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Abstract

In situ wavelet compression is a potential solution for enabling post hoc visualization on supercomputers with slow 1/0 systems.
While this in situ compression is typically accomplished by allocating an equal storage budget to each parallel process, we
propose an adaptive approach. With our approach, we introduce an assessment step prior to compression, where each process
characterizes the variation in its portion of the data, and then dynamically adapts storage budgets to the processes with the
most variation. We conducted experiments comparing our adaptive approach with the traditional, non-adaptive approach, on
two different simulation codes with concurrencies of 512 cores and mesh resolutions of one billion cells. Our findings show that
our adaptive approach yields three orders of magnitude of improvement for one simulation and is not harmful for the other.

1. Introduction

The increasing gap between compute and I/O capabilities on super-
computers has made it difficult for simulation codes to save their
state at sufficient temporal frequency for visualization. This gap
motivates the use of in situ processing. That said, in situ process-
ing can be used to enable multiple usage paradigms. In one usage
paradigm, in situ techniques are used to generate the desired vi-
sualizations, resulting in images. This paradigm is effective when
a user knows the visualization they want to see prior to the sim-
ulation. In another usage paradigm, in situ techniques are used to
transform and reduce the data. This reduced data can be stored to
disk (i.e., it can be made small enough to fit within a supercom-
puter’s I/O constraints) and then explored post hoc. This paradigm
can be effective when a user does not know the visualizations they
want to see prior to the simulation. That said, the data reduction
can compromise accuracy, and so it is critical that the reduction
process preserve accuracy as best as possible. The work described
in this paper focuses on the latter usage paradigm, and specifically
on increasing accuracy.

In situ wavelet compression is an important technique for reduc-
ing the size of simulation output [GGRE13, SSEM15, BXH*17].
In a typical workflow, wavelet compression concentrates the vast
majority of information into a small amount of coefficients. Fur-
ther, wavelets can operate with a specific I/O budget, choosing the
coefficients with the most information content.

Typically, during a large-scale, parallel simulation, each domain
is allocated the same amount of resources, including the desired
I/0 budget. In practice, however, some domains may contain data
of little consequence, and thus, their resources may be better uti-
lized elsewhere. This work researches the effectiveness of resource
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reallocation for compression, i.e., adapting the I/O budget for each
parallel process as the simulation saves its state.

We consider two reallocation strategies. The first reallocation
strategy is specific to wavelet compression. Wavelet compression
inherently prioritizes data within a domain. We use this information
to calculate the global importance of a process’s data, and reallocate
its I/O budget accordingly. The second reallocation strategy incor-
porates Shannon Entropy, a calculation that has become common
in information science and determining the information content of
data. The Shannon Entropy is calculated for each process, and then
compared globally; a process’s I/O budget is then determined by
the global entropy calculation.

In terms of findings, this research shows that dynamically real-
locating the I/O budget can lead to increased storage savings and
more accurate output in some cases.

2. Related Work

Related work is broken into three subsections. The first subsection
reviews work that reallocates resources to achieve better efficiency.
The second subsection covers work that uses entropy in scientific
visualization. The third subsection briefs how wavelet compression
works and reviews its use in scientific simulation and visualization.

2.1. Resource Reallocation

Understanding workflow execution and scheduling resources ac-
cordingly is an important consideration when trying to find the
right resource allocation strategy. If one task is given insufficient
resources, it could become a bottleneck for the entire workflow.
Thus, adapting resource usage dynamically, and reallocating re-
sources according to runtime needs will speed up the overall work-
flow [sem18]. Labasan et al. [LLCR17] studied the adaptation of
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different resource allocations for different visualization routines
in a power-constrained environment. They showed that adapting
power resources on a per-node need basis performed better than a
uniform resource distribution strategy.

Dynamically adapting I/O resources and options according to
user specifications has been shown to be a useful technique for vi-
sualization and data analysis. In wind turbine array simulations,
Gruchalla et al. [GBLPC17] allocated most storage budget to
blocks where “turbine wakes” present, which are areas of interest
to the domain scientists, and minimal storage to the rest blocks in
the wind farm. Dorier et al. [DSP* 13] presented Damaris/Viz, an in
situ visualization framework to support I/O middleware that adapts
to the specific needs of simulations by using a dynamic plugin-
loading architecture. ADIOS [BLZ*14], an in situ data transforma-
tion framework, also provides a level of adaptability by providing
different I/O options, thereby transparently changing how the data
is processed.

2.2. Entropy

Information theory has been used as a viable way to distinguish
significance in parts of the data [WS11]. Using information theory
concepts can help scientists determine which portions of the data
contain important features [PAJKW]. Entropy is one such infor-
mation theory technique. According to Shannon [Sha01], entropy
can be calculated for a variable, x, to measure the average uncer-
tainty in it. The higher the entropy, the more information content
this variable has. Entropy is always non-negative [CT06] and de-
scribes the unit of information on average required to describe this
variable [LMG*18].

Dorier et al. [DSG*16] compare a number of different ap-
proaches, including entropy, to determine the saliency of the data,
and then uses these metrics for load balancing in a time-constrained
environment. This strategy is particularly useful when visualization
resources are limited and should be allocated to the most important
data. Additionally, Wang et al. [WKO08, WYMO08] demonstrate how
information theory, and entropy in particular, can highlight certain
areas of time-varying data that are particularly important, but their
work has not been evaluated for in situ capabilities.

2.3. Wavelet Compression

Wavelet compression is a class of transform-based techniques with
its core operation being wavelet transforms. Such a transform de-
composes data into coefficients in the wavelet domain, represent-
ing information in various time and frequency scales. In the use
case of compression, wavelet kernels and transformation methods
are chosen such that the transform is 1) nonexpansive, meaning that
the number of output coefficients equals the number of input data
points; 2) invertible, meaning that input data could be reconstructed
in its full fidelity; and 3) excellent in information concentration,
meaning that the vast majority of information in the data is dispro-
portionately kept in a small amount of coefficients, namely the ones
with the largest magnitudes. Compression using wavelets happens
when only those large-magnitude coefficients are used to recon-
struct the data, and the rest coefficients are discarded.

In the scientific visualization community, wavelet compression

is traditionally used to improve interactivity and accelerate render-
ings on large data sets [KS99,1P99, GWGS02, TBR*12]. In recent
years, with the rise of big data and the growing I/O gap, wavelets
are increasingly viewed and applied as a traditional compression
operator. Such applications include compressing simulation check-
point files [SSEM15], climate model output [WMB* 11, BXH*17],
turbulent flow simulations [LGP* 15], and more generic volumetric
scientific data [VED96, GGRE13,L.SO*17]. Finally, wavelet com-
pression has been proven to fit into the in situ analysis paradigm,
as it is capable of achieving portable performance across mod-
ern massively parallel architectures (i.e., multi-core CPUs and
GPUs) [LMC*17] and reducing overall I/O time for simulation
runs with hundreds to thousands of compute nodes [LLCC17].

3. Our Method

The goal of this research is to divert I/O resources to where they
are needed most. Our technique consists of two phases. In the first
phase, we perform a lightweight analysis step to determine the most
pertinent data among all the ranks. In the second phase, we perform
wavelet compression, adapting the I/O budget per rank according
to results from the first phase.

Within the first phase of our technique, we explore two different
strategies for assessing data content. Our first strategy is inherent
to wavelet compression — utilizing the coefficient magnitudes that
are calculated during the transform process. Our second strategy
uses Shannon entropy to discern the most salient data; these results
are then used to derive the budgets for each rank’s wavelet com-
pression. We also compare these two strategies against the standard
strategy, i.e., equally allocating the I/O budget to all ranks.

3.1. Coefficient Magnitude

The first strategy, involving the wavelet coefficient magnitudes, is
innate to wavelet compression. With this magnitude-based strategy,
first, each rank will calculate its total local magnitude. Second, an
MPI_AllReduce summation will calculate the total global mag-
nitude. And then lastly, each rank will determine their respective
ratio. This ratio is then used to determine that rank’s I/O budget.

3.2. Entropy

The second strategy utilizes Shannon Entropy, also called Informa-
tion Entropy, a widely used strategy to determine the importance of
data. From a high level, Shannon Entropy calculates the number of
bits required to save the given data. The more bits that are required,
then the more information that is present.

Each rank will calculate its local entropy value from the input
data. Then, an MPI_Al1Reduce summation is used to calculate
the total global entropy, and from there each rank will calculate
their respective ratio. As with the wavelet strategy, the calculated
ratio will determine each rank’s I/O budget and will save data ac-
cordingly.

3.3. Standard

The two reallocation strategies will be compared against the stan-
dard wavelet compression where each rank has the same I/O bud-
get.
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4. Experiment Overview

Our experiments studied a cross-product of options over three fac-
tors, for a total of 18 tests. The three factors and their options were:

o Allocation Strategy. This factor had three options (all described
in Section 3): Magnitude, Entropy, and Standard.
e I/O Budget. This factor also had three options: data reductions

of 32:1, 64:1, and 128:1.

e Simulation Code. This factor had two options:

— Lulesh [lul] is a hydrodynamics simulation that models the
Sedov blast problem. This simulation had size 1000% and ran
for 10,200 cycles with 512 ranks on 32 nodes. The experi-
ments for Lulesh were performed on Cori [cor].

— CloverLeaf3D [MRG*15] is a simulation that solves the
compressible Euler equations. This simulation had size
1000° and ran for 500 cycles with 64 ranks on 32 nodes.
The experiments for CloverLeaf3D were performed on
Cheyenne [Nat17].

This research was implemented within the Ascent frame-
work [LAA™17] which provides a lightweight in situ infrastructure
that includes a vtk-m wavelet implementation [MSU*16]. Lulesh
was run on NERSC’s Cori supercomputer, and CloverLeaf3D was
run on NCAR'’s Cheyenne supercomputer.

The effects of data reduction were measured by considering the
Normalized Root Mean Square Error (NRMSE) for the compressed
output compared to the original data. We also measured the over-
head to do reallocation, i.e., the amount of time spent coordinating
between the nodes.

5. Results

We tested our strategies on two different simulations, Lulesh
and CloverLeaf3D. For each simulation we measured the average
NRMSE compared to the original data and compared our results
with standard compression. We also measured the overhead of our
strategies.

5.1. Lulesh

Lulesh takes time to advance to an interesting state, so for the ma-
jority of the cycles only rank 0 has pertinent data. Thus, the real-
location strategies were able to devote their entire I/O budget to
saving rank 0’s data, whereas the standard compression would only
save a fixed portion of rank 0’s data.

Moreover, by dedicating the entire I/O budget to rank 0, the re-
allocation strategies saved out less data overall than the standard

compression. This is due to the fact that rank O’s total data size is
1000° _ 1000° 10003)

smaller than the total budget (i.e. 120° < s <o <3

The results in Table 1 demonstrates that the disproportionate
makeup of the data heavily favored our reallocation strategies,
which improved on standard compression by several orders of mag-
nitude. Figure 1 shows the visual artifacts present in the standard
compression. Here, our reallocation strategies prioritized this data
in order to save a more accurate representation of the original data
compared to the standard compression.
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Figure 1: Top Left: The standard compression using 128:1 com-
pression ratio. Top Right: Reallocation strategy based on magni-
tude. This strategy determined the data should be saved using a 7:1
compression ratio. Bottom Left: The original data. Bottom Right:
Reallocation strategy based on entropy. This strategy determined
the data should be saved using a 3:1 compression ratio.

. Standard | Magnitude | Entropy
Compression
Ratio Avg. Avg. Avg.
NRMSE NRMSE NRMSE
32:1 0.00055 3.73E-13 3.97E-08
64:1 0.00184 | 4.58E-09 9.58E-08
128:1 0.00436 9.32E-06 4.98E-07

Table 1: The average NRMSE for the reallocation strategies for
each I/0 budget on Lulesh.

5.2. CloverLeaf3D

CloverLeaf3D advances to an interesting state more quickly than
Lulesh as shown in Figure 2, hence the reduced cycles for the ex-
periment.

(a) Cycle 1 (b) Cycle 500

Figure 2: CloverLeaf3D at (a) the beginning of the simulation and
(b) at the middle of the simulation.

The results for CloverLeaf3D in Figure 3 shows that all alloca-
tion strategies performed similarly as the simulation progresses to
later cycles, but showed information gains during early cycles. With
a more dispersed makeup of important data, the reallocation strate-
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Figure 3: The average NRMSE over time for each strategy on
CloverLeaf3D with each compression ratio. These error levels are
consistent with previous research by Li et al [LGP*15].

gies were similar to the standard strategy in terms of distributing
the I/0 budget.

Similar to Lulesh, the reallocation strategies attained increased
I/0O savings during the early cycles when the data was more con-
densed and only several ranks were saving out their entire slice
of data. However, those savings decreased as the simulation pro-
gressed, eventually both reallocation strategies were using the full
extent of their I/O budget.

5.3. Timings

With any in situ analysis it is important to know if the proposed
algorithm creates a detrimental overhead to the simulation as a
whole. We measured the time it takes for each rank to calculate

. . Magnitude Entropy Entropy
Simulation MPI MPI Calc
Lulesh 0.2378385 | 0.1733445 | 0.0063935
CloverLeaf3D | 0.023089 0.0188065 | 8.00E-06

Table 2: The average MPI timing for each strategy and the average
time to calculate entropy.

entropy as well as the MPI coordination time shown in Table 2.
For both simulations, we found the MPI coordination and entropy
calculation time contributed to less than 5% of execution time, we
believe this is acceptable for in situ analysis.

6. Conclusion

This work introduces an approach for automatically adapting 1I/0
resources based on data complexity. The results show benefit for
a simulation where data complexity is imbalanced, especially in a
simulation’s early phases. Further, among our two strategies, Shan-
non entropy better captured information content than an inherently
wavelet based approach. In terms of future work, we would like to
integrate this into in situ frameworks, and also evaluate on more
simulation codes.
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