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Abstract
We consider the problem of wavelet compression in the context of portable performance over multiple architectures. We con-
tribute a new implementation of the wavelet transform algorithm that uses data parallel primitives from the VTK-m library.
Because of the data parallel primitives approach, our algorithm is hardware-agnostic and yet can run on many-core archi-
tectures. We also study the efficacy of this implementation over multiple architectures against hardware-specific comparators.
Results show that our performance is portable, scales well, and is comparable to native implementations. Finally, we argue that
compression times for large data sets are likely fast enough to fit within in situ constraints, adding to the evidence that wavelet
transformation could be an effective in situ compression operator.

1. Introduction

As supercomputers get larger and larger, a consistent trend has been
that the ability to generate data is increasing faster than the abil-
ity to perform I/O. This trend jeopardizes the traditional paradigm
for visualizing computer simulation data. In this paradigm, simula-
tions advance and save their states at regular (or irregular) intervals.
Each save is effectively a snapshot in time, or “time slice” of what
is happening in the simulation. Importantly, these time slices have
typically been stored at their native resolution, meaning that the
simulation mesh is not modified, and every field value on that mesh
is stored (at least for the fields that are stored).

In response to reduced I/O capabilities, there are three main
strategies. First, save data less often. As trends worsen, this strat-
egy may become unpalatable for many application domains, since
temporal sparsity can result in lost science. Second, do visualiza-
tion in situ. This strategy is increasingly being preferred for the
cases where domain scientists know what they want to see a pri-
ori. However, for data exploration-oriented use cases, where new
science is often discovered, there often is no a priori knowledge
of what to look for. This observation motivates the third strategy,
which is to use a combination of in situ and post hoc techniques.
In the in situ phase, data is transformed and reduced, with hopes
that the reduction will be sufficient to meet I/O requirements. In
the post hoc phase, the transformed and reduced form is available
for exploration-oriented use cases. That said, the assumption from
the traditional paradigm that data be stored at full resolution and
all field values are stored, essentially equates to lossless compres-
sion, which limits how much reduction can be achieved. So re-
search in this third strategy often assumes that domain scientists
will accept lossy techniques when I/O constraints preclude their

traditional workflow. This assumption is important, since allowing
for some loss in data integrity enables the strategy to be practical.

There have been many interesting ideas for operators that en-
able explorative visualization with the in situ+post hoc strategy,
including the following. Cinema’s [AJO∗14] main strategy is to
transform the data to images, with the idea being that many, many
images will still be smaller than simulation data, and that explo-
ration can happen by loading successive images as if they were be-
ing generated by a traditional visualization program. The idea with
Lagrangian basis flows [ACG∗14] is to transform vector field data
into pathlines in situ, and then interpolate new pathlines post hoc
from the extracted ones. This technique was shown to be more ac-
curate than saving vector field data, and used less storage as well.
As some final examples, Analysis-Driven Refinement [NWP∗14],
or ADR, prioritized the data to save based on the analyses that
would be performed, while Lehmann et al. [LJ14] explored a multi-
resolution technique in both space and time. With our study, we
consider a different operator, wavelet based compression, partially
because of its outstanding compression capabilities known in im-
age processing communities. In fact, wavelet compression is the
underlying technology of the JPEG2000 still image compression
standard [AT04]. The broader applications of wavelet transform go
even beyond compression, with examples being signal denoising,
boundary detection, and texture analysis, to name a few.

We specifically focus on efficient execution of wavelet compres-
sion over multiple architectures. It connects to the overall theme of
in situ+post hoc exploration, in that we are studying how to design
wavelet compressors that could be run in situ on many-core archi-
tectures. We do not study the resulting tradeoffs between compres-
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sion and data integrity, since that issue has already been investi-
gated [LGP∗15].

A particular emphasis of this study is designing code that will
be hardware-agnostic and yet still be performant on each architec-
ture it runs on. Ideally, this approach can “future-proof” our code
to run not just on today’s architectures, but also tomorrow’s. Recent
research has demonstrated that designing code using “data parallel
primitives” (DPPs) as building blocks is a promising direction for
achieving this goal. Therefore, the research involved with this work
— and the contribution of this paper — is to re-think wavelet trans-
forms using data parallel primitives and to demonstrate the efficacy
of the resulting algorithm.

2. Related Work

2.1. Parallel Wavelet Transforms on CPUs

Domain decomposition is a popular yet effective approach for
achieving parallel processing on CPUs. Using this approach, an en-
tire domain is decomposed into smaller subdomains and each sub-
domain is processed individually. For 2D matrices, the JPEG2000
standard employs this approach [AT04]. A similar application on
multi-node settings is also reported in [Uhl95]. For 3D volumes,
VAPOR [CR05, CMNR07], an open-source visualization package
with a wavelet compression component, decomposes incoming vol-
umes into 643 cubes by default and then processes them in parallel.
Although domain decomposition has the advantage of simplicity,
the technique can suffer from blocking effects along subdomain
boundaries, which arise from wavelet artifacts on finite-length in-
put boundaries.

More complicated parallel approaches treat the entire domain as
a whole while performing wavelet transforms in parallel. These ap-
proaches eliminate blocking effects, but introduce inter-processor
communications. Nielsen et al. [NH00] developed a paralleliza-
tion strategy that eliminates a time-consuming distributed ma-
trix transpose, and demonstrates strong scalability. Chaver et al.
[CPPT01] partitioned 2D matrices into stripes and studied the per-
formance differences between X-partitioning and Y -partitioning.
Chadha et al. [CCC02] further developed a partitioning strategy
where intermediate information exchanges are restricted to neigh-
boring processors. Though proven to be effective on multi-core
CPUs and distributed systems, it is unclear how similar strategies
would perform on many-core architectures. Also, these strategies
seem to have, for the most part, not considered 3D volumes.

2.2. Parallel Wavelet Transforms on GPUs

Parallel wavelet transforms on GPUs have been predominantly con-
ducted within the CUDA [NBGS08] framework. Natural paral-
lelization strategies on GPU include row-based and column-based
processings, which use a GPU thread to process a row or column of
an image at a time [AMN14, EALM15]. Domain decomposition is
also used to get the CPU and GPU to work together: a CPU sends
subdomains to a GPU to process, and retrieves back the results one-
by-one [FBFU10].

A trend in GPU-based wavelet transforms is to exploit the many
memory hierarchies on GPU devices to achieve higher speedups,

including discussions on the use of shared memory [FBFU10], tex-
ture memory [GS05], and even registers [EALM15]. While these
fine-grained tunings are very effective in making the most out of
the hardware, they usually require a good amount of GPU pro-
gramming skills, and the performance gains are not guaranteed to
translate to another version of hardware.

Finally, we point out that an important use of GPU wavelet trans-
form is to perform on-demand decompression at rendering time.
The idea is to postpone decompression to the latest possible stage
of the rendering pipeline, which is on GPUs, to reduce the expen-
sive data movement costs. An example of this use is GST [KPM16],
where supercompressed textures are decoded on GPUs. A detailed
survey on this topic is also available at [BRGIG∗14].

2.3. Visualization Algorithms With DPPs

Several studies have investigated how to re-think a specific al-
gorithm in the framework of data parallel primitives. They in-
clude Maynard et al. with thresholding [MMA∗13], Larsen et al.
with ray-tracing [LMNC15] and unstructured volume rendering
[LLN∗15], Schroots and Ma with cell-projected volume rendering
[SM15], Lessley et al. with external facelist calculation [LBMC16],
and Lo et al. with isosurface generation [LSA12]. Our own work
differs in that we are considering a different algorithm (wavelet
transform).

2.4. Other State-of-the-art Floating Point Compressors

Motivated by the I/O bottleneck on supercomputers, several
schemes are designed to specifically compress the floating-point
data arising from numerical simulations. Some representatives in-
clude FPZip [LI06], ZFP [Lin14], SZ [DC15], and ISABELA
[LSE∗11]. However, the ability of these schemes to perform well
on multiple architectures is still not clear, and this work focuses on
how to obtain portable performance for wavelet compression.

3. Data Parallel Primitives

In the data parallel paradigm, algorithms are made by composing
together so-called data parallel primitives, or DPPs. A DPP spec-
ifies the pattern of how an input array is processed in parallel to
produce outputs, while users take the responsibility to specify op-
erations applied on each individual element. This user-specified op-
eration is sometimes referred to as “functors” or “worklets.” A ben-
efit of using data parallel primitives is that execution details such as
thread and memory management are abstracted away from general
users, which in turn allows specific implementations to optimize for
underlying architectures. Algorithm designers then re-think their
algorithms using a relatively small set of data parallel primitives
to harness the massive parallelism in modern architectures. Here
we briefly describe a few data parallel primitives for demonstration
purposes. Readers can consult work by Blelloch [Ble90] for theo-
retical foundations and Nvidia’s Thrust [BH11] for examples in an
actual product.

Map is a simple yet powerful data parallel primitive — it maps
each data element from the input array to an element in the output
array. The input and output arrays thus have the same size. Map
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Figure 1: Illustration of a filter bank based wavelet transform
workflow. The input signal (x[n]) passes through a low-pass and
high-pass filter (g[n] and h[n], respectively), and is then down-
sampled by a factor of two, resulting in approximation and detail
wavelet coefficients. This process is repeated on the approximation
coefficients to create a second level wavelet transform.

resembles a traditional for loop if there are no loop-carried de-
pendencies. Elements are thus processed in parallel with arbitrary
order.

Scan also maps an input array to an output array with the same
size, but resembles a for loop that does have loop-carried depen-
dencies. Scan can be efficiently executed in parallel in a bottom-up
fashion.

Reduce uses all elements from the input array to produce a sin-
gle output value, for example the sum or the maximum of the in-
put array. Reduce can also be efficiently executed in parallel in a
bottom-up fashion.

Scatter and Gather are data parallel primitives to facilitate data
movement — individual elements are moved in parallel to or from
designated locations assuming there are no index conflicts.

In practice, more complex data parallel primitives can be con-
structed by composing the basic data parallel primitives. This pro-
cess is useful for providing fundamental algorithms, and an exam-
ple of this is the Sort algorithm in Thrust.

4. Algorithm Description

Our compression algorithm consists of two primary steps: wavelet
transformation followed by coefficient prioritization. In the first
step, input data is transformed into coefficients in the wavelet space
using filter banks. In the wavelet space, the magnitude of each co-
efficient is correlated to its information content. Small magnitude
coefficients are often insignificant in reconstructing the original
field. Further, in general, wavelet transformation results in the vast
majority of its coefficients being small. In the second step, coeffi-
cients are prioritized based on their information content, and only
the most significant ones are saved on disk, resulting in an over-
all lossy process. The following subsections provide details about
our algorithm’s two primary steps as well as our implementation
details.

4.1. Wavelet Transform

Given an input signal, the wavelet transform represents this sig-
nal as wavelet coefficients in the wavelet space. There are multiple
approaches available to perform the wavelet transform, with filter
banks [SN96] and lifting schemes [Swe96] being most popular. We
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Figure 2: Illustration of one level of wavelet transforms for a three-
dimensional cube. Approximation and detail coefficients are de-
noted using “L” and “H,” respectively. From left to right are the
original cube, and the resulting coefficients after wavelet trans-
forms in the X, Y , and Z axes, respectively.

adopted the filter bank approach in this study because of its flexi-
bility; different wavelets can be handled using different filter banks
without dramatical changes to the program.

With the filter bank approach, the core operation to calculate
wavelet coefficients is discrete convolution. More specifically, we
use a two-channel filter bank to perform wavelet transforms, with
each filter convolving with the input array (signal) to produce
wavelet coefficients. The first channel is a low-pass filter, and the
resulting “approximation” coefficients provide a coarsened repre-
sentation of the signal. The second channel is a high-pass filter, and
the resulting “detail” coefficients contain the missing information
from the low-pass filtering. The total number of output coefficients
is doubled by convolving with two filters. A down-sampling step
with a factor of two then restores the same number of coefficients
to the input array. Despite downsampling, it is still possible to re-
tain all information according to the Nyquist’s rule: half frequen-
cies passed through a filter, thus only half coefficients were needed
to represent them [Nyq28].

The approximation coefficients are recursively transformed in
the same manner — iterating through the filter banks — until a
stopping criterion is reached. This practice further decorrelates the
approximation coefficients to achieve a better compression. Fig-
ure 1 illustrates a two-level wavelet transform workflow.

Wavelet transformation does not directly result in data reduction.
Rather, it “compacts” most information to a few coefficients so co-
efficient prioritization can effectively reduce the data size. Wavelets
with better information compaction capabilities are better suited for
lossy compression usage.

4.1.1. Higher Dimensional Wavelet Transform

Using filter banks, wavelet transforms of higher dimensional data
can be composed of individual one dimensional transforms along
each axis. Consider the three dimensional case as an example. First,
each row goes through a wavelet transform pass in the X direc-
tion, resulting in approximation and detail coefficients with respect
to the X axis. Second, these coefficients then go through wavelet
transforms in the Y direction as columns, resulting in approxima-
tion and detail coefficients with respect to the Y axis. Third, the
output coefficients from the second set of transforms go through
wavelet transforms in the Z direction, resulting in approximation
and detail coefficients with respect to the Z axis. The motivation
of this practice is to decorrelate the signal in each direction for the
best compression results. This process is illustrated in Figure 2.
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This ordering of multidimensional transform is referred to as “non-
standard decomposition” in some literatures, and is adopted by all
softwares in this study. The pros and cons of “non-standard de-
composition” and a few other options are beyond the scope of this
paper, and interested readers should consult [SDS95, KP98].

Higher dimensional wavelet transform could also be applied in
a recursive fashion. Building on the example in Figure 2, an even
coarser version of the data set can be generated by applying addi-
tional wavelet transforms to the small cube labeled “LLL.” Again,
note that the total number of coefficients is constant, regardless of
the number of levels of wavelet transforms.

4.1.2. Practical Considerations

Discrete convolution requires special care on the boundaries for
finite-length input data. In the general case that the data is not pe-
riodic, the data array needs to be extended by half the filter length
on both ends, so discrete convolution can perform as usual on the
real data. Usually, the extension past the boundary uses the last few
elements of the input data array. With an appropriate choice of con-
volution filter pairs, and careful boundary extensions, mathemati-
cally perfect reconstruction is possible with the number of wavelet
coefficients matching the number of orginal samples.

The down-sampling step in Figure 1 leaves opportunities to elim-
inate unnecessary calculation of coefficients, i.e., to skip calcula-
tion of coefficients that are meant to be discarded. This is achieved
by performing discrete convolution with the low-pass filter on even
indexed elements, and the high-pass filter on odd indexed elements.

4.2. Coefficient Prioritization

The second step of wavelet compression is to prioritize all coeffi-
cients and keep only the ones with the most information content.
The heart of this process is a “sort” routine based on the magni-
tudes of the coefficients. After sorting, a decision is made (typically
as input to the compression process) about how many coefficients
to save. These coefficients are the largest values. The remaining
coefficients are not saved, and treated as zeroes during data recon-
struction.

4.3. Implementation Specifics

We implemented our algorithm within the VTK-m framework
[MSU∗16]. VTK-m provides an infrastructure with platform-
agnostic data parallel primitives to algorithm developers, and
architecture-specific parallelism mechanisms under the hood. Its
handling of data parallel primitives means that users can avoid
thread scheduling details. Currently, VTK-m has two optimized
parallelization mechanisms for its DPPs: CUDA [NBGS08] and In-
tel TBB [Phe08]. Also, because of the high-level nature of VTK-m,
some architectural specifics, such as the different kinds of memo-
ries on an Nvidia GPU, are not exposed to its users.

With regards to memory organization, our implementation keeps
data in a row-major one-dimensional array regardless of its logi-
cal dimensionality. This design means we must face less-than-ideal
memory access patterns when accessing data in columns or frames.
One potential work-around is to transpose the matrix (or volume) to

the desired orientation before performing wavelet transforms along
that axis. However, in-place transposition for a matrix (or volume)
with different sizes along each dimension is not trivial by itself. We
did not choose this optimization for simplicity.

Our implementation supports four wavelets: three members
from the CDF [CDF92] wavelet family (CDF 9/7, CDF 8/4, and
CDF 5/3), and the Haar wavelet. We used the CDF 9/7 wavelets
in this study because it is arguably the best for lossy compression
usage (e.g., JPEG2000 in lossy compression mode).

Finally, we note that our 1D and 2D wavelet compressors are
already merged into the open-source VTK-m repository, and the
3D case is in the process of being merged.

4.3.1. Wavelet Transform with DPPs

We used the “Gather” data parallel primitive to perform signal ex-
tension. Gather naturally fits in here since it retrieves elements from
designated locations of the signal to extensions (just like gathering).
We use specific worklets to guide Gather to correctly handle differ-
ent dimensionalities and extension directions (e.g., left, right, etc.).
Though extending a signal is computationally light because of the
small sizes of extensions, implementing them using a data parallel
primitive has the additional benefit of avoiding potential data trans-
fers between different computing environments (e.g., between the
host and a GPU). This is because DPPs can usually be scheduled to
run on designated devices, which allows us to schedule them in the
environment where data resides.

Wavelet transforms are carried out using a “Map” data paral-
lel primitive. Details of the transforms, such as wavelet banks and
convolution operations, are passed in as worklets. We implemented
individual worklets for wavelet transforms in each dimensionality
and direction; each worklet resulting in a slightly different Map that
performs wavelet transform for one particular case. This practice
reduces execution branches inside a worklet, which helps maximize
the GPU performance. Algorithm 1 outlines a worklet performing
3D wavelet transforms along the X axis. It assumes that each row
of the three-dimensional input is properly extended with an exten-
sion on both left and right side (leftExt and rightExt, re-
spectively), and receives its own work index (workIndex) from
the VTK-m scheduler, so each instance of the worklet performs
convolution on one index: (x,y,z).

4.3.2. Coefficient Prioritization with DPPs

For coefficient prioritization, we used the “Sort” data parallel prim-
itive provided by VTK-m. VTK-m exposes platform-optimized sort
when possible. Specifically, it exposes the parallel merge sort from
Thrust [BH11] on GPUs, and the parallel quick sort from TBB on
CPUs.

5. Study Overview

5.1. Experiment Overview

We performed our experiments in two rounds. The first round fo-
cused on evaluating our own algorithm, while the second round
focused on comparing with hardware-specific implementations.
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Algorithm 1 Worklet for 3D Wavelet Transform in the X Axis

Input: signal, workIndex {Assigned by VTK-m}
Output: coe f f icients

(x,y,z)← GetLogicalIndex( workIndex )
if x is even then

arr← ComposeX( signal, le f tExt,rightExt,x,y,z )
sum← DiscreteConvolution( arr, lowWaveletFilter )
outIdx← GetOutputIndexApproximationCoeff(x,y,z)
coe f f icients[ outIdx ]← sum

else
arr← ComposeX( signal, le f tExt,rightExt,x,y,z )
sum← DiscreteConvolution( arr,highWaveletFilter )
outIdx← GetOutputIndexDetailCoeff( x,y,z )
coe f f icients[ outIdx ]← sum

end if

5.1.1. Round 1: Evaluation of the VTK-m Approach

This round was designed to better understand the basic perfor-
mance of wavelet compression across multiple platforms. It varied
two factors:

• Hardware architecture: multi-core CPU and GPU.
• Data sizes: 2563, 5123, 1,0243, and 2,0483.

We tested all data sizes on CPU, but skipped the 2,0483 data size on
GPU due to the GPU memory capacity limitation. We also tested
1D and 2D data inputs for evaluation purposes, and their results
yielded similar patterns to 3D inputs. Since 3D data sets are most
relevant to HPC applications including simulations and scientific
visualizations, we only report 3D results here. We report results
from artificial data sets with Gaussian distributions, although the
actual data values do not impact performance significantly, because
the number of floating point operations and function invocations
remains constant for each test size.

5.1.2. Round 2: Comparison with Platform Specific
Implementations

This round compared the VTK-m implementation with platform
specific implementations for multi-core CPUs and CUDA GPUs,
namely VAPOR [CR05, CMNR07] for multi-core CPUs, and a na-
tive CUDA implementation for GPUs. These implementations rep-
resent the best practices on respective architectures, so they are
good comparators for the VTK-m implementation. The total num-
ber of configurations for this round is four: VTK-m and VAPOR on
multi-core CPUs, and VTK-m and CUDA on GPUs. Again, we opt
to only report 3D test results as representatives, and each test is run
with multiple problem sizes.

5.2. Software Specifications

There are three software packages used in our study: our VTK-
m implementation, VAPOR, and a native CUDA implementation.
Details about the VTK-m implementation are in Subsection 4.3, so
this section focuses on VAPOR and the CUDA implementation.

VAPOR is an open-source software framework consisting of
multiple components, including a GUI for post hoc exploration of

wavelet-compressed data. For this study, we made use of the stan-
dalone wavelet compression utilities included with VAPOR. This
program achieves parallel processing through domain decompo-
sition, i.e., a large volume would be decomposed to fixed-sized
blocks, and multiple blocks are processed individually and simu-
taneously using pthreads. Coefficient prioritization (described
in Subsection 4.2) is performed individually within each block as
well using the C++ STL sort.

The native CUDA implementation was written for our study. It
followed implementation decisions discussed in [SR16] with adap-
tations to our GPU. For example, we maxed out the number of
threads per block on our GPU to be 1,024 for larger throughput.
Wavelet transforms in each direction (X , Y , and Z) are implemented
as separate CUDA kernels for parallel processing. Data is always
organized as one-dimensional arrays in the global memory on the
GPU without explicit use of shared memory. Thrust sort was used
here during coefficient prioritization. Overall, this CUDA imple-
mentation has a very similar structure to its VTK-m counterpart,
minus the platform-agnostic infrastructure from VTK-m.

Both CPU softwares (VTK-m+TBB and VAPOR) are compiled
using GCC, and both GPU softwares (VTK-m+CUDA and native
CUDA implementation) are compiled using NVCC with GCC. We
turned on -O2 optimization for all compilations.

5.3. Hardware Specifications

To support the tests described in Subsection 5.1, we used the fol-
lowing test systems; both systems are used in both rounds of our
testing.

• CPU System: Dual socket Intel Xeon Haswell CPUs running
at 3.2GHz. There are 16 cores in total, and each core is hyper-
threaded to have 2 threads.

• GPU System: Nvidia Tesla K40 GPU. There are 2,880 cores in
total, each running at 745MHz. This GPU also has 12GB on-
board high speed memory.

6. Results

The results are organized following the two rounds of our experi-
ments: Subsection 6.1 analyzes the performance of our algorithm
over multiple architectures, and Subsection 6.2 compares our per-
formance to hardware-specific implementations.

6.1. Performance Analysis of the Algorithm

We separately analyze multi-core CPU performance (6.1.1) and
GPU performance (6.1.2).

6.1.1. Multi-core CPU Performance Analysis

Our first set of experiments studied strong scaling of the VTK-m
implementation. We ran a baseline of a single core, and then ran ad-
ditional tests with sixteen cores. In both cases, the compressed vol-
ume was the same size. Table 1 shows timing values and speedup
factors on four problem sizes. The results show that the transform
subroutine achieves near perfect speedups (around 16X), indicating
that the worklet based approach is able to harness the additional
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Table 1: Strong scaling study of VTK-m on 16 Xeon CPU cores.
For each problem size, computation time is reported for both trans-
form (shortened as XForm) and sort subroutines (see Section 4) in
seconds. The achieved speedup is reported in the last column.

Size Subroutine 1-core 16-core Speedups

2563 XForm 4.72 0.33 14.30X
Sort 1.36 0.22 6.18X

5123 XForm 37.22 2.06 18.07X
Sort 12.23 1.41 8.67X

1,0243 XForm 298.67 16.22 18.41X
Sort 103.75 13.32 7.79X

2,0483 XForm 2512.10 131.40 19.12X
Sort 884.53 93.18 9.49X

Table 2: Factor of computational time increase from a smaller to
a bigger problem size. Values in this table are derived from the 16-
core results in Table 1.

Size Incr. XForm Time Incr. Sort Time Incr.
2563→ 5123 6.24X 6.41X
5123→ 1,0243 7.87X 9.45X
1,0243→ 2,0483 8.10X 7.00X

CPU cores. In some cases, the speedup numbers are even higher
than 16X . We speculate this is due to the hyper-threading nature
of the Xeon CPUs, since VTK-m sees 32 cores through TBB and
launches 32 threads for computation. However, the sort subroutine
only has speedups from 6.18X to 9.49X . This reduced performance
is expected, since sorting requires coordination between the cores.

Our second set of experiments looked at the execution time in-
crease as the problem size grows. We calculate the ratio of execu-
tion times using the sixteen core results and list them in Table 2.
The problem size grows by 8 at each step. This table shows that
both transform and sort subroutines take close to 8X more time to
finish processing the next problem size. This result indicates that
this implementation is not slowing down as we approach data sizes
up to 2,0483.

6.1.2. GPU Performance Analysis

Our first set of experiments measure raw performance on the GPU.
Table 3 provides the time the GPU takes to perform wavelet com-
pression on three data sizes: 2563, 5123, and 1,0243. We did not
test the 2,0483 data size because it exceeded the memory capac-

Table 3: Wavelet fransform and sorting time on a Tesla K40 GPU
in seconds. The factor of time increase from the previous problem
size is indicated in parentheses.

Size XForm Time Sort Time
2563 0.0463 0.0445
5123 0.3177 (6.86X) 0.3834 (8.62X)
1,0243 2.4419 (7.69X) 3.1766 (8.29X)

Table 4: Theoretical and achieved occupancy of our wavelet com-
pressor on a Tesla K40 GPU. The transform subroutine was imple-
mented as a worklet, and the sort subroutine was a data parallel
primitive provided by VTK-m.

Theoretical Occupancy Achieved Occupancy
XForm 75% 70.3%

Sort 50% 49.4%

ity on our GPU. These tests show a significant performance boost
compared to 16-core CPUs. Given that this is the same code base
compiled on two very distinct architectures, it shows that the per-
formance can be portable. Also, the execution time increase is in
line with the problem size growth: it takes roughly 8X more time
to solve an 8X larger problem.

Secondly we use occupancy reported by the Nvidia Visual Pro-
filer to assess the efficiency of the VTK-m program. In Nvidia’s
model, adjacent threads are grouped into warps. There is a maxi-
mum number of warps that can be concurrently active on a Stream-
ing Multiprocessor depending on the underlying hardware. Occu-
pancy is then defined as the ratio of active warps to the maximum
number of active warps supported by the Streaming Multiprocessor.
It is not always possible to achieve a 100% occupancy for a gen-
eral program because of limiting factors in compilation and GPU
invocation specifics (more details can be found in Nvidia documen-
tation [Nvi]). As a result, the Nvidia Visual Profiler reports a theo-
retical occupancy as well as an achieved occupancy. The achieved
occupancy cannot reach the theoretical occupancy when the sched-
uler is not able to issue sufficient instructions because of data or
instruction dependencies. We report both occupancy metrics in Ta-
ble 4 for two major subroutines in our algorithm: wavelet transform
and sort.

The occupancy results are generally good, with the wavelet
transform worklet achieving a higher occupancy. This is because
of the nature of the wavelet transform that worklets working on in-
dividual convolutions are more independent with each other than
sorting. For both subroutines, the Nvidia Visual Profiler suggests
that the occupancy is large enough that further improvements in
occupancy may not improve performance.

We note that for large-scale simulations on supercomputers, a
1,0243 cube is on a par with problem sizes a single compute node
normally processes. We argue that the achieved compression speed
on GPUs, e.g., under six seconds for a 1,0243 cube, is likely
fast enough to fit within in situ requirements and facilitate the in
situ+post hoc strategy to alleviate I/O constraints.

6.2. Comparisons With Hardware-Specific Software

6.2.1. VAPOR

As previously discussed, VAPOR achieves parallel processing via
domain decomposition and pthreads (see Subsection 5.2). For
the tests on different size data sets, we maintained the number of
total subdomains at 64, allowing VAPOR to make full use of our
16-core machine. VAPOR processes each subdomain following the
transform and sort subroutines as the VTK-m implementation does.
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Figure 3: Comparison of execution time (in seconds) between
VTK-m and VAPOR. The purple part is for wavelet transforms, and
green is for sorting.

We note that the local sort within each subdomain actually results in
fewer calculations than the global sort in VTK-m, but for simplicity
in comparison, we consider the sort time to be local for VAPOR and
global for VTK-m.

Figure 3 shows the performance comparison between VTK-m
and VAPOR. These results show that VTK-m and VAPOR have
comparable performance with VTK-m being faster in three of
the four test sizes. However, a more prominent difference is how
they allocate time differently between their two subroutines. While
VTK-m spends more than half its time performing wavelet trans-
forms, VAPOR spends less than a quarter, especially as the prob-
lem size grows. This result is interesting since it shows that our
DPP-based wavelet transform is 3X to 4X slower than the best im-
plementations on CPU.

We speculate two design choices by VAPOR contributed to its
superior performance: slice-by-slice data processing, and transpo-
sition for cache alignment. Both design choices aim to better use
the caching mechanism on CPUs. First, a slice from the subdo-
mains that VAPOR processes is most likely to fit into the last level
of cache in modern CPUs. For example, a slice from 5123 subdo-
mains is 1MByte in 32-bit float or 2MByte in 64-bit double
type, which can easily fit into the 20MB L3 data cache per CPU
socket (40MB in total) in our test system. Second, VAPOR trans-
poses data to align arrays in storage to the one dimensional wavelet
transforms about to be performed, further increasing cache utiliza-
tions in smaller but faster L2 and L1 caches. On the contrary, our
data parallel primitive based transform schedules worklets to pro-
cess arrays as long as one entire volume dimension without certain
orderings, hardly making good use of the caching mechanism.

In terms of the time cost for sorting, the STL sort employed by
VAPOR does not perform as well as VTK-m’s sort, which is TBB’s
sort for CPUs. One might think that replacing the STL sort in VA-
POR to TBB sort could be a simple solution to increase VAPOR’s
performance. However, it would not be that easy, since VAPOR is
already parallelizing across cores for the domain decomposition,
and thus the sort for each subdomain can only use a single thread.

6.2.2. Native CUDA Implementation

Figure 4 compares the performance difference between the VTK-m
and native CUDA implementations. Since they share similar par-
allelization strategies (see Section 5.2), this comparison actually
quantifies the performance overhead of VTK-m on GPUs. As the
results show, this overhead is always within 40% of the CUDA per-
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Figure 4: Comparison of execution time (in seconds) between
VTK-m and CUDA. The purple part is for wavelet transforms, and
green is for sorting.

formance. In fact, this overhead has a trend to decrease as data size
grows (i.e., from 35% at 2563 to 20% at 1,0243).

7. Conclusions and Future work

This paper explored a new approach to implement a wavelet com-
pression algorithm, distinguished in its aim to achieve portable
performance over multiple architectures. This new approach made
use of the data parallel primitive paradigm, which aims to future-
proof for emerging architectures. We showed that our performance
is comparable with two hardware-specific softwares on multi-core
CPUs and Nvidia GPUs. The GPU comparison also quantifies the
VTK-m overhead to be no more than 40% of its native CUDA coun-
terpart.

For future work, we would like to explore techniques that enable
us to process larger data sets on GPUs despite their constrained
memory capacity, for example, the greatly enhanced unified mem-
ory from CUDA 8.
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