-
malize parameters and indicators to a comparable scale. For each of
them we estimate their minimum and their maximum value. This is
quite easy for the parameters since they are constrained by the de-
sign of the acceleration structure. For the indicators, we need to
select a meaningful maximum (with the default minimum being
zero) based on data. The biggest evaluation scene has 1.8 million
triangles, we chose 10 millions as our upper bound. Regarding the
extent, we chose 100000 and for the number of lights we chose
100000 even though most scenes have only the environment light.
The maximum number of meshes was fixed to 100000. For the area,
the biggest one is 5.83, so the area maximum was fixed to 10. For
the field of view, it is logical to fix a maximum of 180, for the Dif-
fuse Ratio a maximum of 1.0. For the camera positions a maximum
of 10000 was used.

Finally, we need to define the centers of the features to form
the RBF model. We produce the centers by quasi-randomly plac-
ing them in the down-scaled parameter and indicator space. Using
Latin Hypercube Sampling again we obtain a space-spanning set of
points within the space.

5. Evaluation

In this section we present the evaluation of our autotuned ray tracer.
We compare hybrid autotuning to classical continuous online-
autotuning. Because of the ε-Greedy policy that hybrid tuning uses

to decide between exploration and exploitation, we are able to
evaluate both modes in isolation. The ε-Greedy policy is purely
stochastic. Therefore the tuner behavior in a production environ-
ment can be extrapolated from the per-mode results probabilisti-
cally.

We benchmark on seven scenes with differing complexities
and characteristics. The scenes are sponza, gallery, vok-
selia_spawn, conference, fireplace_room, buddha
[Mor17] and bmw-m6 (which we call car) [PJH17]. These scenes
have been chosen for their wide variety of geometry. The vok-
selia_spawn scene for instance is a rather large, open world
but with a peculiar aspect: triangles are almost all of the same size
because the world is composed of boxes. The buddha scene con-
tains a highly triangulated mesh, but it only occupies a portion of
the viewport at a time. The distance to the object is thus particularly
important as fewer rays will intersect the object when the distance
between camera and object increases. The car scene is quite sim-
ilar to buddha, being highly tesselated, but it also features two
reflective planes that bounce rays back to the car instead of ending
in the environment map. The gallery, conference, fire-
place_room, and sponza scenes enclose the cameras, so most
of the lighting is indirect. Light paths are therefore occluded and
rays tend to bounce more often causing the average path length to
be higher.

We distinguish two ray tracing use-cases: progressive and real-
time rendering. In the former, the acceleration data structure is
constructed once and the rendering takes place as long as the
scene/camera does not move. For real-time rendering, there is only
one rendering step. This distinction affects the target function of
our tuning scenario. The performance of progressive rendering is
dominated by the rendering step, so the tuner should minimize ren-
dering time. The target function of real-time rendering must addi-
tionally account for the time required to build the data structure.
We therefore minimize the sum of construction and rendering time
in this case.

5.1. Performance Results: Exploration Through Search-Based
Online-Autotuning

First, we establish that online-autotuning improves ray tracing per-
formance. We measure the speedup achieved by the autotuned con-
figuration. Autotuning is initialized with the commonly recom-
mended values, listed in Table 1. The recommended configuration
is also used as the baseline for the speedup computations. We con-
ducted two experiments, one optimizing rendering time only and
one optimizing the total time (i.e., the sum of rendering time and
acceleration structure building time).

Figure 4 shows speedups of converged autotuning runs on the
seven scenes. The sponza scene benefits the most from autotun-
ing and gains speedup of 11% (median). The other scenes show
a moderate improvement, between 2 to 4% on average. Since the
search algorithm starts on the recommended configuration, the con-
verged configuration never falls below a speedup of 1. Figure 2
shows typical tuning runs. We observe the pattern of initial perfor-
mance degradation during the first few iterations. After about 60
iterations the runtime converges to a better result than the recom-
mended configuration. Additionally, we see how the choice of the
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Figure 4: Speedups of converged configurations relative to recom-
mended configuration.

target function (i.e., optimizing rendering time or total time), affects
the configuration found. When tuning rendering time, the tuning re-
sult outperforms the default configuration by about 50 ms as shown
in the left hand plot. Considering the total time on the other hand,
the same tuning result shown in the right hand plot degrades per-
formance by roughly 40 ms. However convergence time and wildly
varying render times is still a major problem of online-autotuning.

5.2. Performance Results: Exploitation Through Predictive
Online-Autotuning

In the following we report the performance results achieved by the
prediction component of our hybrid tuner. We compare the per-
formance of the predicted configurations to search based tuning.
To understand the comparisons, consider the motivating example
in Figure 5. We show in this figure the typical runtime behav-
ior as observed during the tuning process. The jagged black curve
shows the measured runtime during every iteration of a Nelder-
Mead search. This is a tuning curve for one of the camera positions
on the car scene. The purple bottom horizontal line represents the
tuning curve (Roofline) of an ideal predictive autotuner: Using the
best configuration from the first iteration. Note that this is not the
true roofline, which we cannot know without exhaustively explor-
ing the configuration space. We consider as roofline here the best
configuration we found using the search. Lastly the green horizon-
tal line exemplifies the result produced by our predictor. In general
it produces a configuration that is worse than both the roofline and
the tuning result. We quantify in the following sections how much
worse the prediction result actually is. The primary aim of the pre-
dictor is not to produce a configuration as good as the roofline or the
tuning search. Instead, its purpose is to reduce the total time spent
searching, i.e., the time spent to complete a specific number of it-
erations. For progressive rendering this relates to the time required
to compute a fixed number of frames. The time required to com-
plete the 80 iterations in the example in Figure 5 is the area under
the respective curves. The area highlighted in orange in the figure
shows the performance gain achieved by using the predicted green
configuration. The gray-colored area in turn shows the missed po-
tential improvement. In the evaluation presented in this section we
analyze our tuner with regard to both aspects: How much does our

T
im

e 
 [m

s]

90

100

110

0 20 40 60 80
Iteration

RBF Model Roofline Tuning

Time saved by not searching

Missed potential gain

Figure 5: Example: Tuning traces on the car scene. The area un-
der the curves represents the time required to compute a fixed num-
ber of iterations. The colored areas represent the performance gain
and missed potential of a predictor.

predictor improve the time required to complete a fixed number of
iterations, and how close to the ideal performance does it get.

5.2.1. Generating Training and Validation Data

To vary the indicator state for the evaluation scenes in a controlled
manner, we generate cameras moving through the scenes. The cam-
era path is designed to pass through a variety of different configu-
rations. For example, for the buddha scene the camera path will
go through a closeup of the Buddha statue and then move further
away, dramatically changing the amount of visible geometry. This
is to ensure that the training set is as diverse as possible. We cre-
ate these 100 cameras positions for every scene, interpolating the
movement using a simple spline. To produce training and validation
data, we first run the classic Nelder-Mead tuner for 80 iterations.
The number is sufficient for the search to converge for all possi-
ble camera positions. Each search iteration builds the acceleration
structure and renders one spp. This gives us to 80 ·100 ·7 = 56000
data points per scene as a baseline. The evaluation machine features
an i7-6700 at 3.40 GHz with 8 hardware threads, 8 MB of cache
and 32 GB of RAM. The baseline data is recorded as mappings of
indicator states to parameter configurations and timings.

From the baseline data we randomly pick 80 camera positions
for training, and the remaining 20 for validation for each scene.
We repeat the training and verification process 15 times. To train
the nearest-neighbor predictor, we generate a lookup table map-
ping indicator states to optimal baseline configuration. The table for
each training round contains 80 ·7 configurations. For an unknown
state, the nearest-neighbor predictor returns the configuration that
the table maps to the closest known indicator state in terms of Eu-
clidean distance. The RBF model is trained on the full training set
of 80 · 80 · 7 = 44700 data points. Using the update rule described
in Section 4.2 we obtain the linear combination of RBF features.

For the verification phase we evaluate the predictor on the 20
remaining cameras. We compare the performance of the configu-
ration returned by the predictor with the baseline data. Note that
this leaves room for error: The baseline data does not necessar-
ily contain the globally optimal configuration. Only an exhaustive
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Figure 6: Speedups of our predictor over search-based tuning.
Both search and predictor minimize rendering time only.

and extremely time-consuming exploration of the parameter space
could find that configuration. However, since we are only compar-
ing search-based and predictive autotuning here, our comparison is
sufficient.

5.2.2. Optimizing Render Time

We first analyze the behavior of our predictor for progressive ren-
dering, which means rendering time only is to be minimized. In
Figure 6 we show the speedup achieved by the predictors over the
search baseline. The search baselines are the accumulated render-
ing times for 80 spp for the respective scenes and camera posi-
tions. In the figure, we compare the result of the table-based near-
est neighbor predictor and the RBF model. We train the model as
explained above. Although all observations are used to build the
model, only those the Nelder-Mead algorithm deemed locally op-
timal are considered by the predictor. The speedup results shows
that both the nearest neighbor and the RBF model predictor outper-
form the baseline in most cases. On average, using the geo-mean
(geo-mean), they achieve a speedup of 1.05 and 1.04, respectively.
However, we see two scenes where the RBF model does not find ad-
equate configurations, namely buddha and vokselia_spawn.

Based on the speedup results we can also compare the over-
heads. We consider the overhead against a virtual baseline, which
is the best known configuration for a camera and scene. Unlike for
the roofline comparison done below, we choose the best among
both the search and the predictions to make sure the overhead is
non-negative. We achieve a geo-mean overhead reduction of up
to 87.5% (for the sponza scene) using the nearest-neighbor pre-
dictor. The RBF predictor reduces only up to 79.2% of the over-
head (for the gallery scene). Although the speedups appear to
be small, the presentation here hides an important fact: We are
comparing only render time. While that is the appropriate met-
ric for progressive ray tracing it is not true for our baseline. The
Nelder-Mead search samples different configurations at every iter-
ation. Changing the configuration requires rebuilding the accelera-
tion structure. In practice this incurs a substantial overhead for the
baseline, but we exclude this in our comparison here for fairness.

In Figure 7 we compare our predictors against the roofline for
every scene and camera position. In all cases both nearest neigh-
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Figure 7: Comparison of the predictors against the rooflines for
every scene and camera position. Both baseline and predictor min-
imize rendering time only.

bor and the RBF model are close to a speedup of one versus
the rooflines. The geo-mean for both is above 95%. Although the
speedup we achieve over the search appears small, we are close to
what is actually achievable. Interestingly, the RBF model outper-
forms the roofline in several cases. This indicates that the base-
line search has not found the globally optimal configuration for
these scenes. This is a caveat of the Nelder-Mead search algorithm,
which only converges against local optima. In Figures 6 and 7 we
note outliers for the gallery and sponza scenes. These data points
are consistent with the camera transitioning from non-occluded to
highly occluded configuration.

Given the performance of only five percent one may ask: Why
choose prediction over search? The question ignores the overhead
in the baseline we are hiding. To answer the question, we present
another view on the search and prediction comparison in Figure 8.
The plot shows the number of tuning iterations and thus rendering
samples required for the search to actually outperform the predic-
tion. The data points the plot is based on represent the iteration
number in which the curves of the cumulative times intersect. For
the RBF model the mean break even point is 362, and for nearest
neighbor it is 1771. That means, on average at least 362 rendering
samples are necessary to observe a benefit from the configuration
found by the search, even though that particular configuration is
better than what the predictor provided. For visualization, we ex-
cluded 875 data points from the plot. That set includes 30 points
for which the break-even point is greater than 10000. Those refer
to predicted configurations which yielded similar performance to
what the search produced, so the curves are nearly parallel. For
845 points the break even point is negative, which are cases where
the predictor found a better configuration than the search. For the
RBF model these stem predominantly from the car and fire-
place_room scenes, where roughly 12% of the data points out-
perform the roofline.

5.2.3. Optimizing Render and Build Time

We evaluate the behavior of our predictors in a real-time context. In
this use case the BVH has to be rebuilt every frame. The feedback
function of the tuner measures the sum of rendering time and build-
ing time in this scenario. Figure 9 shows that the nearest neighbor
approach still outperforms the baseline on most scenes. The only
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Figure 8: Break-even points of the Nelder-Mead search. A substan-
tial number of Nelder-Mead iterations is required to break even
with predicted configurations.
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Figure 9: Speedups of our predictor over search-based tuning.
Both search and predictor minimize rendering time and building
time.

scene where more than 25% of the runs do not outperform the base-
line is fireplace_room. On average, the nearest-neighbor ap-
proach achieves a speedup of 12%. The RBF model shows good be-
havior on car and gallery but the performance is underwhelm-
ing compared to the previous approach and does not accelerate ren-
dering. When minimizing total time We achieve a geo-mean over-
head reduction of up to 89.3% (for the vokselia_spawn scene)
using the nearest-neighbor predictor. The RBF predictor reduces
only up to 53.4% of the overhead (for the gallery scene). In
Figure 10 we compare our predictors to the roofline for every scene
and camera position. The roofline is again the best configuration
found during search. The nearest-neighbor predictor is close to the
roofline in most cases with an average of 92%. Compared to the
nearest-neighbor predictor our RBF models shows greater variance
and slower performing averages with 83%. We note that the RBF
model tend to cross the roofline way more often than the nearest
neighbor variant. This is due to the RBF model finding a better local
optimum in configurations that do not satisfy the nearest-neighbor
criterion.

6. Conclusion

In this paper we applied online autotuning to parallel raytracing.
Autotuning is not widespread in ray tracing yet. Hard real-time
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Figure 10: Comparison of the predictors against the rooflines for
every scene and camera position. Both baseline and predictor min-
imize rendering time and building time.

requirements and the fact that updating parameter configurations
is a costly operation render established autotuning techniques in-
sufficient. To deal with these issues we introduce a novel hybrid
online autotuning scheme. Borrowing methods from the field of re-
inforcement learning we combine search-based tuning with model-
based prediction. Search-based tuning offers well-established ex-
ploration capabilities to find locally optimal parameter configura-
tions for given inputs. Model-based prediction on the other hand
produces configurations without sampling, eliminating the need to
rebuild the acceleration structure for new parameter configurations.
Combining autotuning and machine-learning, we successfully mit-
igated their respective downsides.

Our evaluation on seven scenes of varying complexity and prop-
erties shows that our predictors are able to compensate for the
overhead of the search-based tuning. A simple nearest-neighbor
achieves 95% of the performance offered by the search-based tun-
ing while reducing the overhead by 5% of the rendering time. Be-
cause the nearest-neighbor predictor requires maintaining large in-
put state tables, we also investigate a function approximation ap-
proach. We train a radial basis function model online during the
search to provide the predictions. Although the space complexity
of the model is constant with respect to the number of inputs, its
performance is competitive. Our approach is also scalable to many-
node parallelism. We can either use a predictor for each node or a
predictor for the entire architecture, but future work in this direction
is required.

Our results show that always-on online autotuning can be de-
ployed with ray tracing, and provide substantial acceleration. Us-
ing our hybrid tuning technique the overhead of the search can be
mitigated.
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