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Abstract

In-situ visualization and analysis is a powerful concept that aims to give users the ability to process data while it is still resident
in memory, thereby vastly reducing the amount of data left for post-hoc analysis. The problem of having too much data for post-
hoc analysis is exacerbated in large-scale high-performance computing applications such as Nek5000, a massively-parallel
CFD (Computational Fluid Dynamics) code used primarily for thermal hydraulics problems. Specifically, one problem users of
Nek5000 often face is validating the mesh, that is identifying the exact location of problematic mesh elements within the whole
mesh. Employing the standard post-hoc approach to address this problem is both time consuming and requires vast storage
space. In this paper, we demonstrate how in-situ visualization, produced with SENSEIL, a generic in-situ platform, helps users
quickly validate the mesh. We also provide a bridge between Nek5000 and SENSEI that enables users to use any existing and

future analysis routines in SENSEI The approach is evaluated on a number of realistic datasets.

CCS Concepts

o Human-centered computing — Visualization systems and tools; ¢ Computing methodologies — Massively parallel and
high-performance simulations; e General and reference — Performance;

1. Introduction

As the high-performance computing (HPC) world moves towards
extreme-scale systems, the ratio between the amount of data sci-
entific applications produce and the available IO bandwidth grows
quickly. On some supercomputers that are already in use now, such
as the Titan machine [Tit] in Oak Ridge Leadership Computing
Facility (OLCF) at Oak Ridge National Laboratory (ORNL), the
disparity between the computational bandwidth and storage band-
width is as much as five orders of magnitude [BAA*16]. On Sum-
mit [Sum], the next generation machine in OLCEF, the disparity is
even higher, since the computation ability has increased but no im-
provements were introduced in the storage system. This means that
extreme-scale applications will not be able to write all the data
they produce to a persistent storage. Even if applications manage
to store as much as possible, the amounts of data make traditional
post-hoc analysis time and resource consuming. Post-hoc analysis
is a term that refers to the traditional model for analyzing and vi-
sualizing data; that is, once the application has finished running,
the data is loaded back into the memory for analysis or visualiza-
tion. This often requires allocating new computational resources
on supercomputers, as analysis and rendering routines are compu-
tationally heavy and thus can benefit from parallel execution. It is
easy to see that this process can quickly become the bottleneck in
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the users’ effort to speed up the rate at which scientific insights are
obtained.

In-situ analysis is an alternative approach to post-hoc processing,
whereby analysis and visualization occur without first writing the
data to persistent storage [YWG* 10, KKP* 15, BAA™16]. Not only
does this eliminate the need to allocate new resources and reload
data back into the memory, but it also allows analysis routines to
see all the data the application produces. The latter offers the pos-
sibility of a meaningful data reduction, instead of just filtering the
data according to a timestep number, as scientific applications of-
ten do. Another advantage of in-situ techniques is computational
steering, which is a process of altering the course of the compu-
tation in response to some insight obtained by the user during the
computation.

One prominent example of an efficient large-scale code that has
been traditionally analyzed in a post-hoc fashion is the Nek5000
code [Nek]. Nek5000 is a high-order spectral element computa-
tional fluid dynamics (CFD) solver that has been in use for more
than 30 years [OMS*16]. It is used to obtain accurate simulations
for a wide range of scientific domains, including fluid flow, thermal
convection, combustion, magnetohydrodynamics, and electromag-
netics. Over the course of the calculation spectral (mesh) elements
undergo a process of deformation. Some deformations are so severe
that they causes the element’s Jacobian to become negative, a situ-
ation sometimes described as a vanishing Jacobian. In such cases,
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users get a textual output from Nek5000 with indices of the prob-
lematic elements and it is a very time consuming process to link
these indices back to the mesh elements in the mesh generation ap-
plication. Seeing where vanishing Jacobians occurred visually can
direct users to the regions that need to be fixed more quickly. It
saves a significant overhead in the users’ work.

In this study, we address the challenge of finding mesh elements
with vanishing Jacobians quickly. For this purpose, we use effi-
cient in-situ visualization that highlights the elements with very
small and vanishing Jacobians. This allows users to pinpoint and
fix the culprit elements faster than they would be able otherwise.
Most importantly, however, this approach helps users avoid burn-
ing a huge number of core hours in failed big runs. With this,
they can verify their meshes on smaller (and cheaper to oper-
ate) computing resources. The in-situ visualization is achieved
through SENSEI [AWW™* 16, Sen], a generic in-situ platform that
supports a growing number of analysis backends, and the Par-
aView/Catalyst [PVC] backend. Specifically, our contributions are
as follows:

e Novel approach to validate meshes for combustion simulations
in situ.

e A study of strong scaling performance of in-situ visualization
based on SENSEI and ParaView/Catalyst.

e A bridge between Nek5000 and SENSEI that enables users to
use any existing and future analysis backends in SENSEIL

The rest of the paper is organized as follows. We start by re-
viewing related work in Section 2 and then continue in Section 3
with a brief description of the Nek5000 code and the specifics of
identifying vanishing Jacobians. In Section 4 we cover the SENSEI
platform before discussing the evaluation and results in Section 5.
Finally, we present conclusions and potential future work in Sec-
tion 6

2. Related Work

Previous work [ABD*16] examined the scalability, overhead, and
performance aspects related to instrumenting mini applications
(i.e., smaller proxy codes for simulations) with SENSEI. The au-
thors found that SENSEI is a flexible and scalable approach for
in-situ analysis and visualization. In a later work [URW* 18], SEN-
SEI was used to instrument LAMMPS, a large-scale molecular dy-
namics code, and visualize the molecules in transit. The difference
between in-transit and in-situ analysis is that the former uses sepa-
rate computing nodes to run the analysis and visualization routines,
thereby allowing overlapping simulation and analysis steps. In our
case, there is no benefit in performing the visualization in transit
since the fluid motion calculations are disabled so the visualization
part gets to use all the available computation resources.

Ascent is another in-situ analysis framework [LAA*17] analo-
gous to SENSEI. However, the data model in Ascent is based on
Conduit [Con] and not on the VTK data model used in SENSEI.
Conduit is a model to describe scientific data to make data ex-
change in the form of serialization or I/O easier. On the one hand, it
offers more flexibility in terms of analysis algorithms available for
users. On the other hand, however, it makes integration with Par-
aView/Catalyst harder. The ability to use the power of ParaView

through Catalyst is a key element of our approach. Furthermore,
since SENSEI is a generic platform, users can easily switch to us-
ing Vislt if it offers better capabilities for some visualization tasks.

Whitlock et al. [WEM11] developed an analogous library to Par-
aView/Catalyst called VisIt/Libsim [WFM11]. This library allows
users to render the simulation data in situ using the Vislt visualiza-
tion tool. Similar to ParaView/Catalyst, SENSEI provides an anal-
ysis backend for VisIt/Libsim. One advantage of using ParaView is
that it offers an easy way to produce Cinema databases [AJO™ 14],
a capability that might be very useful for inspecting problematic
mesh elements within a larger mesh. At the time of our study, Vislt
did not provide support for Cinema.

Bauer et al. [BAA*16] first explain the motivation for in-situ
analysis, and then survey methods, infrastructures, and a range of
applications that use in-situ techniques for analysis and visualiza-
tion. One of the presented applications uses ParaView/Catalyst for
data analysis and another application combines Cinema with Par-
aView/Catalyst. Our approach is based on these earlier experiences
and is applied to identifying vanishing Jacobians. In earlier work,
Yu et al. [YWG™10] and Ribes et al. [RLJF15] demonstrate that in-
situ visualization of combustion and CFD simulations, respectively,
is useful and can be performed at scale.

3. Nek5000

Nek5000 is a massively parallel, open-source CFD solver based on
the spectral element method (SEM) which combines the geometric
flexibility of finite element methods (FEM) with the rapid conver-
gence and tensor-product efficiencies of global spectral methods.
It uses Eulerian operations that are statically partitioned with the
aim of optimized load balance and communication overhead prior
to the start of every production run. It is written in Fortran 77 and
C with support for post-hoc data analysis and visualization using
either Vislt [Vis] or ParaView [Par].

3.1. Combustion simulation

Several studies [SFT*14, SFW*16, FST17, GFB*17] have shown
Nek5000 to be a promising tool to investigate the complex thermal-
hydraulic phenomena within an internal combustion engine. For
this kind of simulations, Nek5000 solves the low-Mach compress-
ible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian
framework. In this case, a Lagrangian description of the boundary
is adopted where the mesh is updated at every timestep to conform
to the new boundary location while the flow-field is solved using an
Eulerian approach. As the boundary moves, each spectral element
in the domain is deformed due to the inherent body-conforming
property of the SEM. Deformations can lead to dramatic changes
in the shape of the elements causing high-aspect ratios and poten-
tially vanishing Jacobians. This tends to occur in the vicinity of a
complex boundary like the engine valves or the runner-valve-stem
connection.

Figure 1 presents an example mesh generated in CUBIT [Cub],
a toolkit for generating two- and three-dimensional finite element
meshes. This mesh is one of the datasets we evaluate in Section 5.
To generate the mesh, the volume of an engine is partitioned in non-
overlapping sub-volumes that are simpler to mesh. This means that
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Figure 1: Example input dataset [SRYK14] in CUBIT.

we can create a mesh on a particular surface (i.e., in 2D) of the vol-
ume and sweep or extend the mesh throughout the sub-volume. In
most cases, the order in which the volumes are meshed is crucial for
creating a continuous and smooth final mesh with relatively homo-
geneous sizes for the hexahedral elements. When the order is not
optimal, the 2D surface mesh is not ideal, or the sub-volumes them-
selves are too skewed, hexahedral elements may become highly
skewed or distorted. In this case, the elements may still be valid
(i.e., non-vanishing Jacobians) at the start of a production run, but
at the same time, may be prone to vanishing Jacobians much sooner
during the mesh motion. As a result, mesh generation requires care-
ful treatment and users invest a significant amount of time and re-
sources to make sure that the mesh is “suitable,” that is has a low
probability for the occurrence of vanishing Jacobians.

3.2. Identifying vanishing Jacobians

The goal of our workflow is to determine when and where vanish-
ing Jacobians, if any, occur. This allows users to validate the mesh
before running any real, production-level simulations. For motored
engine operations, the motion of the piston and valve are known
a-priori. This means that the hydrodynamic calculation can be dis-
abled leaving only mesh motion active, thereby allowing a faster
computation. Once users have identified any potential vanishing Ja-
cobians and updated the mesh accordingly, the fluid motion calcu-
lation can be switched back on. Faster computation leads to faster
turnaround time for the workflow, which means it can be repeated
multiple times. This ensures that after initial vanishing Jacobians
are eliminated no new ones occur later in the simulation. Once van-
ishing Jacobians are identified the process of fixing or regenerating
the mesh usually involves re-creation of sub-volumes or refinement
of the mesh in a sub-volume to improve skewness and aspect ratio.
Usually the re-creation of the element distribution takes place in
the region where vanishing Jacobians are found.

Visualizing vanishing Jacobians allows users to locate the prob-
lematic regions of the mesh quicker. Without visualization, users
see just a textual output from Nek5000 informing them that vanish-
ing Jacobians occurred and what are the indices of the problematic
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Figure 2: Overview of the SENSEI platform.

elements. These indices are not directly linked to the IDs of the
elements in CUBIT, and users have no easy way to translate these
indices to IDs.

4. The SENSEI Platform

In this section, we describe the SENSEI platform and its Par-
aView/Catalyst [PVC] backend that we use to render the mesh in
situ. We also cover the approach to instrument the Fortran-based
Nek5000 code with SENSEI which is a C++ code.

4.1. Overview

SENSEI (or Scalable Environment for Scientific Explorations In
Situ) is a platform that aims to improve code portability and
reusability by decoupling simulations from the analysis routines.
The design philosophy of SENSEI is write once, use every-
where [AWW ™ 16]. This means that from the simulation perspective
the code can be instrumented once and then use any of the already
available or future analysis backends offered by SENSEIL.

Figure 2 presents a schematic overview of how SENSEI links
simulation code to analysis backends. To support a common instru-
mentation interface, SENSEI is built with a common data model
in mind. This data model is the VTK data model, which is widely
used in applications such as ParaView and Vislt. The figure identi-
fies three components of the SENSEI interface: In-situ bridge, Data
adaptor, and Analysis adaptor. First, the purpose of the bridge is to
expose an API that simulations can use as entry points into SEN-
SEI. Essentially, these entry points are used to pass data to SENSEI
and trigger the in-situ analysis. Second, the data adaptor role is to
map simulation data to the VTK data model. Lastly, the analysis
adaptor serves as a driver for the analysis backends.

When users want to add support for a new simulation, they
need to write a new data adaptor and a new in-situ bridge mod-
ule. Depending on how the data is represented in the simulation,
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the amount of effort involved is usually small. In some cases the
data conversion requires no memory copying at all, a situation
known as zero-copy. Most importantly, however, the coding of
the data adaptor and the in-situ bridge module is a one-time ef-
fort. Once these components exist they will, in most cases, sup-
port without any changes new analysis backends added to SENSEI.
Existing analysis backends include in-situ infrastructures, such
as Vislt/Libsim [WFM11] and ParaView/Catalyst, the ADIOS 10
framework [LLT™14], and Python. To support a new backend, one
has to implement a new analysis adaptor that takes the data from
the data adaptor and performs any necessary transformation to al-
low the backend to use this data.

4.2. Nek5000-SENSEI bridge

The interaction between Nek5000 and SENSEI is implemented in
a data adaptor and a bridge. The bridge implements three func-
tions that correspond to three phases of the simulation. Listing 1
shows how these functions fit into the Nek5000 structure. The
first function, namely sensei_bridge_inititalize, is called before
the main iteration loop. The goal is to allow SENSEI to initial-
ize any analysis backends that the user specified for this specific
run. It is also used to create the data adaptor and pass it along
to analysis adaptors. In this case, the data adaptor has to convert
the Nek5000 mesh to the VTK unstructured grid. One of the im-
portant steps in the conversion involves generating mesh connec-
tivity information, which is explicit in VTK data model but im-
plicit in Nek5000. The function sensei_bridge_update is called at
the end of each iteration in Nek5000 to allow SENSEI to exe-
cute the analysis backends for this specific iteration. The last func-
tion, which is sensei_bridge_finalize, is called after the main iter-
ation loop ends. At this point, SENSEI can finalize all the analy-
sis backends, which means the backends can perform last analy-
sis steps, such as render final images or close any open files. Note
that sensei_bridge_update receives only one argument, namely the
timestep number. SENSEI already received the pointers to the mesh
data and Jacobians array in sensei_bridge_inititalize, and since no
data is copied into new memory, any updates of these arrays in
Nek5000 will be automatically reflected in SENSEIL.

Listing 1 Pseudocode for Nek5000 instrumentation
1: init_simulation()

: sensei_bridge_inititalize( mesh, jacobian_arr )

: timestep = first

: while timestep < last do

simulation_step()

sensei_bridge_update( timestep )

timestep++

: end while

: sensei_bridge_finalize()

: finalize_simulation()

—_
(=]

Since Nek5000 is a Fortran code and SENSEI is written in C++,
the bridge code is compiled as a static library and the interface—
with only three functions—is exported as plain C code. This means
that the Fortran compiler can link Nek5000 with this library, while
the library itself is compiled with a C++ compiler and linked with

SENSEL The result is that all of SENSEI functionality is easily ac-
cessible. This approach can serve as a guideline for other codes that
want to use SENSEI but are written in Fortran or other languages
different from C++.

4.3. ParaView/Catalyst backend

ParaView is a data analysis and visualization application used ex-
tensively for scientific visualization. As with many traditional visu-
alization tools, ParaView is usually used post-hoc, that is after the
simulation finished running. In a typical workflow, users will im-
port the data (possibly in different formats) into ParaView, perform
various filtering or analysis, and then produce the necessary visual-
ization. To speed up rendering, ParaView supports parallel render-
ing and efficient compositing through the IceT library [MKPH11].
Recognizing the importance of in-situ processing, ParaView in-
cludes an infrastructure called Catalyst for in-situ analysis and vi-
sualization. It offers both C++ and Python interfaces, and allows
codes to use ParaView capabilities (both data analysis and render-
ing) programmatically from within the code itself and while it still
executes [PVC].

Catalyst is one of the analysis backends supported by SENSEI,
and there is a clear advantage in using it through SENSEI. First,
the Catalyst analysis adaptor includes boilerplate code that makes
it easier to use Catalyst. Second, users can easily switch to a differ-
ent analysis backend without wasting time rewriting the boilerplate
code or learning the intricacies of a new interface. To use Cata-
lyst from SENSEI, users provide a Python script file that instructs
the ParaView engine how to produce the desired visualization. This
script file can be easily exported from a ParaView session. For this
to work, however, users have to have the data they need to visual-
ize at hand. They can then load it in a ParaView client and perform
any needed analysis and/or visualization steps. Once the desired vi-
sualization is achieved, ParaView can produce a Python script that
recreates this exact visualization. When running in situ, the data
will be passed to Catalyst directly in memory and will not be read
from the disk.

To help users find vanishing Jacobians faster, we have to high-
light those areas of the mesh that have the smallest Jacobians. For
this purpose, we use two Clip filters in ParaView. The first one
filters out all the mesh elements with Jacobians above a certain
threshold, and colors the remaining ones according to the value of
the Jacobian. The second one filters out all the mesh elements with
positive Jacobians such that all the remaining elements have van-
ishing Jacobians. To better see these elements within the surround-
ing mesh, we render them as bright green points. The original mesh
is left as a semi-transparent background to provide context for the
highlighted elements. Figure 3c, in Section 5, shows an example of
the visualization that results from this pipeline.

This workflow does not require full mesh for all the iterations
of the simulation. It is enough to have the full mesh for just one
timestep, which requires minimal overhead in terms of computing
resources and storage. For the purpose of writing the mesh data,
SENSEI provides an analysis adaptor called PosthoclO that writes
the data from the data adaptor directly to the disk. This data is al-
ready in VTK format—in case of Nek5000, these are *.vtu and
* pvd files—and can be readily loaded into ParaView.

(© 2019 The Author(s)
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Table 1: The datasets for the evaluation. Duration specifies the
number of time steps.

Dataset Type No. elements Duration [ts]

A 3D 6,784 4
B 2D 1,060 10,000
C 3D 19,216 1,700

5. Evaluation

In this section, we evaluate our approach based on in-situ visual-
ization that allows users to quickly validate meshes for combustion
simulations. We start with a description of the evaluation environ-
ment, including the different datasets we used, and then continue
with a detailed discussion of results and performance aspects.

5.1. Experimental setup

We ran the experiments on the Cooley cluster [Coo] at Argonne
Leadership Computing Facility (ALCF), a division within Argonne
National Laboratory. Cooley comprises 126 nodes with two Intel
Haswell CPUs (12 cores in total) and an NVIDIA Tesla K80 GPU
for each node. All the nodes are connected via Infiniband. The pur-
pose of Cooley is to serve as a cluster for analyzing and visualiz-
ing data obtained from running simulations on other machines at
ALCE. In other words, Cooley shares the file system with other
machines, so that when simulations finish running and writing data
to storage, analysis routines on Cooley could access the data. A
separate machine for analysis and visualization fits into the tradi-
tional paradigm of post-hoc processing. In our case, however, using
Cooley shows that the approach does not require bigger and more
expensive, in terms of operational costs, resources.

For the evaluation, we chose three datasets that focus on sim-
ulating combustion in an automobile engine. Table 1 presents the
parameters of each dataset in terms of mesh type, the number of
elements, and the simulation duration. The three datasets represent
three possible situations with respect to vanishing Jacobians. For
the first dataset, we already knew in advance that vanishing Jaco-
bians will occur at timestep 4 and the simulation will not be able to
continue. For the second one, we knew in advance that vanishing
Jacobians will not occur, so the simulation was able to run for the
whole duration of 10,000 timesteps. Finally, for the third dataset,
we did not know in advance whether vanishing Jacobians will oc-
cur or not, a situation most close to reality. In the course of the
evaluation, we discovered that vanishing Jacobians in this case do
occur at timestep 1,700, and this is the duration for dataset C.

5.2. Results analysis

In this subsection, we present the results of our experiments on
datasets A, B, and C. Furthermore, we describe how to combine the
Cinema framework in our workflow such that users get images from
different viewpoints. Finally, we discuss the performance aspects of
our approach.

© 2019 The Author(s)
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5.2.1. Dataset A

This dataset has a short duration and a fairly small number of el-
ements. We ran it, therefore, on just one node with 12 MPI ranks.
Figure 3 depicts the mesh of dataset A in three different situations.
Figure 3a shows the mesh without any filters that highlight very
small Jacobians. The color range is based on a log scale and repre-
sents the range of all Jacobians. This particular image depicts the
mesh at the first timestep and it was created in a separate run to
show how difficult it is to spot mesh elements with the smallest
Jacobians. Figure 3b shows the image, rendered in situ, of a fil-
tered mesh after the first timestep. All the Jacobians greater than
1x107 7 are clipped and the remaining ones are located on the
top and bottom rims of the mesh. The original mesh is rendered
as well, but semi-transparently, so that it provides context without
obstructing the areas with potential vanishing Jacobians. Figure 3¢
shows the image of a filtered mesh rendered after the last timestep,
namely the timestep at which vanishing Jacobians occur. In this
image, green points depict the mesh elements with these Jacobians.
This information provides time-saving guidance in the effort to fix
the problematic elements in the mesh generation tool.

5.2.2. Dataset B

Being a 2D dataset rather than a 3D one makes mesh deforma-
tion much less severe. Although the chance of vanishing Jacobians
occurring in this case is lower, it is still above zero. Figure 4 de-
picts the mesh of dataset B in three different situations. Figure 4a
is analogous to the unfiltered mesh image in the previous dataset.
Figure 4b shows the image (of a filtered mesh) rendered in situ af-
ter half of the timesteps. At this point, the valve has moved down,
which results in less deformation of the mesh elements and, conse-
quently, higher Jacobians. Figure 4c shows the image of a filtered
mesh rendered in situ after the last timestep (i.e., timestep 10,000).
The valve moved back up and closed the opening, which results
in more deformation and lower Jacobians. However, no Jacobians
became negative and, as a result, there are no green points in the
image.

5.2.3. Dataset C

We ran this dataset on 60 MPI ranks such that there were approx-
imately 320 mesh elements per rank. Figure 5 depicts the mesh of
this dataset in four different situations. Figure 5a is analogous to
the unfiltered image in the previous datasets. Figure 5b shows the
image of a filtered mesh rendered after the first timestep. There is
an area of small Jacobians on the pipe leading to the chamber, but
since this part is not moving in the simulation, the mesh elements—
and the respective Jacobians—do not change. Figure 5c shows the
image of a filtered mesh after 85% of timesteps. In this image, the
valve is on its way up to close the opening into the chamber. Com-
pared to the first timestep, there are more elements with small Ja-
cobians on the valve’s boundary. Figure 5d shows the image ren-
dered in situ after the last timestep, namely the timestep at which
vanishing Jacobians occur and the simulation stops. Compared to
dataset A, there are much fewer elements with vanishing Jacobians
and without rendering the image in situ, it would have been very
challenging for users to find these elements and fix the mesh.

Figure 5d also demonstrates that the bright green dots that mark
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(a) Unfiltered mesh

(b) Filtered mesh (first timestep)

(c) Filtered mesh (last timestep)

Figure 3: In-situ visualization of dataset A. Images with a filtered mesh highlight very small and vanishing Jacobians. All the images are

RGB with 1400 x 800 pixels and 8-bits per channel.

(a) Unfiltered mesh

(b) Filtered mesh (50% of time steps)

(c) Filtered mesh (last timestep)

Figure 4: In-situ visualization of dataset B. Images with a filtered mesh highlight very small and vanishing Jacobians. All the images are

RGB with 1400 x 800 pixels and 8-bits per channel.

vanishing Jacobians can be hard to spot in some cases. In particular,
when the dataset is bigger and the image resolution is higher. The
solution in such cases is to increase the size of the dots. Although
this will make it harder to pin-point the exact element with a van-
ishing Jacobian, identifying a small enough vicinity around such an
element is already good enough. This is because the process of fix-
ing the mesh involves re-creating a whole sub-volume around the
problematic element.

5.2.4. Cinema databases

Cinema [AJO™14] is an approach to specify a database of parame-
ters mapped to a set of data artifacts. Most commonly, the data arti-
facts are images. Essentially, Cinema allows simulations to reduce
the size of the data they write to storage, such that post-hoc analysis
is less expensive in terms of time and effort. One common use case
is to combine Cinema with in-situ visualization and produce im-
ages rendered at different camera angles. Applied to our case, such
ability gives users the chance to see highlighted mesh elements (i.e.,
elements with vanishing Jacobians) from different viewpoints. This
can help users find the problematic elements within the full mesh
faster. One has to remember, however, that rendering multiple im-
ages at each timestep increases both the analysis time and stored
data size.

The ParaView/Catalyst module has an option to write a Cinema
database. When exporting the Catalyst script from ParaView, users
can specify the number of ¢ angles and 0 angles for the camera
relative to the mesh. Upon execution of the script at each timestep,

Table 2: Sizes of data written to persistent storage for different
techniques.

. In-situ In-situ
Dataset Checkpoints (Cinema) (Single image)
A 1.4GB 95 MB 1.2MB
B 15.2GB — 248 MB
C 500 GB 35.4GB 708 MB

Catalyst moves the camera to each combination of ¢ and 6 angles
and renders an image. Once the execution is finished, the Cinema
database can be examined with one of the available Cinema view-
ers [Cin].

Figure 6 presents three different images of dataset A (at the
last timestep) rendered with different camera positions around the
mesh. These images are part of a Cinema database produced in situ.
In this particular example, there are 12 different ¢ angles and 5 dif-
ferent 6 angles, which means that Catalyst renders 60 images for
each timestep. This has implications in terms of additional storage
space. In the next subsection, we discuss these implications in more
detail. Nevertheless, these images show that Cinema provides users
with an additional insight and the relative ease of use is another ad-
vantage for the combination of SENSEI with ParaView/Catalyst.
Note that we ran experiments with Cinema only for datasets A
and C, since dataset B is two-dimensional and rotating the camera
around it has no added value.

(© 2019 The Author(s)
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(a) Unfiltered mesh

(c) Filtered mesh (85% of time steps)

(b) Filtered mesh (first timestep)

(d) Filtered mesh (last timestep)

Figure 5: In-situ visualization of dataset C. Images with a filtered mesh highlight very small and vanishing Jacobians. All the images are

RGB with 1200 x 900 pixels and 8-bits per channel.

(a) Camera: 0 = —120°,0 = 18°

(b) Camera: ¢ = —120°, 0 = —18°

Toerma Viewsr
[Spec A- Single.

(c) Camera: ¢ = 150°, 6 = 18°

Figure 6: Different viewpoints of dataset A at the last timestep. The images are part of a Cinema database produced in situ.

5.2.5. Storage space

Table 2 presents the total sizes of the data written to persistent stor-
age. Note that these sizes do not depend on the number of MPI
ranks. The Checkpoints column shows the size of the data assum-
ing the simulation was performing a checkpoint for each iteration.
The Cinema column shows the size of the Cinema database, and
the Single image column shows the size of all the rendered im-
ages assuming one image per iteration. Although checkpointing is
rarely performed each iteration, it is required to achieve compara-

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

ble fidelity to the in-situ cases. Since we do not know in advance
in which iteration, if any, vanishing Jacobians occur, we have to ei-
ther checkpoint or render an image (or images) each iteration. The
table shows that the single image in-situ approach requires approxi-
mately two to three orders of magnitude less space, which is a clear
advantage compared to checkpointing. Cinema falls somewhere in
between full checkpointing and single image. Users obtain images
from different viewpoints, but at the cost of increased storage and



14 Shudler et al. / Fast Mesh Validation through In-Situ Visualization

longer visualization times. Whether these images help users and
justify the increased costs depends on the complexity of the dataset.

It is important to note that although dataset B has more timesptes
than dataset C, the sizes of the images produced in situ for one
timestep are approximately 25 KB and 426 KB, respectively. This
is explained by the increased size and complexity of dataset C. The
total size of the data, therefore, for dataset C is bigger.

5.2.6. Performance

Datasets A and B are relatively small either in terms of timesteps or
the number of mesh elements. Therefore, we ran the experiments
involving these datasets on just a single node with 12 MPI pro-
cesses. Dataset C, however, is much larger and was a good candi-
date for investigating the scaling aspects of our approach. Figures 7
and 8 show the results of running the experiments with dataset C
on increasing number of processes. In these runs we used 12 MPI
processes per node, which means the first run in the figure was with
5 nodes and the last one with 35 nodes. We instrumented the three
calls in the SENSEI bridge and also measured the wallclock time
of the full execution. In Figure 7, the measured times for the analy-
sis step in the bridge (i.e., sensei_bridge_update) were reduced by
first calculating the maximum time for each timestep across all the
processes, and then calculating the median across all the timesteps.
Figure 8 shows the wallclock time for the full execution in seconds.
There is a clear correlation between the two plots, which is hardly
surprising since we switched off the fluid motion calculation. In
other words, scaling in this case depends on the in-situ visualization
efficiency. Although the performance of SENSEI is comparable to
previous findings [ABD*16] and the analysis time (monotonically)
decreases with the number of processes it is clear that there is a
scalability obstacle. A number of factors can contribute to this phe-
nomenon. One is the compositing part of the visualization, the cost
of which directly depends on the number of processes. Another fac-
tor relates to the overhead of running the ParaView/Catalyst mod-
ule driven by a Python script. Finally, there is a latency overhead
of writing the rendered image to the storage. Investigating these
factors in depth, however, is beyond the scope of this work. Never-
theless, users we worked with confirmed that the wallclock time of
the execution is short enough to provide tangible benefits. In other
words, locating the problematic mesh elements following a failed
run would have taken much more than one hour—the time it takes
to run dataset C with 180 MPI processes (15 nodes).

6. Conclusion and Future Work

In this work, we propose an innovative approach to validate meshes
for combustion simulations. Validating that no vanishing Jacobians
occur in the mesh saves computation time that might be otherwise
lost if a vanishing Jacobian occurs in the middle of a simulation
run. If vanishing Jacobians do occur, users obtain an image of the
problematic elements highlighted within the full mesh. This kind of
visual data helps users fix the mesh and rerun the validation work-
flow. Since the validation does not require expensive fluid motion
calculations, the workflow can be executed multiple times until no
more vanishing Jacobians occur. Furthermore, our evaluation con-
firms that the approach does not require expensive computational

3.0

2.5

2.0

1.5

Time [s]

1.0

0.5

60 120 180 240 300 360 420
MPI processes

Figure 7: Analysis step times of dataset C. Each value is the maxi-
mum across all processes and a median across all timesteps.
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Figure 8: Wallclock execution times (in seconds) of dataset C.

resources and the workflow can be executed on a relatively small
cluster.

At the heart of our approach is the SENSEI platform and the
ParaView/Catalyst module. Producing images that highlight very
small and vanishing Jacobians in situ offers advantages in terms of
execution time and storage space. It allows us to reach the neces-
sary fidelity level such that the results become useful to the users.
Furthermore, by using Cinema databases users can easily obtain
even more fidelity.

We performed a strong scaling study that showed us how the
approach scales to a higher number of processes. Although exe-
cution times monotonically decrease the study revealed a scalabil-
ity bottleneck. In the future, we intend to experiment with much
larger meshes and larger supercomputers. As part of this experi-
mentation, we also plan to perform an in-depth study of potential
scalability obstacles in the analysis and visualization part of SEN-
SEI To make the approach even more helpful to users, we want
to investigate better ways to associate between mesh elements ren-
dered in situ to the corresponding elements in the mesh generation
tool (e.g., CUBIT [Cub]). One can consider even automating the
validation and repair steps, such that the mesh is repaired in situ.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.
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