EGPGV 2018
18th Eurographics Symposium on Parallel Graphics and Visualization

Brno, Czech Republic
June 4, 2018

Symposium Chair
Bernd Hentschel, RWTH Aachen University

Program Co-Chairs
Hank Childs, University of Oregon
Fernando Cucchietti, Barcelona Supercomputing Center

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)
Sponsored by EUROGRAPHICS Association

DOI: 10.2312/pgv.20182007
Table of Contents

Table of Contents ... iii
Preface .. iv
Keynote ... v
International Program Committee ... vi
Author Index ... vii

Session 1

Direct Raytracing of Particle-based Fluid Surfaces Using Anisotropic Kernels .. 1
Tim Biedert, Jan-Tobias Sohns, Simon Schröder, Jefferson Amstutz, Ingo Wald, and Christoph Garth

VisIt-OSPRay: Toward an Exascale Volume Visualization System ... 13
Qi Wu, Will Usher, Steve Petruzza, Sidharth Kumar, Feng Wang, Ingo Wald, Valerio Pascucci, and
Charles D. Hansen

Robust Iterative Find-Next-Hit Ray Traversal ... 25
Ingo Wald, Jefferson Amstutz, and Carsten Benthin

Session 2

Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization 33
Tim Biedert, Peter Messmer, Thomas Fogal, and Christoph Garth

Session 3

Performance-Portable Particle Advection with VTK-m ... 45
David Pugmire, Abhishek Yenpure, Mark Kim, James Kress, Robert Maynard, Hank Childs, and Bernd
Hentschel

Dense Texture Flow Visualization using Data-Parallel Primitives ... 57
Mark Kim, Scott Klasky, and David Pugmire

Revisiting the Evaluation of In Situ Lagrangian Analysis .. 63
Sudhanshu Sane, Roxana Bujack, and Hank Childs

Rapid k-d Tree Construction for Sparse Volume Data ... 69
Stefan Zellmann, Jürgen P. Schutze, and Ulrich Lang

Session 4

Interactive Visual Analysis of Multi-dimensional Metamodels ... 79
Sascha Gebhardt, Sebastian Pick, Bernd Hentschel, and Torsten Wolfgang Kuhlen

La VALSE: Scalable Log Visualization for Fault Characterization in Supercomputers 91
Hanqi Guo, Sheng Di, Rinku Gupta, Tom Peterka, and Franck Cappello
Preface

This book contains the proceedings of the 18th Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), which took place in Brno in the Czech Republic, on the 4th of June, 2018.

In this day and age, high-performance graphics and visualization solutions are required in a variety of domains, ranging from making sense of the huge amounts of data coming out of simulations and sensing devices, to delivering real-time immersive experiences that simulate virtual worlds. Such systems are implemented on hardware platforms that are rapidly increasing in complexity, in terms of increasing concurrency, heterogeneity, and depth of memory and storage hierarchies. These factors present unique challenges, to which our community responds with novel methods and approaches for parallel and high-performance graphics and visualization. The EGPGV Symposium aims at fostering the exchange of experiences and knowledge exploiting and defining new trends in this important computer science area.

The papers program presents contributions that introduce novel parallel systems and techniques. This year, we received a total of 23 high-quality submissions, each of which underwent extensive review by a diverse International Program Committee, consisting of 23 persons from around the world having broad and deep expertise in parallel graphics and visualization. Each contribution was independently reviewed by at least three IPC members, selected by the chairs according to their preferences, expertise, and conflicts. The members were assigned as either primary or secondary reviewers. After all the reviews were completed, the primary reviewer of each contribution led an online discussion among all co-reviewers and was responsible for writing a summary review and recommendation. This active discussion clarified issues with the papers and helped develop consensus about decisions. Based on the reviewers’ recommendations, the individual reviews, the online discussions, and after a thorough deliberation by the program co-chairs, 10 of the 23 submissions were selected for inclusion in the final program, which corresponds to an acceptance rate of 43%.

This year’s papers program covers a variety of subjects, including applications and optimizations of ray-tracing, flow visualization and particle advection, spatial search structures, and more.

This year’s keynote was delivered by Markus Hadwiger of the King Abdullah University of Science and Technology (KAUST). He presented on large-scale visualization and multi-resolution GPU data structures, which is an important topic for microscopy volumes from neuroscience and large-scale particle data from molecular dynamics simulations.

We would like to thank Stefanie Behnke (Eurographics) and Meghan Haley (IEEE) for their help with handling the publications and invaluable assistance with the reviewing system, respectively. We would also like to thank Kristi Belcher of the University of Oregon, who served as the Student Program Chair. Finally, we would like to thank all the members of the IPC, the external reviewers, our sponsor Intel, the authors, and the keynote speaker without whom this symposium would not have been possible.

Hank Childs, Fernando Cucchietti, and Bernd Hentschel
Brno, Czech Republic, June 2018
Keynote

Large-Scale Visualization and Multi-Resolution (GPU) Data Structures

Markus Hadwiger
King Abdullah University of Science and Technology (KAUST)

Abstract
The rapidly increasing amount of data acquired or computed in data-driven science presents a tremendous challenge to visualization and analysis. Nevertheless, for exploring, analyzing, and understanding large-scale data it is crucial to enable interactive visualization. Well-established basic approaches to tackling this challenge are on the one hand using multi-resolution representations, while often on the other hand exploiting the processing power of GPUs. However, scaling to extreme-scale data requires going beyond standard approaches. This talk will give an overview of some of our work on multi-resolution methods for very large data, such as microscopy volumes from neuroscience or large-scale particle data from molecular dynamics simulations, and designing data structures and visualization algorithms that are well-suited to the characteristics of GPU architectures.

Short Biography
Markus Hadwiger is an Associate Professor in computer science and the Visual Computing Center (VCC) at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, which he joined in 2009. He leads the High-Performance Visualization research group at VCC, where his research interests in the area of scientific visualization include extreme-scale visual computing and visualization, volume visualization, medical visualization, large-scale image and volume processing, multi-resolution techniques, data streaming and out-of-core processing, interactive segmentation, and GPU algorithms and architecture. He is a co-author of the book Real-Time Volume Graphics published in 2006 and has been involved in many courses and tutorials about volume rendering and visualization at ACM SIGGRAPH, ACM SIGGRAPH Asia, IEEE Visualization, and Eurographics. Prof. Hadwiger has co-authored more than 70 refereed articles.
International Program Committee

Ulf Assarsson, Chalmers University, Sweden
Peer-Timo Bremer, Lawrence Livermore National Laboratory, University of Utah, USA
Mihai Budiu, VMWare, USA
Carsten Dachsbacher, Karlsruhe Institute of Technology, Germany
Kurt Debattista, University of Warwick, GB
Stefan Eilemann, École Polytechnique Fédérale de Lausanne, Switzerland
Kelly Gaither, University of Texas, Austin, USA
Christoph Garth, University of Kaiserslautern, Germany
Berk Geveci, Kitware, USA
Hanqi Guo, Argonne National Laboratory, USA
Michael Guthe, University of Bayreuth, Germany
Benjamín Hernández, Oak Ridge National Labs, USA
Ingrid Hotz, University of Linköping, Sweden
Jens Krüger, University Duisburg/Essen, Germany
Matthew Larsen, Lawrence Livermore National Laboratory, USA
Joshua Levine, University of Arizona, USA
Fabio Marton, CRS4, Italy
Kenneth Moreland, Sandia National Laboratories, USA
Filip Sadlo, University of Heidelberg, Germany
Madhusudhanan Srinivasan, KAUST, Saudi Arabia
Julien Tierny, Sorbonne Universites UPMC, France
Tom Vierjahn, RWTH Aachen University, Germany
Michael Wimmer, Technische Universität Wien, Austria
Author Index

Amstutz, Jefferson .. 1, 25
Benthin, Carsten .. 25
Biedert, Tim .. 1, 33
Bujack, Roxana ... 63
Cappello, Franck .. 91
Childs, Hank .. 45, 63
Di, Sheng .. 91
Fogal, Thomas ... 33
Garth, Christoph .. 1, 33
Gebhardt, Sascha ... 79
Guo, Hanqi ... 91
Gupta, Rinku .. 91
Hansen, Charles D. 13
Hentschel, Bernd .. 45, 79
Kim, Mark .. 45, 57
Klasky, Scott .. 57
Kress, James ... 45
Kuhlen, Torsten Wolfgang 79
Kumar, Sidharth .. 13
Lang, Ulrich ... 69
Maynard, Robert ... 45
Messmer, Peter .. 33
Pascucci, Valerio .. 13
Peterka, Tom ... 91
Petruzza, Steve .. 13
Pick, Sebastian .. 79
Pugmire, David .. 45, 57
Sane, Sudhanshu ... 63
Schröder, Simon ... 1
Schulze, Jürgen P. 69
Sohns, Jan-Tobias 1
Usher, Will ... 13
Wald, Ingo ... 1, 13, 25
Wang, Feng .. 13
Wu, Qi .. 13
Yenpure, Abhishek 45
Zellmann, Stefan 69