
Eurographics Symposium on Parallel Graphics and Visualization (2015)
C. Dachsbacher, P. Navrátil (Editors)

Contour Tree Depth Images For Large Data Visualization

T. Biedert and C. Garth

University of Kaiserslautern, Germany

Figure 1: Automatic segmentation of the turbulent jet5 λ2 data set into 1024 branches based on branch persistence.

Abstract
High-fidelity simulation models on large-scale parallel computer systems can produce data at high computational
throughput, but modern architectural trade-offs make full persistent storage to the slow I/O subsystem prohibitively
costly with respect to time. We demonstrate the feasibility and potential of combining in situ topological contour
tree analysis and compact image-based data representation to address this problem. Our experiments show signif-
icant reductions in storage requirements using topology-guided layered depth imaging, while preserving flexibility
for explorative visualization and analysis. Our approach represents an effective and easy-to-control trade-off be-
tween storage overhead and visualization fidelity for large data visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

At the current scale of computational capability provided
by large-scale parallel computer architectures such as com-
modity clusters and modern supercomputers, high-fidelity
computational simulation models have assumed a signif-
icant role in scientific research and engineering applica-
tions. However, this increased amount of computation has
incurred architectural trade-offs. While arithmetic capacity
and in-core memory have grown at a tremendous rate, I/O
subsystems have not been able to keep abreast in relative

bandwidth [CPA∗10]. As a consequence, numerical data
produced during typical simulations cannot be persistently
stored, e.g. to hard drives, in its entirety; a lack of available
I/O bandwidth would make this prohibitively costly with re-
spect to time.

Visualization of large-scale simulation output thus has to
rely on a number of different strategies to facilitate mean-
ingful analysis in reasonable time frames. Multi-resolution
schemes represent data on varying scales of resolutions and
have a long standing tradition in this setting. They enable

c© The Eurographics Association 2015.

DOI: 10.2312/pgv.20151158

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20151158


T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

an essential compromise between fidelity and accuracy of
visualization results on one hand, and computation and I/O
bandwidth expended on the other. Among the large set of
available methods, topological techniques such as the con-
tour tree stand out because they are able to provide mean-
ingful simplification for scalar fields.

A further smart approach to reduce the volume of data
generated from simulations while preserving a significant
amount of analysis flexibility was recently introduced by
Ahrens et al. [AJO∗14]. The underlying idea is to generate
in situ an image database that stores multiple layers of prede-
fined visualization renderings. The layers can then be com-
posited in post processing depending on specific demands by
the scientist conducting analysis.

In this context, the intent of this paper is to study the com-
bination of in situ topological analysis with the image-based
approach of Ahrens et al. Based on in situ contour tree anal-
ysis and simplification, we obtain a segmented representa-
tion of scalar fields contained in the simulation data at every
time step. A rendering of this segmentation is then generated
describing all components visible in every pixel (similar to
an A-buffer), and stored together with the simplified contour
tree. These ingredients can then be used in post-analysis to
flexibly select specific subsets of the segmentation, after fur-
ther simplification if required.

The overall intent of this paper is to investigate possi-
ble advantages of such an approach for the visualization of
large-scale data. Specifically, after a brief review of relevant
prior work (Section 2), we make the following contributions:

• In Sections 3 through 7, we describe a system to combine
in situ contour tree analysis, simplification, and image-
based representation to facilitate reduced I/O require-
ments while preserving flexibility in visualization.

• We conduct several experiments to quantify the I/O sav-
ings possible from such an approach, and describe results
and analysis in Section 8.

• We anticipate that many enhancements and improvements
are possible, and discuss a number of such opportunities
in Section 9.

Our contribution is intended as a baseline demonstration
of the feasibility and potential of the combination of topolog-
ical analysis and image-based representation in large-scale
in situ scenarios.

2. Related Work

A classic use case of topology in scalar field visualization
is isosurface extraction, where typically several topological
properties such as the number of connected components or
the genus of the isosurface, i.e., the number of independent
tunnels, are of central interest. Based on Morse theory, show-
ing that topological changes in scalar fields defined on man-
ifolds happen only at distinct critical points, Reeb graphs

capture the topological evolution of individual contours us-
ing these critical points and their relationships. The efficient
construction of Reeb graphs in general is still an active field
of study [DN09]. However, for simply connected domains,
the Reeb graph is always a tree structure [BR63], called con-
tour tree, which is algorithmically computable for tetrahe-
dral [CSA00] and hexahedral [PCM04] meshes. Since con-
tour trees can become hard to understand due to high com-
plexity, Weber et al. [WBP07] introduced topological land-
scapes, a visual metaphor for contour trees by creating a
representative terrain with the same topological structure
as a given contour tree, which can be further extended to
reflect the geometric proximity of the features represented
therein [BWM∗12] or hierarchically used for topology ex-
ploration [DBW∗12].

Topological techniques have proven highly valuable for
the analysis, visualization and exploration of scientific data.
Bajaj et al. [BPS97] introduced the contour spectrum, an
interface providing the contour tree and additional proper-
ties such as area and enclosed volume alongside isosurface
visualization. Fujishiro et al. detected significant isovalues
automatically using the contour tree for transfer function de-
sign [FTAT00]. Weber et al. based scalar field exploration on
the detection of critical points and critical regions [WSH03].
Van Kreveld et al. [vKvOB∗97] performed seeded isosurface
extraction based on the contour tree, which was extended by
Carr and Snoeyink to use the contour tree as a visual index
for a volume data set and identify all contours for a given
isovalue [CS03]. Takahashi et al. [TFT05] employed inter-
val volumes to visualize regions of uniform topology, pro-
viding means to examine internal structures by peeling away
top layers. Takashima et al. [TTFN05] further investigated
the idea of peeling off layers by using topological informa-
tion such as isosurface inclusion level in multi-dimensional
transfer function design.

Noise in data sets can lead to large numbers of irrele-
vant critical points, complicating feature-driven exploration
based on topology. Topological simplification eliminates in-
significant features by cancellation, i.e., removing irrelevant
pairs of critical points. The Volume skeleton tree [TTF04]
and the Morse-Smale complex [EHNP03,BEHP04,GNP∗05]
are two topological structures widely used for scalar topo-
logical simplification besides the contour tree. However, our
work relies on the simplification approaches introduced by
Carr et al. [CSvdP04] and Pascucci et al. [PCMS04]. Carr
et al. [CSvdP04] used leaf pruning and node collapse opera-
tions for contour tree simplification. Removing a leaf and the
arc incident to the leaf from the contour tree discards the cor-
responding contours from further consideration when using
seed-based contour extraction. Pascucci et al. [PCMS04] in-
troduced the branch decomposition of a contour tree, which
can be interpreted as a hierarchy of contour tree simplifica-
tions. Since a branch is defined by a monotone path connect-
ing a saddle and an extremum vertex, discarding a branch
is equivalent to the topological cancellation of the respec-

c© The Eurographics Association 2015.

78



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

Raw Data Layered Depth 
Image Rendering AnalysisContour Tree 

(Simplified)

In Situ Reduction Viewer
100

0

40

55

90

40

80 80

65

30

35

20

+

Input Storage

Compressed 
Bundle File

Figure 2: Conceptual architectural overview of our contribution, providing a framework for the flexible exploration of in-situ
generated compressed renderings. Volume data is segmented into topological regions based on its contour tree. After automatic
filtration, the segments imposed by the simplified contour tree are intersected by a ray casting rendering approach. All resulting
fragments form a layered depth image, which is compactly stored combined with the contour tree and of significantly smaller
size than the original data.

tive two critical points. Our work is inspired by Weber et
al. [WDC∗07], who used the branch decomposition for the
segmentation of a volume into regions of equivalent contour
topology and applying separate transfer functions to each re-
gion. Carr et al. [CSvdP10] also used the simplified contour
tree as an interface for exploratory visualization.

Bremer et al. studied the application of topological meth-
ods to large data scenarios, defining feature identification by
thresholding isosurfaces in terms of the Morse complex and
representing the complete evolution of all features over time
in tracking graphs [BWP∗10]. Also, Bremer et al. used hier-
archical merge trees as a compact feature representation re-
ducing data storage [BWT∗11]. Thompson et al. [TLB∗11]
introduced hixels as a new compact representation of large
scalar data, storing a histogram of values for each sample
point of the domain, thereby trading off data size and com-
plexity for scalar value uncertainty. Landge et al. used seg-
mented merge trees to encode a wide range of threshold
based features to obtain a reduced data representation while
maintaining post-processing flexibilities [LPG∗14]. More
recently, also image-based approaches to large data storage
and visualization emerged. Tikhonova et al. [TCM10] pre-
sented the idea of using proxy images for interactive explo-
ration without accessing the original 3D data. View changes,
transfer function exploration, and relighting are handled in
proxy image space only. Ahrens et al. [AJO∗14] generated
an in situ image database, storing multiple layers of prede-
fined visualization renderings, which can then be compos-
ited in post processing. The central idea, which is also key
to our work, is to achieve a massive data reduction when
storing the simulation output of large-scale numerical simu-
lations, while preserving visualization fidelity and flexibility
for future post-processing. Frey et al. presented an interest-
ing novel scheme for progressive rendering which helps to

achieve a fluent interactive visualization of large data at high
frame rates [FSME14].

Building on this rich methodological foundation, we
investigate the feasibility and potential of combining in
situ topological analysis and image-based representation to
tackle the problems in permanent data storage of high-
fidelity simulation results, caused by the modern architec-
tural trade-offs in large-scale parallel computer systems.

3. Method Overview

We aim to achieve substantial reductions in data size by
leveraging topological simplification and compact image-
based storage. Our approach essentially consists of two
components: an image rendering library and an interactive
viewer application. A conceptual overview of the central
steps in the processing workflow is depicted in Figure 2.

The rendering library is directly includable into simula-
tion code and targets high-performance cluster environments
or workstations. Simulation output data is segmented into
topological regions based on its contour tree, which in turn
are intersected by a ray casting rendering approach. How-
ever, instead of only determining the fragment closest to the
camera, we store each intersection together with a set of
local properties in a linked fragment list, similar to an A-
buffer [Car84]. These properties include the element in the
contour tree corresponding to the intersected segment and
further additional attributes used for rendering such as the
normal or ray depth at the intersection. The fragment lists
combined with the contour tree are stored in a proprietary
binary file format, which is considerably smaller in size than
the original simulation data, yet provides enough flexibility
for subsequent data exploration.

Once compressed layered depth image data has been

c© The Eurographics Association 2015.

79



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

generated, it represents a significant size reduction of the
original input data and can be explored in the interactive
viewer application running on the user’s desktop computer.
By interactively modifying visual properties of the regions
imposed by the contour tree or applying further filtering
schemes, the user can control which topological regions are
displayed.

4. Segmentation and Filtering

Given a scalar field defined on a regular grid as input data,
we construct the contour tree using the sweep and merge al-
gorithm by [CSA00], where the split and join sweep phases
are executed in parallel. Afterwards, the so-called branch de-
composition is computed using a variant of [PCMS04]. The
branch decomposition can be interpreted as a hierarchy of
contour tree simplifications. Since a branch is defined by a
monotone path connecting a saddle and an extremum vertex,
discarding a branch is equivalent to the topological cancel-
lation of the respective two critical points. The output of the
above algorithm is a tree structure representing the branch
decomposition of the contour tree and a mapping of vertices
to their corresponding branch in the decomposition. Notably,
the latter is used for rendering only, whereas the branch de-
composition is stored in the final image, with each branch
being characterized by index, volume and critical value pair.

Filtering is a central concept inherent to the hierarchical
branch decomposition structure. In our context, if a branch
is to be discarded, all vertices belonging to this branch are
reassigned to the closest unfiltered parent branch. We em-
ploy this technique in two ways. First, the initial branch de-
composition used for rendering can be controlled by a user-
provided maximum number of branches. This is a crucial
step to achieve significant data reduction at in situ time, as
the initial unfiltered branch decomposition consists of nu-
merous branches which are irrelevant for the later visualiza-
tion, either due to negligible importance or being caused by
noise. Second, in the interactive viewer application, the user
can apply several consecutive filtering steps in order to sim-
plify the layered depth image visualization.

Besides manual branch selection, the library provides
means to automatically identify branches of interest. Au-
tomatic branch selection can be either done by range, i.e.,
select all branches whose critical values intersect a given
input range, or by sorting, i.e., sort all branches either by
persistence or volume and pick the first k branches which
fulfill a given minimum persistence or volume threshold.
Notably, if the sorting criterion of two branches is equal,
they are sorted by their depth in the branch decomposition
tree, ensuring child branches are discarded before their par-
ent. Once expendable branches are identified, filtering is per-
formed recursively. If a branch is flagged for discard, also all
of its children are discarded. Otherwise they are individually
checked. However, other filtering criteria are certainly pos-
sible.

The consequences of performing a filtering step depend
on whether it is done for in situ data reduction or in the
viewer application. Automatic filtering after the construction
of the initial branch decomposition prior to rendering only
requires an update to the vertex-to-branch mapping. How-
ever, when applying additional user-controlled filtering in
the viewer application, the branch indices of all fragments
in all depth images linked to this contour tree need to be up-
dated. Furthermore, since branch filtering can geometrically
lead to the merging of neighboring topological regions, re-
placing branch indices in the linked fragment lists can pro-
duce duplicate intersections which need to be eliminated. In
this case, we only keep the one closest to the camera.

5. Depth Image Rendering

After the contour tree for a single simulation time step has
been constructed, multiple layered depth image renderings
can be computed based on its branch decomposition. Thus,
given a scalar field defined on a regular grid, the vertex-to-
branch mapping, camera position and orientation, resolution
and an optional maximum number of depth layers, we per-
form a concurrent ray casting procedure for image genera-
tion.

5.1. Segment Intersection

The goal is to record all intersections of rays with the bound-
aries of the topological regions defined by the contour tree.
Assuming a sequence of sample positions along the ray, we
principally need to determine the branch index at each lo-
cation and detect an intersection if the branch index at the
current candidate location is different from the branch in-
dex at the previous accepted intersection. However, while
we want to achieve high intersection precision, perform-
ing naïve uniform sampling with sufficiently small step size
along the complete ray obviously suffers from bad perfor-
mance in large homogeneous segments.

Rather, our sampling algorithm traverses data voxels fol-
lowing a three-dimensional Bresenham approach. For each
cell encountered, we check if all eight corner vertices belong
to the same branch, in which case we can trivially use this
respective branch index and return the entering intersection
of the ray with the voxel boundary as intersection candidate.
Otherwise, there are potential intersections with topological
segment boundaries within the cell, which we approximate
by a local uniform sampling scheme restricted to the cell
volume.

At each sample position, we need to determine the topo-
logical segment containing the given location, i.e., determine
the respective branch index. We follow the approach pre-
sented in [WDC∗07], which is based on the relation that
monotone paths in the scalar field always map to monotone
paths in the corresponding contour tree and vice versa. First,
the unique monotone path going through the given sample

c© The Eurographics Association 2015.

80



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

(a) 90 branches (b) 50 branches

(c) 30 branches (d) 10 branches

Figure 3: Incremental simplification of the central turbulence in the plate λ2 data set by sorted branch persistence, enabling a
flexible and topologically-guided exploration of vortex core structures.

position and two cell corners is determined by exploiting
the linearity of the trilinear interpolant within the cell along
axis-oriented lines. We then follow the monotone path in the
contour tree until the branch containing the data value at the
sample position is found. Eventually, for each detected frag-
ment, the associated branch index and additional optional
parameters such as gradient of the scalar field or depth value
are stored.

Notably, the central idea of this proof-of-concept work
is independent of the employed data sampling scheme, pro-
viding opportunities for performance optimization. Also, to-
gether with an appropriate intersection detection scheme,
our approach is easily applicable to non-regular data.

5.2. GPU Acceleration

We have implemented the above layered depth image render-
ing algorithm both as a CPU- and GPU-version. While the
multi-threaded CPU version of our library targets rendering
of large data sets in traditional cluster environments without
accelerator cards, we have additionally implemented GPU
hardware acceleration as a proof of concept of our highly
parallelizable algorithm.

As described above, rendering by ray casting creates a
list of fragments for each ray, representing the visual prop-
erties for all intersections with topological segments it en-
counters. Our implementation is conceptionally similar to

per-pixel linked lists [YHGT10], a recent technique in com-
puter graphics for hardware-accelerated order-independent
transparency [MCTB12] based on the classic A-buffer ap-
proach [Car84]. For each pixel, a linked list of fragments
keeps track of the intersections encountered during traversal.
The respective fragment properties themselves are stored in
a global shared fragment pool.

Based on OpenGL 4.3 [SA13], our implementation relies
on shader storage buffer objects and image load/store exten-
sions. Input volume data and the vertex-to-branch mapping
originating from the branch decomposition of the contour
tree are stored in uniform volume samplers. Per-pixel infor-
mation, i.e., the head node of the linked fragment list and
the number of nodes in the list, is stored in two uimage2D
samplers in r32ui layout, sized at the requested rendering
resolution. A shader storage buffer object holds the global
fragment pool, where each fragment stores its properties and
a link to the next fragment. An atomic counter buffer object
is used to keep track of the next free fragment in the global
fragment pool. Whenever a newly generated fragment is to
be stored in the pool, the counter is incremented, the head
node is exchanged and the number of fragments in the list is
increased, using the respective atomic buffer and image op-
erations. In order to maintain linked list consistency, the next
node of the new fragment is set to the previous head node of
the pixel’s linked fragment list.

Fast parallel ray generation is achieved by first rendering

c© The Eurographics Association 2015.

81



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

Figure 4: Automatic segmentation of the plate λ2 data set into 100 branches sorted by branch volume. An HSV color scale has
been applied to all branches, where for each branch the average scalar branch value was approximated by the mean of saddle
and extremum values stored with the branch.

only the back faces of the data volume cube to an offscreen
framebuffer and storing the generated interpolated fragment
position, i.e., ray exit point of this pixel, in the respective
framebuffer’s color attachment. In the next pass, the same
procedure is applied to the front faces only, yielding the ray
starting positions.

In summary, our GPU-based rendering procedure consists
of four phases, all of which are executed highly parallel by
hardware:

1. Draw back faces of data cube to offscreen framebuffer to
obtain ray exit locations.

2. Draw fullscreen quad clearing linked fragment lists, i.e.,
reset head nodes and node counts in per-pixel samplers.

3. Draw front faces of data cube to obtain ray entry loca-
tions.

4. Perform ray casting and store intersections in linked frag-
ment lists.

Step 3 and 4 are executed in a single shader pass. After ren-
dering, the contents of the global fragment pool and the per-
pixel samplers are read back to host memory.

6. Storage

Reducing data storage requirements while maintaining flex-
ibility for interactive exploration of results is central to our
contribution. Thus, compactly storing the output of our ren-
dering algorithm is crucial. For a given (filtered) contour
tree, multiple depth renderings from different perspectives
and resolutions can be generated. These bundles are stored
in a single file in HDF5 format with zlib deflate compression
enabled at level 6, which we found to be a good compromise
between size and speed.

The branch decomposition of the contour tree is serial-
ized recursively in depth-first manner, where for each branch
we store index, saddle value, extremum value, and volume.
However, with only a few kilobytes, the contribution of the

branch decomposition to the final file size is negligible.
Clearly, the majority of storage is consumed by the depth
images, which thus require more optimization w.r.t. mem-
ory consumption. We need to store for each pixel a list of
fragments, where a single fragment consists of its associated
branch index and additional attributes such as normal. While
during rendering fragments are stored and manipulated as
linked lists distributed across memory and potentially shared
by rendering threads, this data can be compactly reorga-
nized for permanent storage. We remove the next-pointers
of the linked lists by rearranging fragment lists as contigu-
ous blocks in a single large layout, where each pixel of the
final layered depth image only stores the starting offset and
the number of fragments.

Since the largest offset, the maximum number of frag-
ments per pixel and the maximum branch index (i.e. to-
tal number of branches in the branch decomposition) are
known, primitive data types used for storing the respective
values can be intelligently chosen. As an example, if we
can restrict the total number of branches to 256, this allows
branch indices to be stored in single bytes, yet provides suf-
ficient segmentation detail in many scenarios.

While storing the branch index of each fragment is
mandatory, additional attributes are optional and depend on
the intended visualization. In our studies, we additionally
compactly store the normal at each intersection in two bytes
using a spheremap transformation [Pra10]. Also, we store
the intrinsic and extrensic camera parameters used for im-
age generation, serving as reference for lighting and shading
in the viewer.

7. Interactive Viewer

Compressed layered depth image bundle files can be loaded
and interactively explored on the user’s desktop machines
in the interactive viewer application, the counterpart of the
parallel rendering library in our framework.

c© The Eurographics Association 2015.

82



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

Number of Branches
0 200 400 600 800 1000

F
ile

 S
iz

e
 (

M
B

)

0

5

10

15

20

25

30

35

Mean + Std Dev
Maximum
Minimum

Figure 5: Impact of limiting the maximum number of
branches in the automatic simplification of the jet5 λ2 data
set on the compressed layered depth image file size, using
the same camera perspective as in Figure 1. Depth image
file size can vary greatly depending on the complexity of the
scene captured in the rendering, however in general stays
significantly smaller than the input data size of 134 MB.

The interface is split in two parts: the visualization of the
selected depth image and a tree widget used for the dis-
play and modification of the branch decomposition tree, in-
cluding color, persistence, value range and volume of each
branch. Users can manually or automatically select multiple
branches by range or sorted minimum persistence/volume
criterion as described in section 4. Additionally, picking
branches in the visualization using the mouse cursor is an
efficient way of selecting regions of interest. Picking can
either be restricted to automatic selection of the front-most
fragments or further guided by presenting all intersected seg-
ments in a cross-section interface. Selected branches are vi-
sually highlighted by distinct coloring. Given a set of se-
lected branches, the user can apply filtering in order to sim-
plify the visualization. Filters can even be combined by ap-
plying them on top of previous filtering steps. Undo is sup-
ported by storing the history of filtering operations.

Depth images are interactively updated and displayed in
real time, being powered by hardware-accelerated rendering
similar to the techniques outlined in section 5.2. Image data
and branch properties as edited in the branch decomposition
tree interface are transferred to shader storage buffer objects
on the GPU and rendered to an offscreen framebuffer, which
is afterwards displayed at flexible scale or exported to an
image file. For each pixel, the fragments are back-to-front
composited (they are already sorted by design), with shad-
ing being computed based on the stored fragment normal
and branch coloring as defined for the respective branches.
In addition to standard Phong illumination, we partially ap-

Time Step
0 50 100 150 200 250

F
ile

 S
iz

e
 (

M
B

)

0

50

100

150

200

250

300

Input Data
Raw
Compressed

Figure 6: Comparison of raw and compressed layered depth
image sizes in relation to the input data size of the plate λ2
data set across the full time range, using 256 branches and
the same camera perspective as in Figure 4. The reduction in
file size is even more prominent for larger input data sets.

ply angle-based view-dependent transparency as presented
in [HGH∗10].

8. Results

We have tested our framework on two regular vector field
data sets. The jet5 data set (given on a 256×512×256 grid
over 3000 timesteps) results from a direct numerical simu-
lation of a jet of high-velocity fluid entering a medium at
rest and exhibits progressively finer vortical structures in the
velocity field. Similarly, the plate data set (with a resolution
of 1024×256×256 over 285 timesteps) describes the mix-
ing of fluid flowing past a plate at different speeds that un-
dergo mixing due to viscous effects. Both data sets have been
converted to regular scalar fields based on velocity, vorticity
magnitude or the λ2 vortex detection criterion [JH95]. Full
examplary renderings of the data sets are depicted in Figures
1 and 4, respectively. An HSV color scale has been applied
to all branches based on λ2, where for each branch the av-
erage scalar branch value was approximated by the mean of
saddle and extremum values stored with the branch.

All images depicted in this paper have been rendered at
1920x1080 resolution on a standard desktop workstation us-
ing an Intel Core i7-4770k quad-core CPU and a NVIDIA
GeForce GTX 770 GPU. The complete topological segmen-
tation of a single time step took less than one minute us-
ing the above hardware for both data sets. Rendering times
varied depending on the chosen perspective, but typically
ranged from 20 to 60 seconds. The final compression and
storage of the resulting depth images was performed in less
than one second.

c© The Eurographics Association 2015.

83



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

8.1. Compression

The key goal of our contribution is to provide a flexible
trade-off between storage memory consumption and interac-
tive data exploration, essentially controllable by the branch
decomposition simplification level used for layered depth
image rendering.

Figure 5 depicts the output bundle file sizes of our tech-
nique applied to the jet5 data set in relation to several
user-provided maximum branch numbers, using the same
camera perspective as in Figure 1. For each number of
branches, the graph shows the mean, standard deviation,
minimum and maximum file sizes measured across the com-
plete time range of the data set. Clearly, the mean file size is
monotonously increasing with the number of branches. No-
tably, there is a small jump visible at 256 branches, when
fragments are required to use shorts instead of bytes for
branch index storage. However, in our studies, a maximum
number of 256 branches has emerged as a very good com-
promise between file size and segmentation detail, providing
a mean output size of approximately 7 MB, compared to the
input data size of 134 MB for each scalar jet5 time step, i.e.,
a size reduction of 95%.

The size reduction is even more prominent for full-view
renderings of the larger plate data set as in Figure 4. Figure
6 illustrates the raw output size and compressed output size
of our algorithm applied to each time step in relation to the
constant input data size. In contrast to the great variation in
file size due to the continuously increasing complexity of the
jet5 data set over time, the graph reflects the rather uniform
complexity of the plate data set. Also, the graphs clearly
highlight the fundamental reduction in data size compared
to the input data even when storing the layered depth images
in raw format, i.e., without additional zlib deflate compres-
sion, which usually achieves further compression ratios of
about 50-60%.

8.2. Analysis

By design, our approach features a powerful framework for
hierachical simplification and automatic segmentation based
on the branch decomposition of the contour tree, which is
interactively controllable in the viewer application.

Figure 3a depicts a close-up on the central turbulences of
the plate data set, which is located behind the main whirl vis-
ible in Figure 4. After an initial simplification of the whole
data set to 256 branches prior to layered depth image render-
ing, the surrounding branches have been manually pruned
in the viewer application. The remaining 90 branches vis-
ible in the depicted scene have been colored using a HSV
color scale based on the branches’ average λ2 values. In the
following Figures 3b, 3c and 3d, the branch decomposition
subsequently has been further simplified to 50, 30 and 10
branches, respectively. Simplification was performed auto-
matically based on sorted persistence as described in sec-

tion 4, while maintaining the color scheme for non-discarded
branches. One can clearly see the incremental reduction in
complexity, which has been achieved with minimal user in-
teraction and immediate visual feedback.

(a) velocity

(b) vorticity magnitude

(c) λ2

Figure 7: Comparison of automatic persistence-guided sim-
plification of the jet5 data set into 256 branches and applying
an HSV color scale based on the average branch value.

A comparison of applying automatic persistence-based
simplification to the jet5 data set is shown in Figure 7. In
each image, the same scene is depicted consisting of 256
branches in total, with data having been constructed using
either velocity (7a), vorticity magnitude (7b) or λ2 (7c).

In our studies, the topological segmentation based on the
branch decomposition of the contour tree has proven itself
useful as a flexible representation of the major structures of
interest occurring in the data sets, which furthermore pro-
vides an intuitive approach to simplification and filtering in
both pre- and postprocessing.

c© The Eurographics Association 2015.

84



T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

9. Conclusion and Outlook

We have demonstrated the feasibility and potential of com-
bining in situ topological analysis and compact image-based
data representation. Our approach significantly reduces the
amount of I/O bandwidth required to store the numerical re-
sults of high-fidelity numerical simulations running on large-
scale parallel computer systems, while preserving flexibility
in visualization.

Based on in situ contour tree analysis and simplification,
we obtain a segmented representation of scalar fields con-
tained in the simulation data at every time step. Together
with the simplified contour tree, we store a rendering of this
segmentation that describes all components visible in ev-
ery pixel. Rendering can leverage hardware acceleration, as
we have demonstrated by the GPU-based implementation of
our rendering algorithm. The resulting compressed layered
depth images can then be used in post-analysis to flexibly
select specific subsets of the segmentation, and perform fur-
ther topological simplification if required.

While our results already show substantial reductions in
output file size, especially for larger data sets, our contri-
bution is intended as a baseline demonstration investigating
possible advantages of such an approach for the visualization
of large-scale data. We anticipate that many enhancements
and improvements of our approach are possible:

• Similar to Ahrens et al. [AJO∗14], our technique could be
easily extended to generate a complete in situ image data
base from multiple perspectives, which can be combined
in the viewer application to enable a flexible 3D data ex-
ploration, or even be used for reconstruction purposes.

• Multivariate topological methods such as Joint Contour
Nets [CD14] might be investigated to obtain improved
segmentations.

• A critical shortcoming of our current implementation is
frame-to-frame temporal consistency. Since contour trees
are computed and decomposed independently at each time
step, the resulting contours can vary noticeably between
time steps depending on the chosen automatic simplifica-
tion criteria, potentially undermining analysis due to the
lack of frame-to-frame coherence. This crucial problem
could be addressed by incorporating feature tracking tech-
niques into the branch selection and simplification pro-
cess.

• The simplified contour tree stored with the compressed
image files could be further annotated to compactly con-
tain relevant properties of the original input data set,
thereby improving the power and flexibility of the result-
ing visualization. However, not only the contour tree, but
also the fragments can be used to compactly store local
information of the intersected segment useful for later vi-
sualization.

• Notably, the general idea of our concept is not restricted
to regular scalar data and is easily applicable to different

kinds of potentially more complex data structures, provid-
ing means for topological segmentation and intersection.

• More sophisticated compression schemes might be used
to further increase the compactness of the layered depth
images generated.

We will investigate these possibilities in future work.

Acknowledgements

This project was funded in part under EU Career Integration
Grant #304099.

References
[AJO∗14] AHRENS J., JOURDAIN S., O’LEARY P., PATCHETT

J., ROGERS D. H., PETERSEN M.: An image-based approach to
extreme scale in situ visualization and analysis. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (Piscataway, NJ, USA, 2014),
SC ’14, IEEE Press, pp. 424–434. doi:10.1109/SC.2014.
40. 2, 3, 9

[BEHP04] BREMER P.-T., EDELSBRUNNER H., HAMANN B.,
PASCUCCI V.: A topological hierarchy for functions on trian-
gulated surfaces. IEEE Transactions on Visualization and Com-
puter Graphics 10 (2004), 2004. 2

[BPS97] BAJAJ C. L., PASCUCCI V., SCHIKORE D. R.: The
contour spectrum. In Proceedings of the 8th Conference on Vi-
sualization ’97 (Los Alamitos, CA, USA, 1997), VIS ’97, IEEE
Computer Society Press, pp. 167–ff. 2

[BR63] BOYELL R. L., RUSTON H.: Hybrid techniques for real-
time radar simulation. In Proceedings of the November 12-14,
1963, Fall Joint Computer Conference (New York, NY, USA,
1963), AFIPS ’63 (Fall), ACM, pp. 445–458. doi:10.1145/
1463822.1463869. 2

[BWM∗12] BEKETAYEV K., WEBER G. H., MOROZOV D.,
ABZHANOV A., HAMANN B.: Geometry-preserving topologi-
cal landscapes. In Proceedings of the Workshop at SIGGRAPH
Asia (New York, NY, USA, 2012), WASA ’12, ACM, pp. 155–
160. doi:10.1145/2425296.2425324. 2

[BWP∗10] BREMER P.-T., WEBER G., PASCUCCI V., DAY M.,
BELL J.: Analyzing and tracking burning structures in lean pre-
mixed hydrogen flames. IEEE Transactions on Visualization and
Computer Graphics 16, 2 (2010), 1–1. doi:10.1109/TVCG.
2009.69. 3

[BWT∗11] BREMER P.-T., WEBER G., TIERNY J., PASCUCCI
V., DAY M., BELL J.: Interactive exploration and analysis of
large-scale simulations using topology-based data segmentation.
Visualization and Computer Graphics, IEEE Transactions on
17, 9 (Sept 2011), 1307–1324. doi:10.1109/TVCG.2010.
253. 3

[Car84] CARPENTER L.: The a -buffer, an antialiased hidden sur-
face method. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984),
103–108. doi:10.1145/964965.808585. 3, 5

[CD14] CARR H., DUKE D.: Joint contour nets. Visualiza-
tion and Computer Graphics, IEEE Transactions on 20, 8 (Aug
2014), 1100–1113. doi:10.1109/TVCG.2013.269. 9

[CPA∗10] CHILDS H., PUGMIRE D., AHERN S., WHITLOCK
B., HOWISON M., PRABHAT, WEBER G., BETHEL E.: Extreme
scaling of production visualization software on diverse architec-
tures. Computer Graphics and Applications, IEEE 30, 3 (May
2010), 22–31. doi:10.1109/MCG.2010.51. 1

c© The Eurographics Association 2015.

85

http://dx.doi.org/10.1109/SC.2014.40
http://dx.doi.org/10.1109/SC.2014.40
http://dx.doi.org/10.1145/1463822.1463869
http://dx.doi.org/10.1145/1463822.1463869
http://dx.doi.org/10.1145/2425296.2425324
http://dx.doi.org/10.1109/TVCG.2009.69
http://dx.doi.org/10.1109/TVCG.2009.69
http://dx.doi.org/10.1109/TVCG.2010.253
http://dx.doi.org/10.1109/TVCG.2010.253
http://dx.doi.org/10.1145/964965.808585
http://dx.doi.org/10.1109/TVCG.2013.269
http://dx.doi.org/10.1109/MCG.2010.51


T. Biedert & C. Garth / Contour Tree Depth Images For Large Data Visualization

[CS03] CARR H., SNOEYINK J.: Path seeds and flexible iso-
surfaces using topology for exploratory visualization. In Pro-
ceedings of the Symposium on Data Visualisation 2003 (Aire-
la-Ville, Switzerland, Switzerland, 2003), VISSYM ’03, Euro-
graphics Association, pp. 49–58. 2

[CSA00] CARR H., SNOEYINK J., AXEN U.: Computing con-
tour trees in all dimensions. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms (2000),
SODA ’00, pp. 918–926. 2, 4

[CSvdP04] CARR H., SNOEYINK J., VAN DE PANNE M.: Sim-
plifying flexible isosurfaces using local geometric measures. In
Visualization, 2004. IEEE (Oct 2004), pp. 497–504. doi:10.
1109/VISUAL.2004.96. 2

[CSvdP10] CARR H., SNOEYINK J., VAN DE PANNE M.: Flexi-
ble isosurfaces: Simplifying and displaying scalar topology using
the contour tree. Comput. Geom. Theory Appl. 43, 1 (Jan. 2010),
42–58. doi:10.1016/j.comgeo.2006.05.009. 3

[DBW∗12] DEMIR D., BEKETAYEV K., WEBER G. H., BRE-
MER P.-T., PASCUCCI V., HAMANN B.: Topology exploration
with hierarchical landscapes. In Proceedings of the Workshop
at SIGGRAPH Asia (New York, NY, USA, 2012), WASA ’12,
ACM, pp. 147–154. doi:10.1145/2425296.2425323. 2

[DN09] DORAISWAMY H., NATARAJAN V.: Efficient algorithms
for computing reeb graphs. Comput. Geom. Theory Appl. 42, 6-
7 (Aug. 2009), 606–616. doi:10.1016/j.comgeo.2008.
12.003. 2

[EHNP03] EDELSBRUNNER H., HARER J., NATARAJAN V.,
PASCUCCI V.: Morse-smale complexes for piecewise linear 3-
manifolds. In Proc. of the Nineteenth Annual Symposium on
Computational Geometry (New York, NY, USA, 2003), SCG ’03,
ACM, pp. 361–370. doi:10.1145/777792.777846. 2

[FSME14] FREY S., SADLO F., MA K.-L., ERTL T.: Interac-
tive progressive visualization with space-time error control. Vi-
sualization and Computer Graphics, IEEE Transactions on 20,
12 (Dec 2014), 2397–2406. doi:10.1109/TVCG.2014.
2346319. 3

[FTAT00] FUJISHIRO I., TAKESHIMA Y., AZUMA T., TAKA-
HASHI S.: Volume data mining using 3d field topology analysis.
Computer Graphics and Applications, IEEE 20, 5 (Sep 2000),
46–51. doi:10.1109/38.865879. 2

[GNP∗05] GYULASSY A., NATARAJAN V., PASCUCCI V., BRE-
MER P. T., HAMANN B.: Topology-based simplification for fea-
ture extraction from 3d scalar fields. In Proceedings of IEEE
Conference on Visualization (2005). 2

[HGH∗10] HUMMEL M., GARTH C., HAMANN B., HAGEN H.,
JOY K. I.: Iris: Illustrative rendering for integral surfaces. IEEE
Transactions on Visualization and Computer Graphics 16, 6
(Nov. 2010), 1319–1328. doi:10.1109/TVCG.2010.173.
7

[JH95] JEONG J., HUSSAIN F.: On the identification of a vortex.
Journal of Fluid Mechanics 285 (1995), 69–94. 7

[LPG∗14] LANDGE A. G., PASCUCCI V., GYULASSY A., BEN-
NETT J. C., KOLLA H., CHEN J., BREMER P.-T.: In-situ
feature extraction of large scale combustion simulations using
segmented merge trees. In Proc. of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (Piscataway, NJ, USA, 2014), SC ’14, pp. 1020–1031.
doi:10.1109/SC.2014.88. 3

[MCTB12] MAULE M., COMBA J., TORCHELSEN R., BAS-
TOS R.: Memory-efficient order-independent transparency with
dynamic fragment buffer. In Graphics, Patterns and Images
(SIBGRAPI), 2012 25th SIBGRAPI Conference on (Aug 2012),
pp. 134–141. doi:10.1109/SIBGRAPI.2012.27. 5

[PCM04] PASCUCCI V., COLE-MCLAUGHLIN K.: Parallel com-
putation of the topology of level sets. Algorithmica 38, 1 (2004),
249–268. doi:10.1007/s00453-003-1052-3. 2

[PCMS04] PASCUCCI V., COLE-MCLAUGHLIN K., SCORZELLI
G.: Multi-resolution computation and presentation of contour
trees. In Proc. IASTED Conference on Visualization, Imaging,
and Image Processing (2004), pp. 452–290. 2, 4

[Pra10] PRANCKEVIČIUS A.: Compact normal storage for
small g-buffers, Mar. 2010. URL: http://aras-p.info/
texts/CompactNormalStorage.html. 6

[SA13] SEGAL M., AKELEY K.: Opengl 4.3 core profile spec-
ification, Feb. 2013. URL: https://www.opengl.org/
registry/. 5

[TCM10] TIKHONOVA A., CORREA C., MA K.-L.: Visualiza-
tion by proxy: A novel framework for deferred interaction with
volume data. Visualization and Computer Graphics, IEEE Trans-
actions on 16, 6 (Nov 2010), 1551–1559. doi:10.1109/
TVCG.2010.215. 3

[TFT05] TAKAHASHI S., FUJISHIRO I., TAKESHIMA Y.: Inter-
val volume decomposer: a topological approach to volume traver-
sal, 2005. doi:10.1117/12.584257. 2

[TLB∗11] THOMPSON D., LEVINE J., BENNETT J., BREMER
P.-T., GYULASSY A., PASCUCCI V., PEBAY P.: Analysis of
large-scale scalar data using hixels. In Large Data Analysis
and Visualization (LDAV), 2011 IEEE Symposium on (Oct 2011),
pp. 23–30. doi:10.1109/LDAV.2011.6092313. 3

[TTF04] TAKAHASHI S., TAKESHIMA Y., FUJISHIRO I.: Topo-
logical volume skeletonization and its application to transfer
function design. Graph. Models 66, 1 (Jan. 2004), 24–49. doi:
10.1016/j.gmod.2003.08.002. 2

[TTFN05] TAKESHIMA Y., TAKAHASHI S., FUJISHIRO I.,
NIELSON G. M.: Introducing topological attributes for
objective-based visualization of simulated datasets. In Pro-
ceedings of the Fourth Eurographics / IEEE VGTC Conference
on Volume Graphics (2005), VG’05, pp. 137–145. doi:10.
2312/VG/VG05/137-145. 2

[vKvOB∗97] VAN KREVELD M., VAN OOSTRUM R., BAJAJ C.,
PASCUCCI V., SCHIKORE D.: Contour trees and small seed sets
for isosurface traversal. In Proceedings of the Thirteenth An-
nual Symposium on Computational Geometry (New York, NY,
USA, 1997), SCG ’97, ACM, pp. 212–220. doi:10.1145/
262839.269238. 2

[WBP07] WEBER G., BREMER P.-T., PASCUCCI V.: Topolog-
ical landscapes: A terrain metaphor for scientific data. IEEE
Transactions on Visualization and Computer Graphics 13,
6 (Nov. 2007), 1416–1423. doi:10.1109/TVCG.2007.
70601. 2

[WDC∗07] WEBER G. H., DILLARD S. E., CARR H., PAS-
CUCCI V., HAMANN B.: Topology-controlled volume rendering.
IEEE Transactions on Visualization and Computer Graphics 13,
2 (Mar. 2007), 330–341. doi:10.1109/TVCG.2007.47. 3,
4

[WSH03] WEBER G. H., SCHEUERMANN G., HAMANN B.: De-
tecting critical regions in scalar fields. In Proceedings of the
Symposium on Data Visualisation 2003 (Aire-la-Ville, Switzer-
land, Switzerland, 2003), VISSYM ’03, Eurographics Associa-
tion, pp. 85–94. 2

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ
N.: Real-time concurrent linked list construction on the gpu. In
Proceedings of the 21st Eurographics Conference on Rendering
(Aire-la-Ville, Switzerland, Switzerland, 2010), EGSR’10, Eu-
rographics Association, pp. 1297–1304. doi:10.1111/j.
1467-8659.2010.01725.x. 5

c© The Eurographics Association 2015.

86

http://dx.doi.org/10.1109/VISUAL.2004.96
http://dx.doi.org/10.1109/VISUAL.2004.96
http://dx.doi.org/10.1016/j.comgeo.2006.05.009
http://dx.doi.org/10.1145/2425296.2425323
http://dx.doi.org/10.1016/j.comgeo.2008.12.003
http://dx.doi.org/10.1016/j.comgeo.2008.12.003
http://dx.doi.org/10.1145/777792.777846
http://dx.doi.org/10.1109/TVCG.2014.2346319
http://dx.doi.org/10.1109/TVCG.2014.2346319
http://dx.doi.org/10.1109/38.865879
http://dx.doi.org/10.1109/TVCG.2010.173
http://dx.doi.org/10.1109/SC.2014.88
http://dx.doi.org/10.1109/SIBGRAPI.2012.27
http://dx.doi.org/10.1007/s00453-003-1052-3
http://aras-p.info/texts/CompactNormalStorage.html
http://aras-p.info/texts/CompactNormalStorage.html
https://www.opengl.org/registry/
https://www.opengl.org/registry/
http://dx.doi.org/10.1109/TVCG.2010.215
http://dx.doi.org/10.1109/TVCG.2010.215
http://dx.doi.org/10.1117/12.584257
http://dx.doi.org/10.1109/LDAV.2011.6092313
http://dx.doi.org/10.1016/j.gmod.2003.08.002
http://dx.doi.org/10.1016/j.gmod.2003.08.002
http://dx.doi.org/10.2312/VG/VG05/137-145
http://dx.doi.org/10.2312/VG/VG05/137-145
http://dx.doi.org/10.1145/262839.269238
http://dx.doi.org/10.1145/262839.269238
http://dx.doi.org/10.1109/TVCG.2007.70601
http://dx.doi.org/10.1109/TVCG.2007.70601
http://dx.doi.org/10.1109/TVCG.2007.47
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x

