
Eurographics Symposium on Parallel Graphics and Visualization (2017)
J. C. Bennett, A. Telea (Editors)

A Task-Based Parallel Rendering Component For Large-Scale
Visualization Applications

T. Biedert1†, K. Werner1 B. Hentschel2 and C. Garth1

1University of Kaiserslautern, Germany
2RWTH Aachen University, Germany

Abstract
An increasingly heterogeneous system landscape in modern high performance computing requires the efficient and portable
adaption of performant algorithms to diverse architectures. However, classic hybrid shared-memory/distributed systems are
designed and tuned towards specific platforms, thus impeding development, usage and optimization of these approaches with
respect to portability. We demonstrate a flexible parallel rendering framework built upon a task-based dynamic runtime environ-
ment enabling adaptable performance-oriented deployment on various platform configurations. Our task definition represents
an effective and easy-to-control trade-off between sort-first and sort-last image compositing, enabling good scalability in combi-
nation with inherent dynamic load balancing. We conduct comprehensive benchmarks to verify the characteristics and potential
of our novel task-based system design for high-performance visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

1. Introduction

High-fidelity computational simulation models have assumed a sig-
nificant role in scientific research and engineering applications,
thereby necessitating efficient visualization techniques at large
scale. In recent years, parallel algorithms for concrete classes of
visualization problems have been presented, such as direct volume
rendering [HBC12] or integral curve computation [PCG∗09]. Most
large data approaches typically utilize a distributed memory model,
where bulk-synchronous execution and communication using the
Message Passing Interface (MPI) is standard. For improved scal-
ability, hybrid approaches commonly resort to MPI for the coarse
distribution of parallelly executable parts of an algorithm to a set
of processes, where within each process a second concept - e.g.
OpenMP, OpenCL, or CUDA - is used for additional finegrained
parallelization of these steps.

These practices require detailed knowledge of the different par-
allelization concepts and often result in specific optimizations for
certain platform configurations or obligating the usage of dis-
tinct hardware components, which complicates or even hinders
portability towards other architectures. An additional challenge in
the parallelization of visualization concepts is posed by the fact
that, in contrast to simulation computations, visualization tasks
are frequently bandwidth-limited and inherently unbalanced. Thus,

† biedert@cs.uni-kl.de

achieving scalable parallel execution demands not only an efficient
utilization of the available memory bandwidth, where memory ac-
cesses ideally are overlapping with computational tasks, but also
dynamic load balancing.

Considering the general parallelization of complex algorithms
against this background, in recent years the paradigm of task-based
parallelization has been established [DG15]. Here, an algorithm
is formulated as a set of tasks which can be carried out concur-
rently, where a single task represents an atomically executable sub-
sequence of the algorithm. Interdependencies between tasks can be
modelled explictly by the developer. These relationships are used
by the underlying runtime environment to coordinate the parallel
execution. Thus, with the help of the task graph the developer spec-
ifies what should be executed, whereas the how of the execution is
left to the runtime environment [KHAL∗14].

The task-based paradigm entails several crucial advantages.
Conceptionally, tasks enable a more straightforwad formulation of
massively parallel programs, where the maximum degree of par-
allelism is determined by the maximum width of the task graph
for the given computation. Technically, the coordinated execu-
tion by the runtime environment ensures a flexible and transparent
portability to diverse hardware platforms. Furthermore, task-based
systems can inherently handle the parallel execution of dynami-
cally changing computational loads by the principle of work steal-
ing [DLS∗09].

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/pgv.20171094

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20171094


T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

Figure 1: Hybrid parallelization in both image and data space.
For each tile, the set of visible blocks is topologically sorted and
composited using a distributed binary tree communication scheme.
The numbering represents an arbitrary enumeration of the visible
blocks within the highlighted tile’s frustum. See Figure 2 for the
corresponding compositing tree. Note that block 1 is discarded due
to empty-block skipping.

In this context, the intent of this paper is to study a task-based
system design for distributed direct volume rendering. Our task
definition is based on hybrid parallelization in both image and data
space (see Figure 1), thus representing an effective and easy-to-
control trade-off between sort-first and sort-last image composit-
ing. The presented asynchronous binary tree compositing scheme
enables good scalability in combination with inherent dynamic load
balancing.

The overall intent of this paper is to investigate possible advan-
tages of such an approach for the design of large scale visualization
systems. Specifically, after a brief review of relevant prior work
(Section 2), we make the following contributions:

• In Sections 3 through 4, we describe a task-based formulation
for a distributed direct volume rendering system.

• We conduct comprehensive benchmarks to verify the character-
istics and potential of our novel task-based system design for
high-performance visualization and describe results and analy-
sis in Section 5.

• We anticipate that many enhancements and improvements are
possible, and discuss a number of such opportunities in Sec-
tion 6.

Our contribution is intended as a baseline demonstration of the
applicability of the emerging task-based paradigm in large scale
high performance computing to distributed algorithms and chal-
lenges in scientific visualization.

2. Related Work

2.1. Distributed Volume Rendering

Direct volume rendering [DCH88] represents a crucial class of
algorithms used in scientific scalar field visualization. Today, di-
rect volume rendering typically follows the principle of ray cast-
ing [Lev90], where primary rays are traced through a volumetric
data set starting at a virtual camera and depending on the under-
lying sample locations optical properties are determined and accu-
mulated along each ray.

Following the nomenclature of [MCEF94], there are two funda-
mental approaches for the parallelization of volume ray casting:
sort-first and sort-last volume rendering. In sort-first, the image
plane is subdivided into rectangular tiles for which rendering is per-
formed concurrently [CM93, BHPB03, MAWM11]. Sort-last algo-
rithms perform parallelization based on a spatially disjunct partion
of the input data, where each process computes a partial image of
its assigned data. The resulting images are afterwards composed
to the final output image. While both techniques have specific ad-
vantages and drawbacks [MAWM11], most scalable systems typ-
ically employ the sort-last approach, primarily due to the slower
increase in image resolution compared to data size. Müller et al.
present a hardware-accelerated sort-last approach, using block sub-
division for fast empty-space skipping and performing dynamic
load balancing by block redistribution based on previous computa-
tion times [MSE06]. Marchesin et al. achieve load balancing by dy-
namic restructuring of the underlying k-d tree [MMD06]. Navratil
et al. use queue-based dynamic scheduling in order to increase ray
coherence and memory bandwidth utilization, leading to improved
L2-cache access patterns [NFLM07]. Childs et al. present a hybrid
scheme, using distributed parallelization both in input data and in
image space [CDM06].

Dedicated graphics and accelerator cards providing numerous
processing cores have proven to be a powerful tool for com-
putationally expensive applications such as ray casting on large
data [BHP15, KWN∗14]. Consequently, the prevalent usage of
multi-/many-core processor architectures and accelerator cards in
distributed high performance systems has given rise to diverse hy-
brid parallelization approaches. Peterka et al. implement hybrid
parallel volume visualization of massive data sets on the IBM Blue-
Gene/P architecture using MPI and POSIX-Threads, where up to
90% of the total runtime are dedicated to I/O [PYRM08]. Fo-
gal et al. study direct volume visualization using OpenGL-based
slicing on distributed memory multi-GPU clusters in combination
with subsequent MPI-based compositing [FCS∗10]. Howison et al.
compare different common hybrid approaches based on POSIX-
Threads, OpenMP and CUDA in combination with MPI for di-
rect volume visualization, In general, hybrid techniques offer im-
proved performance with reduced memory and communication
overhead [HBC12].

A crucial bottleneck in the performance of massively parellel
sort-last volume rendering algorthms is the final composition of
the partial per-process images. A comparison of the common ap-
proaches (Direct Send [EP07, SML∗03], Binary Swap [MPHK94],
Radix-k [YWM08,PGR∗09,KPH∗10]) shows that notable runtime
benefits can be achieved using hybrid strategies with variable gran-
ularity.

2.2. Task-Based Parallelization

Faced by the emergence of increasingly hierarchical and heteroge-
neous system architectures, the hybrid MPI-threading model preva-
lent in high performance computing turns out to be more and more
suboptimal. The resulting parallelism is fragile due to the lack of a
strict separation between computational kernel and parallel execu-
tion, in addition to the strong coupling with the underlying archi-
tectures.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

64



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

1 2 3 6 4 7 5 81 2 3 6

Node 1

4 7 5 8

Node 2

R1 R2 R3 R6 R4 R7 R5 R8

Empty 

(Skipped)

M M

C1

C5

C6

C2 C3 C4

Opacity Culling

(a) Communication tree

Node 1 Node 2

M

R4

R7

C3

R5

R8

C4

M

R3

R6

C2

C6

C5

R2

C1

Other

Tiles

Other

Tiles

Tile Result

Message

(b) Scheduling timeline

Figure 2: Communication pattern and possible task execution order for the eight blocks (numbered cubes) shown in Figure 1 after topological
sorting (from left to right) distributed across two nodes. In this example, for each block a rendering task (R) is scheduled by the respective
node, except for the first block which is empty. Additionally, each node calculates the necessary compositing steps and supplies each local
block with the resulting meta information (M) it needs for sending to its receiving block. According to this meta information the ready
blocks may send their image data to their receiving blocks, which will initiate the scheduling of composition tasks (C). In this example,
the composited image of the partial images from block 4 and 7 is already opaque, allowing early initiation of the next compositing step,
thereyby skipping the wait for the result of C4. The execution timeline assumes only a single local thread per node for simplicity. Due to the
asynchronous execution of tasks the results of C2 and C3 are composited before C1 is performed. Note, that the execution of tasks may be
interleaved with tasks from other tiles.

In scientific high performance computing task-based dynamic
runtime environments are considered as a promising alternative
model [DG15], whose benefits have already been demonstrated in
diverse disciplines. Haidar et al. present the dynamic scheduling of
algorithms in linear algebra [HLYD11]. A dynamic runtime envi-
ronment for grid workflows can be found in [AA07]. Notz et al.
demonstrate a graph-based system design with a dynamic runtime
environment for multiphysics software based on partial differential
equations [NPS12]. The simulation of large biomolecular systems
is shown in [KBM∗08]. However, the majority of scientific appli-
cations has not yet integrated dynamic runtime environments, or is
still in early experimental stages [DG15].

Current programming languages, libraries or runtime environ-
ments start to offer task-based programming models. A comparison
of numerous independent runtime environments and task-based ex-
ecution models can be found in [GABS13]. Popular frameworks
for single shared memory multicore systems are the task imple-
mentation in the OpenMP standard (starting with version 3.0), the
Intel Threading Building Blocks (TBB) library or Intel Cilk Plus.
Our work heavily utilizes the HPX (High Performance ParalleX)
framework [KHAL∗14], which implements the ParalleX execution
model and provides task-based parallelization across node bound-
aries. HPX manages an active global address space and focuses on
latency hiding by the dynamic scheduling and asynchronous execu-
tion of fine-grained tasks with minimal context switching overhead.
Other recent frameworks for distributed task-based parallelization
include Charm++ [AGJ∗14] and Legion [BTSA12], which has
been used to explore the applicability of asynchronous many-task

(AMT) programming models in the context of in-situ data analy-
sis [PBH∗16].

3. System Design

3.1. Task Granularity

In a task-parallel system the achievable degree of parallelization
and scalability is crucially characterized by the so-called task gran-
ularity, i.e., the size of the individual tasks, balancing the width of
the task graph versus individual task overhead.

Our approach aims to provide a flexibly tunable task granularity
by subdividing in both image and data space, thus yielding a hybrid
scheme between sort-first and sort-last compositing. Volume data is
split into regular blocks of equal size, which are distributed across
nodes, whereas the image plane is divided into rectangular tiles.
The general approach is to render the visible blocks within each
tile, compose all images per tile in correct order and eventually
align all completed tile images to form the resulting output image.

An example of the hybrid subdivision in both tiles and blocks
is illustrated in Figure 1. The corresponding communication tree
for image compositing is depicted in Figure 2, also showing the
interleaved scheduling order of the individual rendering and com-
positing tasks.

This scheme allows to balance the number of mutual partners for
image compositing by tweaking both block and tile size, while also
providing means to incorporate common optimization techniques
such as empty-block skipping and early ray termination.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

65



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

Figure 3: The jet reference data set used for all benchmarks with
20483 voxels (32 GB) on a single node. For weak scaling, the num-
ber of voxels is increased proportionally to the number of cores,
up to 65023 (275 gigavoxels) on 32 nodes. All renderings are per-
formed at 3840x2160 resolution.

The following Section 3.2 describes the interplay and dependen-
cies of the individual rendering and compositing tasks in our novel
distributed compositing scheme. The incorporation of additional
optimizations is presented in Section 3.3.

3.2. Distributed Compositing

Initially, each node computes for all tiles the visible blocks within
the respective viewing frustums and schedules for each local block
a rendering task. As these render tasks begin execution, each node
calculates a sequence of compositing steps for each tile. A com-
positing step consists of an initiating block, whose rendered image
will be blended behind the image of the receiving block. The goal
is to find a sequence of compositing steps so that every step main-
tains the correct z-ordering of fragments and ultimately after the
last step one block holds the complete image for the respective tile.
The node containing that last block will contribute the tile to the
final output image.

First, all (including remote) blocks inside the viewing frustum of
the tile are topologically sorted based on the Manhattan distance to
the camera, so that each block in the sorting can never overlap a
block prior to it.

A naïve approach would be to iterate over this sorting from back
to front and schedule a compositing step for each block as initia-
tor and its successor in the sorting as receiving block, thus yielding
a correct, sequential compositing of all block images. This would
result in every block being the initiator and receiver of a compo-
sition step exactly once, except for the frontmost block who never
initiates a compositing and the backmost block who never receives
one.

For a scheduled compositing step to start and execute the fol-
lowing dependencies are necessary: First, the rendering task for the
initiating block needs to be finished. Second, the compositing step
which will be received by the current initiator needs to be com-
pleted. An exception to this is the backmost block who can initiate
compositing immediately after rendering.

Our communication pattern is more sophisticated than the afore-

mentioned naïve sequential approach. Compositing steps are cho-
sen to form a binary tree over the topological sorting of the involved
blocks across node boundaries. Every second block initiates just af-
ter rendering is completed for the tile, with its successor in the sort-
ing being the receiver. Every second of these receivers is scheduled
to initiate a compositing step with its successive receiver and so
on. In the end, every block was initiator exactly once, half of the
blocks received once, a fourth received twice and so on. The num-
ber of times the frontmost block is receiver of a compositing step
is equal to the height of the binary compositing tree formed by the
compositing steps.

Note that while the compositing steps are determined and sched-
uled per level of the tree, there is no barrier in their execution. Each
compositing step can be performed once the initiating block has
rendered its image and all compositing steps scheduled with him as
receiver have been completed. This allows the tree to be worked off
in any order and in parallel as long as these dependencies are met.

Furthermore, each node can determine the structure of the com-
positing tree completely on its own and inform all local blocks
appropriately about their roles as initators or receivers, thus com-
pletely avoiding costly network communication for coordination.

3.3. Optimization

Note that a block for which two compositing steps are scheduled
with him being the receiver can merge the two images he receives
even before his own rendering task is done, since the compositing
steps are associative. However, since the calculation of the com-
positing steps is performed redundantly on each node and in par-
allel, one node might finish this calculation for a certain tile long
before others. This would require to buffer incoming images for
receiving blocks in the nodes lagging behind until they have sched-
uled the corresponding compositing steps.

To circumvent this buffering, the initiating block of each com-
positing step not only sends its image for compositing to the re-
ceiving block, but also the number of compositing steps the receiver
should execute before dealing with the current step. This allows re-
ceiving blocks to merge multiple received images before their own
image is ready and even before the compositing steps are calculated
on its node. Consequently, the successful completion of these local
operations is now only necessary to initiate a compositing step, not
for being the receiver of one. This sender-initiated approach allows
to perform each compositing operation as early as possible.

Additionally, we have implemented two common acceleration
techniques for volume rendering: empty-block skipping and early
ray termination. While empty-block skipping can be trivially in-
tegrated as a data preprocessing step during block initialization,
it should be noted that there is a strong relationship to the opti-
mal block size, as smaller blocks are more likely to be completely
empty and can be skipped in compositing.

In constrast to early ray termination in standard shared-memory
ray casting, our distributed tile-based compositing scheme per-
forms opacity culling at tile granularity. After each compositing
operation, the resulting image is checked against a predefined opac-
ity threshold. Whenever the opacity of all fragments is saturated,

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

66



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le

 S
ize

0

10

20

30

40

50

60

Ti
m

e 
(S

ec
on

ds
)

(a) 16 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le

 S
ize

0

10

20

30

40

50

60

Ti
m

e 
(S

ec
on

ds
)

(b) 64 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le

 S
ize

0

10

20

30

40

50

60

Ti
m

e 
(S

ec
on

ds
)

(c) 256 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le

 S
ize

0

10

20

30

40

50

60

Ti
m

e 
(S

ec
on

ds
)

(d) 512 cores

Figure 4: Mean rendering times for different task granularities at 16, 64, 256 and 512 cores (20483, 32503, 51603 and 65013 voxels,
respectively) in the weak in-situ scenario. The sweet spots are indicated as white contour lines with a threshold of 0.5 seconds around the
best rendering time. Optimal performance is achieved in the middle ranges of both block and tile size parameters, with severe performance
penalties in the extreme corner cases. The optimal configuration shifts slightly towards smaller tile sizes and larger block sizes as the number
of cores increases.

all outstanding blend-under compositing operations can be skipped
and the tile can be immediately forwarded in the compositing tree.
The corresponding superfluous rendering tasks that have not been
started yet can be removed from the scheduling system, whereas the
resulting images of already executing rendering tasks will simply
be ignored.

To assist early opacity culling, we have implemented a custom
priority queue task scheduler, where pending block rendering tasks
are dynamically kept sorted based on their Manhattan distance to
the camera. This ensures full compute occupancy at any time while
improving the execution order with respect to opacity culling as
more rendering tasks are scheduled.

Figure 2 illustrates an exemplary compositing tree pattern and
possible task execution timeline on two nodes for the scenario pre-
sented in Figure 1, featuring both empty-block skipping and opac-
ity culling.

4. Implementation

Our novel task-based distributed rendering approach is based on
the HPX (High Performance ParalleX) framework [KHAL∗14],
an aspiring task-based runtime environment with means for asyn-
chronous communication across nodes. Each block is represented
as an individual component in the active global address space
(AGAS), allowing blocks to directly communicate in the composit-
ing pattern. The custom priority queue scheduler is implemented on
top of HPX’s standard FIFO scheduler by manually keeping track
of the number of rendering and compositing tasks being executed
by HPX.

OSPRay [WJA∗17] is used as rendering backend with its de-
fault internal TBB-based parallelization being disabled. A seper-
ate scientific visualization renderer is instantiated for each CPU
core, so all scheduled rendering tasks can render concurrently. Each
block aggregates a shared structured volume instance and a pre-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

67



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

64 128 192 256 320 384 448 51216
Cores

128³

192³

256³

384³

512³

768³

1024³

2048³

Bl
oc

k 
siz

e

Weak (In-situ)
Strong (In-situ)
Weak (Offline)
Strong (Offline)

(a) Optimal block size

64 128 192 256 320 384 448 51216
Cores

32x17

64x34

120x68

240x135

480x270

540x270

960x540

1920x1080

3840x2160

Ti
le
 si
ze

Weak (In-situ)
Strong (In-situ)
Weak (Offline)
Strong (Offline)

(b) Optimal tile size

Figure 5: Optimal block and tile sizes for up to 512 cores in the in-situ and offline scenario (both weak and strong scaling). The ideal
block count appears to be independent from the number of cores. However, in offline rendering the block size additionally influences I/O
performance. In general, the optimal tile size decreases with the number of cores. In the offline scenario larger tiles are beneficial.

committed model instance, which is set as active model in the re-
spective executing renderer.

Manual AVX2 intrinsics are used for standard blend-over im-
age compositing, which allows to perform vectorized instructions
on 8 consecutive RGBA pixels with 8 bit per channel. The same
degree of vectorization was not achievable by relying on compiler-
generated auto-vectorized code.

5. Results

To investigate the characteristics and potential of our novel task-
based rendering system we have conducted comprehensive bench-
marks with respect to optimal task granularity, task scheduling and
scaling.

The jet data set (see Figure 3), which results from a direct numer-
ical simulation of a jet of high-velocity fluid entering a medium at
rest, was used with a standard fire and ice transfer function, thus
yielding empty, transparent and fully opaque image areas. As refer-
ence configuration the data set was resampled to 20483 voxels (32
GB) on a single node. Timings were measured by rendering a full
rotation around the data set at 3840x2160 resolution and comput-
ing the mean. The camera distance is adjusted to view the complete
volume.

We have identified four important base scenarios to focus on:
in-situ vs. offline and weak vs. strong scaling up to 512 cores. The
in-situ scenario assumes block data is already in memory (e.g. af-
ter a preceding simulation run), whereas offline rendering requires
additional on-demand I/O to load blocks into memory. For weak
scaling, the total data size is upscaled proportionally to the number
of cores, e.g. 65023 for 512 cores (approx. 275 gigavoxels). Strong
scaling keeps the data size constant while increasing the number of
cores.

All benchmarks were performed on the Elwetritsch cluster pro-

viding two Intel E5-2637v3 CPUs (16 cores) per node, 64GB of
main memory and InfiniBand QDR interconnect.

5.1. Task Granularity

The granularity of the individual tasks in a task-based system cru-
cially defines and limits the degree of possible parallelization and
scalability. In our approach, we have two parameters to control task
granularity: block size and tile size.

Figure 4 illustrates the mean rendering times across the full spec-
trum of block and tile sizes for 16, 64, 256 and 512 cores in the
weak in-situ scenario, thus focusing on pure rendering performance
without I/O. The sweet spots are clearly indicated in the middle
ranges of both block and tile size parameters, with severe perfor-
mance penalties in the extreme corner cases. The optimal config-
uration shifts slightly towards smaller tile sizes and larger block
sizes as the number of cores increases.

The optimal block and tile sizes for all four scenarios across
different core numbers is depicted in Figure 5. The ideal block
count appears to be independent from the number of cores, in both
weak and strong scaling scenarios. However, in offline rendering
the block size additionally influences I/O performance. In general,
the optimal tile size decreases with the number of cores as the in-
creased fine-grained subdivision promotes latency hiding by task
overlapping. Interestingly, in the offline scenario larger tiles are
beneficial. A possible explanation is that larger tiles improve the
early scheduling of on-demand I/O tasks.

5.2. Scheduling

Figure 6 depicts the scheduling of the individual I/O, rendering and
compositing tasks in the offline scenario onto the 16 available cores
of a single node. The diagram is representative for both the single
and multi node cases.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

68



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

0 5 10 15 20 25
Time (Seconds)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Co
re

I/O Rendering Compositing

Figure 6: Task scheduling for offline rendering of 20483 voxels
using 16 cores on a single node at block size 5123 and tile size
960x540. Block loading, rendering and compositing happen in-
terleaved without barriers, so the resulting image is immediately
ready after the final rendering and compositing tasks. Whitespace
indicates unmet task dependencies such as outstanding I/O tasks or
compositing partners.

Clearly, there are no barriers in our task-parallel approach. Block
loading, rendering and compositing happen interleaved, so the re-
sulting image is immediately ready after the final rendering and
compositing tasks. Especially the latency of costly I/O is hidden by
automatic overlapping with computational tasks. The compositing
tasks themselves are rather cheap in comparison to I/O and render-
ing.

5.3. Scaling

We have studied both weak and strong scaling characteristics of our
approach in the in-situ and offline scenarios, as depicted in Figure
7. Note that in these benchmarks scaling only refers to the data
size per node. However, for each benchmark the camera is adjusted
such that the complete volume rendering is visible and its image
area stays constant, thereby reducing the contribution of each node
to the final image at bigger node counts.

After an initial performance improvement, weak scaling shows
for both in-situ and offline cases approximately constant runtime,
which is near optimal. This initial improvement is explained by the
quick reduction in image contribution (i.e. rays) per node. Strong
scaling rendering times in the offline scenario drop rapidly as the
I/O overhead is distributed across nodes.

In general, strong scaling seems to be relatively limited in the
tested scenarios. However, weak scaling suggests that strong scal-
ing would improve at bigger workloads.

6. Conclusion and Outlook

We have demonstrated a novel approach to large scale volume ren-
dering based on distributed task-based runtime environments, an
emerging trend in modern high performance computing on increas-
ingly heterogeneous architectures. Our technique is based on a hy-
brid task-definition using parallelization in both image and data
space, representing an effective and easy-to-control trade-off be-
tween sort-first and sort-last image compositing.

In our distributed asynchronous compositing scheme, each node
determines the set of visible blocks for each tile. After an initial
topological sorting, a sender-initiated binary tree communication
scheme is used to correctly compose all block images within a tile.
The compositing scheme incorporates common optimization tech-
niques such as empty-block skipping and opacity culling, which is
aided by a custom task priority scheduler based on the Manhattan
distance to the camera.

We have conducted comprehensive benchmarks to study the
characteristics of possible block and tile configurations in order to
achieve optimal task granularity. The employed asynchronous bi-
nary tree compositing scheme enables good scalability in combina-
tion with inherent dynamic load balancing. The dynamic schedul-
ing of initialization, rendering and compositing tasks on a single
node ensures good latency hiding of network communication and
I/O access.

Our contribution is intended as a baseline investigation of the
applicability of task-based runtime environments to distributed sci-
entific visualization. We anticipate that many enhancements and
improvements of our approach are possible:

• Distributed work stealing would be an interesting approach to
implement proper load balancing across node boundaries. Since
each block is represented by an individual component in HPX’s
active global address space, the migration of blocks could be per-
formed transparently with little to no modifications to the dis-
tributed compositing scheme. Distributed load balancing is es-
pecially important in an interactive setup with user-controlled
camera navigation.

• In conjunction to distributed work stealing, a more sophisticated
scheduling algorithm could also be used to improve task overlap
and ensure the available I/O bandwidth is always kept saturated
while executing rendering tasks as long as there are still blocks
left to be loaded.

• Out of core handling could be used to support larger block counts
on individual nodes.

• So far, our approach relies on the regular structure of blocks
at various places. Support for unstructured data would involve
complex enhancements to the distributed compositing scheme.

• In general, performance benchmarks on larger core counts would
be very interesting. The integration of additional accelerator
cards such as Intel Xeon Phi or GPGPUs is theoretically easy
in the spirit of task-based runtime environments, but in practice
still technically challenging.

• Additional benchmarks for comparison against traditional non-
task-based approaches are required to further characterize the
benefits and drawbacks of the presented approach. We do
not expect significiant benefits from applications that already

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

69



T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

64 128 192 256 320 384 448 51216
Cores

2

3

4

5

6

7

8

9

10

Ti
m
e 
(S
ec
on
ds
)

Weak (In-situ)
Strong (In-situ)

(a) In-situ scaling

64 128 192 256 320 384 448 51216
Cores

5

10

15

20

25

Ti
m

e 
(S

ec
on

ds
)

Weak (Offline)
Strong (Offline)

(b) Offline scaling

Figure 7: Weak and strong scaling up to 512 cores for both in-situ and offline scenarios. The corresponding block and tile sizes are depicted
in Figure 5. After an initial performance improvement, weak scaling shows for both in-situ and offline cases approximately constant runtime.
Strong scaling rendering times in the offline scenario drop rapidly as the I/O overhead is distributed across nodes.

scale well on large machines using traditional data parallel ap-
proaches, especially if they are highly tuned and optimized to-
wards a specific system or architecture. However, as elaborated
in Section 1, we believe the major promising advantages of task-
based designs lie in their portability to diverse and heterogeneous
architectures, as well as the conceptionally more straightforward
formulation of massively parallel programs.

• Besides distributed rendering, other load-sensitive techniques
from scientific visualization such as topological methods or in-
tegral curve computations would certainly make promising can-
didates for task-based parallelization.

• Once enough task-based designs of standard visualization algo-
rithms exist, their interplay and dependencies in a (complex) vi-
sualization pipeline could be studied.

• The task graph could be used for theoretical models and esti-
mates about runtime, possible parallelization and scalability.

We will investigate these possibilities in future work.

Acknowledgement

This research was funded in part by the German Research Founda-
tion (DFG) within the IRTG 2057 "Physical Modeling for Virtual
Manufacturing Systems and Processes".

References

[AA07] AYYUB S., ABRAMSON D.: GridRod: A Dynamic Runtime
Scheduler for Grid Workflows. In Proceedings of the 21st Annual Inter-
national Conference on Supercomputing (New York, NY, USA, 2007),
ICS ’07, ACM, pp. 43–52. doi:10.1145/1274971.1274980. 3

[AGJ∗14] ACUN B., GUPTA A., JAIN N., LANGER A., MENON H.,
MIKIDA E., NI X., ROBSON M., SUN Y., TOTONI E., WESOLOWSKI
L., KALE L.: Parallel programming with migratable objects: Charm++
in practice. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Piscataway,

NJ, USA, 2014), SC ’14, IEEE Press, pp. 647–658. doi:10.1109/
SC.2014.58. 3

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-Art in
GPU-Based Large-Scale Volume Visualization. Computer Graphics Fo-
rum 34, 8 (2015), 13–37. doi:10.1111/cgf.12605. 2

[BHPB03] BETHEL E. W., HUMPHREYS G., PAUL B., BREDERSON
J. D.: Sort-First, Distributed Memory Parallel Visualization and Render-
ing. In Proceedings of the 2003 IEEE Symposium on Parallel and Large-
Data Visualization and Graphics (Washington, DC, USA, Oct 2003),
PVG ’03, pp. 41–50. doi:10.1109/PVGS.2003.1249041. 2

[BTSA12] BAUER M., TREICHLER S., SLAUGHTER E., AIKEN A.: Le-
gion: Expressing locality and independence with logical regions. In High
Performance Computing, Networking, Storage and Analysis (SC), 2012
International Conference for (Nov 2012), pp. 1–11. doi:10.1109/
SC.2012.71. 3

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A scalable, hy-
brid scheme for volume rendering massive data sets. In Proceedings
of the 6th Eurographics Conference on Parallel Graphics and Visu-
alization (Aire-la-Ville, Switzerland, Switzerland, 2006), EGPGV ’06,
Eurographics Association, pp. 153–161. doi:10.2312/EGPGV/
EGPGV06/153-161. 2

[CM93] CORRIE B., MACKERRAS P.: Parallel volume rendering and
data coherence. In Proceedings of 1993 IEEE Parallel Rendering Sym-
posium (Oct 1993), pp. 23–26, 106. doi:10.1109/PRS.1993.
586081. 2

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume Ren-
dering. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1988), SIG-
GRAPH ’88, ACM, pp. 65–74. doi:10.1145/54852.378484. 2

[DG15] DUBEY A., GRAVES D. T.: A Design Proposal for a
Next Generation Scientific Software Framework. Springer Inter-
national Publishing, Cham, 2015, pp. 221–232. doi:10.1007/
978-3-319-27308-2_19. 1, 3

[DLS∗09] DINAN J., LARKINS D. B., SADAYAPPAN P., KRISH-
NAMOORTHY S., NIEPLOCHA J.: Scalable Work Stealing. In Pro-
ceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis (New York, NY, USA, 2009), SC ’09, ACM,
pp. 53:1–53:11. doi:10.1145/1654059.1654113. 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

70

http://dx.doi.org/10.1145/1274971.1274980
http://dx.doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1111/cgf.12605
http://dx.doi.org/10.1109/PVGS.2003.1249041
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.2312/EGPGV/EGPGV06/153-161
http://dx.doi.org/10.2312/EGPGV/EGPGV06/153-161
http://dx.doi.org/10.1109/PRS.1993.586081
http://dx.doi.org/10.1109/PRS.1993.586081
http://dx.doi.org/10.1145/54852.378484
http://dx.doi.org/10.1007/978-3-319-27308-2_19
http://dx.doi.org/10.1007/978-3-319-27308-2_19
http://dx.doi.org/10.1145/1654059.1654113


T. Biedert et al. / A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications

[EP07] EILEMANN S., PAJAROLA R.: Direct Send Compositing for
Parallel Sort-last Rendering. In Proceedings of the 7th Eurograph-
ics Conference on Parallel Graphics and Visualization (Aire-la-Ville,
Switzerland, 2007), EGPGV ’07, pp. 29–36. doi:10.2312/EGPGV/
EGPGV07/029-036. 2

[FCS∗10] FOGAL T., CHILDS H., SHANKAR S., KRÃIJGER J., BERG-
ERON R. D., HATCHER P.: Large Data Visualization on Distributed
Memory Multi-GPU Clusters. In High Performance Graphics (2010),
Doggett M., Laine S., Hunt W., (Eds.), HPG ’10, pp. 57–66. doi:
10.2312/EGGH/HPG10/057-066. 2

[GABS13] GILMANOV T., ANDERSON M., BRODOWICZ M., STER-
LING T.: Application characteristics of many-tasking execution mod-
els. In The 19th International Conference on Parallel and Distributed
Processing Techniques and Applications (Las Vegas, USA, July 2013).
3

[HBC12] HOWISON M., BETHEL E. W., CHILDS H.: Hybrid Paral-
lelism for Volume Rendering on Large-, Multi-, and Many-Core Sys-
tems. IEEE Transactions on Visualization and Computer Graphics 18, 1
(Jan 2012), 17–29. doi:10.1109/TVCG.2011.24. 1, 2

[HLYD11] HAIDAR A., LTAIEF H., YARKHAN A., DONGARRA J.:
Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear
Algebra on Multicore Architectures. Concurr. Comput. : Pract. Exper.
24, 3 (Mar. 2011), 305–321. doi:10.1002/cpe.1829. 3

[KBM∗08] KALE L. V., BOHM E., MENDES C. L., WILMARTH T.,
ZHENG G.: Programming Petascale Applications with Charm++ and
AMPI. In Petascale Computing: Algorithms and Applications, Bader
D., (Ed.). Chapman & Hall / CRC Press, 2008, pp. 421–441. 3

[KHAL∗14] KAISER H., HELLER T., ADELSTEIN-LELBACH B., SE-
RIO A., FEY D.: HPX: A Task Based Programming Model in a
Global Address Space. In Proc. of the 8th International Conference
on Partitioned Global Address Space Programming Models (New York,
NY, USA, 2014), PGAS ’14, ACM, pp. 6:1–6:11. doi:10.1145/
2676870.2676883. 1, 3, 5

[KPH∗10] KENDALL W., PETERKA T., HUANG J., SHEN H.-W.,
ROSS R.: Accelerating and Benchmarking Radix-k Image Composit-
ing at Large Scale. In Proceedings of the 10th Eurographics Con-
ference on Parallel Graphics and Visualization (Aire-la-Ville, Switzer-
land, 2010), EG PGV’10, pp. 101–110. doi:10.2312/EGPGV/
EGPGV10/101-110. 2

[KWN∗14] KNOLL A., WALD I., NAVRATIL P., BOWEN A., REDA K.,
PAPKA M. E., GAITHER K.: RBF Volume Ray Casting on Multicore
and Manycore CPUs. In Proceedings of the 16th Eurographics Con-
ference on Visualization (Aire-la-Ville, Switzerland, Switzerland, 2014),
EuroVis ’14, Eurographics Association, pp. 71–80. doi:10.1111/
cgf.12363. 2

[Lev90] LEVOY M.: Efficient Ray Tracing of Volume Data. ACM Trans.
Graph. 9, 3 (July 1990), 245–261. doi:10.1145/78964.78965. 2

[MAWM11] MOLONEY B., AMENT M., WEISKOPF D., MOLLER T.:
Sort-First Parallel Volume Rendering. IEEE Transactions on Visual-
ization and Computer Graphics 17, 8 (Aug. 2011), 1164–1177. doi:
10.1109/TVCG.2010.116. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.: A Sort-
ing Classification of Parallel Rendering. IEEE Comput. Graph. Appl. 14,
4 (July 1994), 23–32. doi:10.1109/38.291528. 2

[MMD06] MARCHESIN S., MONGENET C., DISCHLER J.-M.: Dy-
namic Load Balancing for Parallel Volume Rendering. In Proceedings
of the 6th Eurographics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2006), EGPGV ’06, Euro-
graphics Association, pp. 43–50. doi:10.2312/EGPGV/EGPGV06/
043-050. 2

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH M. F.:
Parallel volume rendering using binary-swap compositing. IEEE Com-
puter Graphics and Applications 14, 4 (July 1994), 59–68. doi:
10.1109/38.291532. 2

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized Vol-
ume Raycasting for Graphics-hardware-based Cluster Systems. In Pro-
ceedings of the 6th Eurographics Conference on Parallel Graphics and
Visualization (Aire-la-Ville, Switzerland, Switzerland, 2006), EGPGV
’06, Eurographics Association, pp. 59–67. doi:10.2312/EGPGV/
EGPGV06/059-066. 2

[NFLM07] NAVRÁTIL P. A., FUSSELL D. S., LIN C., MARK W. R.:
Dynamic Ray Scheduling to Improve Ray Coherence and Bandwidth Uti-
lization. Tech. rep., 2007. 2

[NPS12] NOTZ P. K., PAWLOWSKI R. P., SUTHERLAND J. C.: Graph-
Based Software Design for Managing Complexity and Enabling Con-
currency in Multiphysics PDE Software. ACM Trans. Math. Softw. 39, 1
(Nov. 2012), 1:1–1:21. doi:10.1145/2382585.2382586. 3

[PBH∗16] PÉBAY P. P., BENNETT J. C., HOLLMAN D. S., TREICH-
LER S., MCCORMICK P. S., SWEENEY C., KOLLA H., AIKEN A.:
Towards asynchronous many-task in situ data analysis using legion. In
2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May 23-27,
2016 (2016), pp. 1033–1037. doi:10.1109/IPDPSW.2016.24. 3

[PCG∗09] PUGMIRE D., CHILDS H., GARTH C., AHERN S., WEBER
G. H.: Scalable Computation of Streamlines on Very Large Datasets.
In Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis (New York, NY, USA, 2009), SC ’09,
ACM, pp. 16:1–16:12. doi:10.1145/1654059.1654076. 1

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-W.,
THAKUR R.: A Configurable Algorithm for Parallel Image-compositing
Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (New York, NY, USA,
2009), SC ’09, ACM, pp. 4:1–4:10. doi:10.1145/1654059.
1654064. 2

[PYRM08] PETERKA T., YU H., ROSS R., MA K.-L.: Parallel Vol-
ume Rendering on the IBM Blue Gene/P. In Eurographics Symposium
on Parallel Graphics and Visualization (2008), Favre J. M., Ma K.-
L., (Eds.), The Eurographics Association. doi:10.2312/EGPGV/
EGPGV08/073-080. 2

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J., PATCH-
ETT J.: SLIC: Scheduled Linear Image Compositing for Parallel Volume
Rendering. In Proc. of the 2003 IEEE Symposium on Parallel and Large-
Data Visualization and Graphics (Washington, DC, USA, 2003), PVG
’03, IEEE Computer Society, pp. 6–. doi:10.1109/PVGS.2003.
1249040. 2

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay - A
CPU Ray Tracing Framework for Scientific Visualization. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (2017). doi:
10.1109/TVCG.2016.2599041. 5

[YWM08] YU H., WANG C., MA K.-L.: Massively Parallel Volume
Rendering Using 2-3 Swap Image Compositing. In Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing (Piscataway, NJ,
USA, 2008), SC ’08, IEEE Press, pp. 48:1–48:11. doi:10.1109/
SC.2008.5219060. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

71

http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGGH/HPG10/057-066
http://dx.doi.org/10.2312/EGGH/HPG10/057-066
http://dx.doi.org/10.1109/TVCG.2011.24
http://dx.doi.org/10.1002/cpe.1829
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.2312/EGPGV/EGPGV10/101-110
http://dx.doi.org/10.2312/EGPGV/EGPGV10/101-110
http://dx.doi.org/10.1111/cgf.12363
http://dx.doi.org/10.1111/cgf.12363
http://dx.doi.org/10.1145/78964.78965
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.1109/38.291532
http://dx.doi.org/10.1109/38.291532
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dx.doi.org/10.1145/2382585.2382586
http://dx.doi.org/10.1109/IPDPSW.2016.24
http://dx.doi.org/10.1145/1654059.1654076
http://dx.doi.org/10.1145/1654059.1654064
http://dx.doi.org/10.1145/1654059.1654064
http://dx.doi.org/10.2312/EGPGV/EGPGV08/073-080
http://dx.doi.org/10.2312/EGPGV/EGPGV08/073-080
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.1109/TVCG.2016.2599041
http://dx.doi.org/10.1109/TVCG.2016.2599041
http://dx.doi.org/10.1109/SC.2008.5219060
http://dx.doi.org/10.1109/SC.2008.5219060

