
Eurographics Symposium on Parallel Graphics and Visualization (2015)
C. Dachsbacher, P. Navrátil (Editors)

TOD-Tree: Task-Overlapped Direct send Tree Image
Compositing for Hybrid MPI Parallelism

A.V.Pascal Grosset, Manasa Prasad, Cameron Christensen, Aaron Knoll & Charles Hansen

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Abstract
Modern supercomputers have very powerful multi-core CPUs. The programming model on these supercomputer
is switching from pure MPI to MPI for inter-node communication, and shared memory and threads for intra-node
communication. Consequently the bottleneck in most systems is no longer computation but communication be-
tween nodes. In this paper, we present a new compositing algorithm for hybrid MPI parallelism that focuses on
communication avoidance and overlapping communication with computation at the expense of evenly balancing
the workload. The algorithm has three stages: a direct send stage where nodes are arranged in groups and ex-
change regions of an image, followed by a tree compositing stage and a gather stage. We compare our algorithm
with radix-k and binary-swap from the IceT library in a hybrid OpenMP/MPI setting, show strong scaling results
and explain how we generally achieve better performance than these two algorithms.

Categories and Subject Descriptors (according to ACM CCS):
I.3.1 [Computer Graphics]: Hardware Architecture—Parallel processing I.3.2 [Computer Graphics]: Graphics
Systems—Distributed/network graphics

1. Introduction

With the increasing availability of High Performance Com-
puting (HPC), scientists are now running huge simulations
producing massive datasets. To visualize these simulations,
techniques like volume rendering are often used to render
these datasets. Each process will render part of the data into
an image and these images are assembled in the composit-
ing stage. When few processes are available, the bottleneck
is usually the rendering stage but as the number of pro-
cesses increase, the bottleneck switches from rendering to
compositing. Hence, having a fast compositing algorithm is
essential if we want to be able to visualize big simulations
quickly. This is especially important for in-situ visualiza-
tions where the cost of visualization should be minimal com-
pared to simulation cost so as not to add overhead in terms
of supercomputing time [YWG∗10]. Also, with increasing
monitor resolution, the size and quality of the images that
can be displayed has increased. It is common for monitors
to be of HD quality which means that we should be able to
composite large images quickly.

Though the speed of CPUs is no longer doubling every
18-24 months, the power of CPUs is still increasing. This
has been achieved though better parallelism [SDM11]; hav-

ing more cores per chip and bigger registers that allows sev-
eral operations to be executed for each clock cycle. It is quite
common now to have about 20 cores on chip. With multi-
core CPUs, Howison et al. [HBC10], [HBC12] found that
using threads and shared memory inside a node and MPI
for inter-node communication is much more efficient than
using MPI for both inter-node and intra-node for visualiza-
tion. Previous research by Mallon et al. and Rabenseifner et
al. [MTT∗09], [RHJ09], summarized by Howison et al. in-
dicate that the hybrid MPI model results in fewer messages
between nodes, less memory overhead and outperforms MPI
only at every concurrency level. Using threads and shared
memory allows us to better exploit the power of these new
very powerful multi-core CPUs.

While CPUs have increased in power, network bandwidth
has not improved as much, and one of the commonly cited
challenges for exascale is to devise algorithms that avoid
communication [ABC∗10] as communication is quickly be-
coming the bottleneck. Yet the two most commonly used
compositing algorithms, binary-swap and radix-k, are fo-
cused on distributing the workload. While this was very im-
portant in the past, the power of current multi-core CPUs
means that load balancing is no longer as important. The

c© The Eurographics Association 2015.

DOI: 10.2312/pgv.20151157

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20151157

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

crucial aspect is now minimizing communication. Radix-k
and binary-swap can be split into two stages: compositing
and gathering. Moreland et al. [MKPH11] show that when
the number of processes increase, the compositing time de-
crease but since the gathering time increases, the total overall
time increases.

The key contribution of this paper is the introduction of
Task Overlapped Direct send Tree, TOD-Tree, a new com-
positing algorithm for Hybrid/MPI parallelism that mini-
mizes communication and focuses on overlapping commu-
nication with computation. There is less focus on balancing
the workload and instead of many small messages, larger
and fewer messages are used to keep the gathering time low
as the number of nodes increases. We compare the perfor-
mance of this algorithm with radix-k and binary-swap on an
artificial and combustion dataset and show that we generally
achieve better performance than these two algorithm in a hy-
brid setting.

The paper is organized as follows: in Section 2, differ-
ent compositing algorithms that are commonly used are de-
scribed. In Section 3, the TOD-Tree algorithm is presented
and its theoretical cost described. Section 4 shows the results
of strong scaling for an artificial dataset and a combustion
simulation dataset, and the results obtained are explained;
Section 5 discusses the conclusion and future work.

2. Previous Work
Distributed volume rendering is now commonly used
in the scientific visualization community. Software like
VisIt [CBB∗05] and Paraview [HAL04] are extensively used
by scientists for visualization on HPC systems. Parallel ren-
dering algorithms can be generally classified as sort-first,
sort-middle or sort-last [MCEF94] where sort-last is the
most widely used. In sort-last, each process loads part of the
data and renders it producing an image. These images are
then blended together during the compositing stage to pro-
duce the final full image of the dataset. No communication
is required in the loading and rendering stage but the com-
positing stage can require extensive communication. Thus
different algorithms have been designed for sort-last com-
positing.

One of the oldest sort-last compositing algorithm is direct
send. Direct send can refer to the case where all the processes
send their data directly to the display process which blends
the images, sometimes referred to as serial direct send, or
to the case where each process takes responsibility for one
section of the final image and gathers data for that section
from all the other processes [Hsu93], [Neu94], sometimes
referred to as parallel direct send. For parallel direct send,
there is a gather section where the display node gathers the
different sections from each process. The SLIC composit-
ing by Stompel et al. [LMAP03] is essentially an optimized
direct send. Pixels from the rendered image from each pro-
cess are classified to determine if they can be sent directly to

the display process (non overlapping pixels) or will require
compositing. Then processes are assigned regions of the fi-
nal image for which it has data and pixel exchanges are done
through direct send. On GPUs though, parallel direct send is
very popular because of its flexibility. Eilemann et al. [EP07]
show that the performance of parallel direct send is com-
parable to binary swap and sometimes even better. Rizzi et
al. [RHI∗14] compare the performance of serial and parallel
direct send for which they get very good results as GPUs are
very fast. However, in both cases, the main bottleneck is the
network performance which negatively impacts the perfor-
mance of the algorithm.

In binary tree compositing techniques [SGS91], one of
the leaves sends its data to the other leaf in the pair which
does the compositing. The leaf which has sent its data is
now idle. The main issue with this technique is half of the
nodes go idle at each stage and this results in load imbal-
ances. However, now that computation is reasonably cheap,
this could again be a viable technique but tree composit-
ing techniques also send full images at each stage making
communication slow. Binary-swap by Ma et al. [MPHK93]
improves the load balancing of binary tree compositing by
keeping all the processes active in compositing until the end.
The processes are grouped in pairs and initially each process
in the pair takes responsibility for half of the image. Each
process sends the half it does not own and blends the half it
owns. In the next stage, processes that are authoritative on
the same half exchange information in pairs again so that
each is now responsible for a quarter of the image. Com-
positing proceeds in stages until each process has 1/p of the
whole image where p is the number of process involved in
the compositing. Once this is done, each process sends its
section to the display process. Binary-swap has been subse-
quently extended by Yu et al. [YWM08] to deal with non
power of 2 processes. In Radix-k, introduced by Peterka et
al. [PGR∗09], the number of processes p is factored in r fac-
tors so that k is a vector where k = [k1,k2, ...,kr]. The pro-
cesses are arranged into groups of size ki and exchange infor-
mation using direct send. At the end of a round, each process
is authoritative on one section of the image in its group. In
the next round, all the processes with the same authoritative
partition are arranged in groups of size ki+1 and exchange
information. This goes on for r rounds until each process is
the only one authoritative on one section of the image. Both
binary-swap and radix-k have a gather stage where the dis-
play process has to gather the data spread among the p pro-
cesses. If the vector k has only one value which is equal to p,
radix-k behaves like direct send. If each value of k is equal
to 2, then it behaves likes binary-swap. Radix-k, binary-swap
and direct send are all available in the IceT package [Mor11]
which also adds several optimizations such as telescoping
and compression which have been described in [MKPH11].

Also, there are algorithms like the Shift-Based Parallel
Image Compositing on InfiniBand Fat-Trees [CD12] that fo-
cus on image compositing on specific infiniband networks.

c© The Eurographics Association 2015.

68

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

Display Node

Stage 2: K-ary Tree compositing (k=4)

Stage 3: Gather

Stage 1: Direct Send Exchange with regions of size 4 (r=4)

Sorted from the closest to the furthest in terms of depth | Number of processes (p) = 25

Figure 1: The three stages of the compositing algorithm with r=4, k=4, and the number of nodes p=25. Red, blue, yellow and
green represent the first, second, third an fourth quarter of the image.

Other interconnects are common in the HPC world, such as
are Crays and Blue Gene/Q systems [KBVH14]. It would
be best for compositing algorithms to not be tied to partic-
ular network infrastructure. In this paper, we show the per-
formance of our algorithm on both Cray and Infiniband net-
works.

Finally, the work by Howison et al. [HBC10], [HBC12],
comparing volume rendering using only MPI versus using
MPI and threads is the closest one to his paper and can
be seen as a predecessor to this work. They clearly estab-
lished that using MPI and threads is the way forward as
it minimizes exchange of messages between nodes and re-
sults in faster volume rendering. However, for compositing,
they only used MPI_Alltoallv but do mention in their future
work the need for better compositing algorithm. Our work
addresses that by presenting a new compositing algorithm
for hybrid OpenMP/MPI.

3. Methodology

Since our algorithm has been tuned to work on hybrid MPI
architectures, a process in our case is not a core but a node.
At the start of the compositing phase, each node has an im-
age that has been rendered from the part of the dataset it has
loaded. Each image also has an associated depth from the
viewpoint. Each node can know the depth of the images as-
sociated with other processes either through nodes sharing

that information with each other or since a k-d tree is often
used to determine which part of a dataset a node should load,
the latter could determine the depth of every other node.
Each node sorts nodes by depth to know the correct order
in which blending should be done. If the correct order is not
used, the final image will not be correct. Also from the ex-
tents of the dataset and the projection matrix used, it is easy
to determine the height h, the width w and the number of
pixels p in the final image.

3.1. Algorithm

The algorithm, TOD-Tree (Task-Overlapped Direct send
Tree), has three stages. The first stage is a grouped direct
send followed by a k-ary tree compositing in the second
stage and the last stage is a gather to the display process.
In all stages, asynchronous communication is used to over-
lap communication and computation. We will first start by
describing the algorithm conceptually.

In the first stage, the nodes are arranged into groups of
size r, which we will call a locality. Each node in a locality
will be responsible for a region equivalent to 1/r of the fi-
nal image. If r is equal to 4, there are 4 nodes in a locality
and each is responsible for a quarter of the final image. This
is shown in stage 1 of figure 1. The nodes in each locality
exchange sections of the image in a direct send fashion so
that at the end of stage 1, each node is authoritative on a dif-

c© The Eurographics Association 2015.

69

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

ferent 1/r of the final image. The colors red, blue, yellow
and green in figure 1 represent the first, second, third and
fourth quarter of the final image that each node is authori-
tative on. Also in figure 1, there are 25 processes initially.
In this case the last locality will have 5 instead of 4 nodes
and the last node, colored orange in the figure, will send
its regions to the first r node in its locality but will not re-
ceive any data. In the second stage, the aim is to have only
one node that is authoritative on a specific 1/r region of the
final image. The nodes having the same region at the end
of stage 1 are arranged in groups of size k. Each node in
a group sends its data to the first node in its group which
blends the pixels. This is similar to a k-ary tree composit-
ing [SGS91], [YWM08], [MPHK93]. If, as shown in stage
2 of figure 1, there are 6 processes that have the same quar-
ter of the image, two rounds are required until there is only
one node which is authoritative on a quarter of the image.
Finally, these nodes blend their data with the background
and send it to the root node which assembles the final image,
stage 3 in the figure 1.

We will now describe in detail how we implement each
stage of the algorithm, paying attention to the order of oper-
ation to maximize overlapping of communication with com-
putation.

Algorithm 1: Stage 1 - Direct Send
Determine the nodes in its locality
Determine region of the image the node owns
Create a buffer for receiving images
Advertise the receive buffer using async MPI Recv
if node is in first half of locality then

Send front to back using async MPI Send
else

Send back to front using async MPI Send
Create a new image buffer
Initialize the buffer to 0
if node is in first half of region then

Wait for images to come in front to back order
Blend front to back

else
Wait for images to come in back to front order
Blend back to front

Deallocate receive buffer

Algorithm 1 shows the how we have set up the direct
send. There are a few design decisions to make for this part.
Clearly, asynchronous MPI send and receive is the way to go
if we want to maximize overlapping of communication and
computation. Posting the MPI receive before the send allows
messages to be received directly in the target buffer instead
of being copied in a temporary buffer upon being received
and later copied to the target buffer thereby decreasing effi-
ciency. To minimize link contention, not all nodes try to send
to one node. Depending on where they are in the locality, the
sending order is different. The buffer used as sending buffer
is the original image that the node has. To minimize mem-

ory use, we have only one blending buffer and so we need the
data to be available in the correct order to start blending. The
alternative would have been to blend on the fly as images are
received but this will require creating and initializing many
new buffers which can have a very high memory cost when
the image is large. In some tests that have been carried out,
we saw that it did not significantly improve the performance
to outweigh the cost of allocating that much memory. The
blending buffer also needs to be initialized to 0 for blend-
ing and this is a somewhat slow operation. To amortize this
cost, we do it after the MPI operations have been initialized
so that receiving images and the initialization can proceed in
parallel.

The second stage is a tree compositing shown in algo-
rithm 2. Again, the receive buffer is advertised early to max-
imize efficiency. Another optimization that we have added is
to blend with the background color in the last round while
waiting for data to be received to overlap communication
and computation. Also while the alpha is needed when com-
positing, it is not needed in the final image and so in the last
step, we separate the alpha so that in the last stage, algo-
rithm 3, we do not need to send 4 channels: red, green, blue
and alpha but only red, green and blue. This allows the last
send to be smaller and makes the gather faster.

Algorithm 2: Stage 2 - Tree Region
Determine if the node will be sending or receiving
Create a buffer for receiving images
for each round do

if sending then
Send data to destination node

else
Advertise the receive buffer using async MPI
Recv
if last round then

Create an opaque image for blending
receiving images
Create an alpha buffer for blending
transparency
Blend current image with the background
Receive images
Blend in the opaque buffer

else
Receive images
Blend in image buffer created in stage 1

Deallocate image buffer created in stage 1
Deallocate receive buffer

Finally, the last stage of the algorithm is a simple gather
from the nodes that still have data. Since we already did the
blending with the background in the previous stage, this is
just a matter of receiving the image. At the end of the last
stage, we also deallocate the send buffer that was being used
in stage 1 to send images. If that is done in the earlier stages
of the algorithm, it often involves having to wait for the im-

c© The Eurographics Association 2015.

70

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

ages to have been sent but in stage 3, the images should have
already been sent and so no waiting is required. This has
been confirmed with some tests that we carried out.

Algorithm 3: Stage 3 - Gather
Create empty final image
if Node has data then

Send opaque image to display node
else

if display node then
Advertise final image as receive buffer

Deallocate send buffer from stage 1

The two parameters to choose for the algorithm are the
number of regions r and a value for k. r determines the
number of regions that an image is split into and while do-
ing so does load balancing. As we increase the number of
nodes, increasing the value of r gives us better performance.
k is used to control how many rounds should the tree com-
positing stage has. It is usually better to keep the number of
rounds low.

3.2. Theoretical Cost

We are now going to analyze the theoretical cost of the al-
gorithm using the cost model of Chan et al. [CHPvdG07]
that has been used by Peterka et al. [PGR∗09] and Cavin et
al. [CD12]. Let the number of pixels in the final image be
n, the number of processes be p, the time taken for blend-
ing one pixel be a, the latency for one transfer be _ and the
time for transferring one pixel be `. Stage 1 is essentially
several direct sends. The number of sends in a group of size
r per process is (r− 1) and the number of compositings is
r− 1. Since each of the r group will do the same operation
in parallel, the cost for stage 1 is: (r− 1)[(_+ n

r `)+
n
r a]

The second stage is a k-ary tree compositing. There are
r tree compositings going on in parallel. Each tree has p/r
processes to composite. The number of rounds is logk(p/r).
For each part of the tree, there are k− 1 sends. The cost for
the k-ary compositing is: logk pr [(k− 1)[(_+ n

r `)+
n
r a]]

The cost for the final gather stage is: r(_+ n
r `).

The final total cost would thus be:

(2r+(k−1)logk pr −1)(_+
n
r `)+(r+(k−1)logk pr −1)

n
r a

The cost for radix-k, binary swap and direct send is avail-
able in the work of Cavin et al. [CD12] and Peterka et
al. [PGR∗09].

These equations are useful but fail to capture the over-
lap of communication and computation. It is hard to pre-
dict how much overlap there will be as communication de-
pends on the congestion in the network as well but from
empirical observations, we saw that the equation acts as
an upper bound for the time that the algorithm will take.
For example, the total time taken for 64 nodes on Edison

Figure 2: Profile for 64 nodes for 2048x2048 (64MB) im-
age on Edison at NERSC with r=16, k=8. Red: compositing,
green: sending, light blue: receiving, dark blue: receiving on
the display process. Total time: 0.012s.

Figure 3: Breakdown of different tasks in the algorithm.

was 0.012s for a 2048x2048 image (64MB). Let’s now cal-
culate the time using the equation and performance values
for Edison on the NERSC website [NER15], _ is at least
0.25x10−6s, the network bandwidth is about 8GB/s, so for
one pixel (4 channels each with a floating point of size
4 bytes) ` = 1.86x10−9s. The peak performance is 460.8
Gflops/node, so a= 8.1x10−12s. The theoretical time should
be around 0.015s. So the model effectively gives a maximum
upper bound for the operation but more importantly this cal-
culation shows how much time we are saving by overlap-
ping communication with computation. In the tests that we
carried out, we never managed to get 8GB/s bandwidth; we
always got less than 8GB/s and yet the theoretical value is
still greater than the actual value we are measuring.

Figure 2 shows the profile for the algorithm using an in-
ternally developed profiling tool. All the processes start with
setting up buffers and advertising their receive buffer which
is shown colored yellow in the diagram. This is followed by
a receive/waiting to receive section, colored blue and blend-
ing section colored in red. All receive communication is
through asynchronous MPI receive while the sends for stage
1 is asynchronous and the rest are blocking sends. The dark
green represents the final send to the display node and the
dark blue indicates the final receive on the display node. As
can be clearly seen, most of the time is being spend commu-

c© The Eurographics Association 2015.

71

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

nicating or waiting for data to be received from other nodes.
A breakdown of the total spent by 64 nodes on Edison is
shown in figure 3.

As previously mentioned, the most time consuming oper-
ations are send and receive. This is one of the reasons why
load balancing is not as important anymore, and using tree
style compositing is not detrimental to our algorithm.

Figure 4: Left: Synthetic dataset, Right: Combustion
dataset.

4. Testing and Results

We have compared our algorithm against radix-k and binary-
swap from the IceT library [MKPH11]. We are using the
latest version of the IceT library, from the IceT git reposi-
tory (http://public.kitware.com/IceT.git), as it has
a new function icetCompositeImage which compared to
icetDrawFrame, takes in images directly and is thus faster
when provided with pre-rendered images. This function
should be available in future releases of IceT.

The two systems that have been used for testing are the
Stampede supercomputer at TACC and the Edison super-
computer at NERSC. Stampede uses the Infiniband FDR net-
work and has 6,400 compute nodes which are stored in 160
racks. Each compute node is an Intel SandyBridge proces-
sor which has 16 cores per node for peak performance of
346 GFLOPS/node [TAC15]. Since IceT has not been built
to take advantage of threads, we did not build with OpenMP
on Stampede. Both IceT and our algorithm will be compiled
with g++ and O3 optimization. Edison is a Cray X30 super-
computer which uses the dragonfly topology for its intercon-
nect network. The 5,576 nodes are arranged into 30 cabinets.
Each node is an Intel IvyBridge processor with 24 cores and
has a peak performance of 460.8 GFLOPS/node [NER15].
To fully utilize a CPU and be as close as possible to its
peak performance, both threads and vectorization should be
used. Both SandyBridge and IvyBridge processors have 256
bit wide registers which can hold up to eight 32 bit float-
ing points; only when doing 8 floating point operations on
all cores can we attain peak performance on one node. Cru-
cially, IvyBridge processors offer the vector gather opera-

tion, which fetches data from memory and packs them di-
rectly into SIMD lanes. With newer compilers, this can im-
prove performance dramatically. On Edison we fully ex-
ploit IvyBridge processors using OpenMP [DM98] and auto-
vectorization with the Intel15 compiler.

The two datasets used for the tests are shown in fig-
ure 4. The artificial dataset is a square block where each
node is assigned one sub block. The simulation dataset is
a rectangular combustion dataset where the bottom right
and left are empty. The artificial dataset is a volume of
size 512x512x512 voxels and the images sizes for the test
are 2048x2048 pixels (64MB), 4096x4096 pixels (256) and
8192x8192 pixels (1GB). The combustion dataset is a vol-
ume of size 416x663x416 voxels. For the image size, the
width has been set to 2048, 4096 and 8192. The height are
2605, 5204 and 10418 pixels respectively.

On Edison at NERSC, we were able to get access to up
to 4,096 nodes (98,304 cores) while on Stampede at TACC
we have only been granted access to a maximum of 1,024
nodes (16,384 cores). So in the next section, we will show
the performance for these two cases. Each experiment is run
10 times and the results are the average of these runs after
some outliers have been eliminated.

4.1. Scalability on Stampede

When running on Stampede, threads are not being used for
the TOD-Tree algorithm. Both IceT and our implementation
are compiled with g++ and O3 optimization. This is done to
keep the comparison fair and also to point to the fact that it
is the overlapping of tasks rather than raw computing power
that is the most important here. Also, we are not using any
compression as most image sizes used by users are small
enough that compression does not make a big difference. At
8192x8192 pixels, an image is now 1GB in size and having
compression would likely further reduce communication.

Figure 5 shows the strong scaling results for artificial data
on Stampede. The TOD-Tree algorithm performs better than
binary-swap and radix-k. The staircase like appearance can
be explained by the fact that we use the same value of r for
pairs of time steps; r=16 for 32 and 64 nodes, r=32 for 128
and 256 and, r=64 for 512 and 1024 and only 1 round was
used for the k-ary tree part of the algorithm. Thus with r=32,
for 256 nodes, there are 8 groups of direct send while there
are only 4 groups of direct send at 128 nodes. So the tree
stage must now gather from 7 instead of from 3 processes
and so the time taken increases. Also it means that instead
of waiting for 3 nodes to complete their grouped direct send,
now the wait is for 7 nodes. Increasing the value of r helps
balance the workload in stage 1 of the algorithm and reduces
the number of nodes that have to be involved in the tree com-
positing and hence decreases the sending.

For images of size 2048x2048 pixels, compositing is
heavily communication bound. As we increase the number

c© The Eurographics Association 2015.

72

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

Figure 5: Scaling for the artificial data on Stampede.

of nodes, each node has very little data and so all the 3
algorithms surveyed perform with less consistency as they
become more communication bound and so more affected
by load imbalance and networking issues. Communication
is the main discriminating factor for small image sizes. For
8192x8192 images, there is less variation as it is more com-
putation bound. Also, at that image size, IceT’s radix-k
comes close to matching the performance of our algorithm.
On analyzing the results for TOD-Tree, we saw that the com-
munication, especially in the gather stage, was quite expen-
sive. While a 2048x2048 image is only 64 MB, a 8192x8192
image is 1GB and transferring such big sizes cost a lot with-
out compression. This is where IceT’s use of compression
for all communication becomes useful.

Figure 6: Scaling for combustion data on Stampede.

In the test case above, we used only 1 round for the tree
compositing. For large node counts, more rounds could be
used. Figure 7 shows the impact of having different number
of rounds for large node counts. For 256 nodes there is an
improvement of 0.018 s while it is slower by 0.003 s for 512
nodes and 0.007 seconds for 1024 nodes. So having several
rounds barely slows down the algorithm and can even speed
up the results.

Figure 6 shows the results for the combustion dataset on
Stampede. One of the key characteristics of this dataset is
that at the bottom, there are empty regions. This creates load
imbalances. Also, the dataset is rectangular and not as uni-
form as the artificial dataset but it resembles more closely

c© The Eurographics Association 2015.

73

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

Figure 7: Varying number of rounds for the artificial dataset
for 4096x4096.

what users are likely to be rendering. The load imbalance
creates some different situations from the regular dataset
which affect the IceT library a bit more than it affects the
TOD-Tree compositing. This is because both binary-swap
and radix-k give a greater importance to load balancing and
if the data is not uniform, they are likely to suffer from more
load imbalances. The TOD-Tree algorithm does not give that
much importance to load balancing.

4.2. Scalability on Edison

On Edison, we managed to scale up to 4,096 nodes. The
results for strong scaling are shown in Figure 8. The per-
formance of IceT’s binary-swap was quite irregular on Edi-
son. For example, for the 4096x4096 image, it would sud-
denly jump to 0.49 seconds after being similar to radix-k
for lower node counts (around 0.11 s). So we decided to ex-
clude binary-swap from these scalings graphs. The staircase
pattern is similar to what we see on Stampede for TOD-Tree.
Both TOD-Tree and radix-k show less consistency on Edison
compared to Stampede. On Edison for 8192x8192 images at
2048 and 4096 nodes are the only instances where radix-
k performed better than the TOD-Tree algorithm. Again the
main culprit was communication time and TOD-Tree not us-
ing compression. In the future, we plan to extend TOD-Tree
to have compression for large image sizes as it is clearly not
needed for commonly used image sizes.

4.3. Stampede v/s Edison

Figure 9 shows the result of TOD-Tree algorithm on Stam-
pede and Edison. The values of r used are the same as on
Stampede for up to 1024 nodes. For 2048 and 4096 nodes,
we set r to be 128. As expected, the algorithm is faster on
Edison than on Stampede: the interconnect is faster on Edi-
son and the nodes have better peak flop performance. While
on Stampede, we are not using threads, on Edison, we are

Figure 8: Scaling for artificial dataset on Edison.

using threads and vectorization. The gap between the per-
formance is bigger for low node counts, as each node has a
bigger chunk of the image to process when few nodes are in-
volved and so a faster CPU makes quite a big difference. As
the number of nodes increase, the data to process decreases
and so the difference in computing power is less important as
the compositing becomes communication bound. The stair-
case appearance is present in both but is amplified for Edi-
son. On average we are still getting about 16 frames per sec-
ond for a 256MB images (4096x4096). At 2048 nodes on
Edison, the time taken for TOD-Tree decreases as can be
seen in the middle chart of figure 8.

Figure 10 shows the equivalent comparison but
8192x10418 images for the combustion dataset. It is

c© The Eurographics Association 2015.

74

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

Figure 9: Comparing Stampede and Edison for up to 1024
nodes for the artificial dataset at 4096x4096 resolution.

Figure 10: Comparing Stampede and Edison for up to 1024
nodes for combustion at 8192x10418 resolution.

interesting to note that the TOD-Tree algorithm on Stam-
pede and Edison though initially have very different
performance come closer as the number of nodes increase.
This is again because initially there is a lot of computation
required and so having a powerful CPU is beneficial
but when there is less computation to do, the difference
in computation power is no longer that important. IceT
performs less consistently for this dataset probably because
of the load imbalance inherent in the dataset.

5. Conclusion and Future Work

In this paper, we have introduced a new compositing algo-
rithm for hybrid OpenMP/MPI Parallelism and shown that it
generally performs better than the two leading compositing
algorithms, binary-swap and radix-k, on the hybrid program-
ming environment. When using the hybrid parallelism, there
is a quite a large difference between the computation power
available to one node compared to the speed of inter-node
communication. Hence, the algorithm must pay much more

attention to communication than to computation if we are to
achieve better performance at scale.

As future work, we would like to add compression for
large image sizes. A heuristic should also be added to deter-
mine when compression should be turned on or off based on
the size of the data. While 8192x8192 image sizes are quite
rare right now (since we lack the ability to display such im-
ages properly) it will likely be required in the future and so
taking care of this will make the TOD-Tree algorithm more
robust.

We would also like to extend out testing to Blue Gene/Q
systems as well as this is the only major HPC platform on
which the compositing algorithm has not been tested and
eventually when they are introduced, the Intel Knights Land-
ing. One of the limitations of this paper is the fact that we did
not have enough resources to scale to more than 1024 nodes
on Infiniband systems. This is something we would like to
address. While we do understand that scaling to 2048, 4096
and above might be quite hard in terms of getting the re-
sources for our runs (it would imply reserving three-quarters
or even the full HPC), we would really like to see how our
algorithm performs at such large numbers so as to be ready
for the exascale era.

6. Acknowledgements

This research was supported by the DOE, NNSA, Award
DE-NA0002375: (PSAAP) Carbon-Capture Multidisci-
plinary Simulation Center, the DOE SciDAC Institute of
Scalable Data Management Analysis and Visualization DOE
DE-SC0007446, NSF ACI-1339881, and NSF IIS-1162013.

The authors would like to thank the Texas Advanced Com-
puting Center (TACC) at The University of Texas at Austin
for providing access to the clusters Stampede and Maverick,
the National Energy Research Scientific Computing Cen-
ter (NERSC) for providing access to the Edison cluster. We
would also like to thank Kenneth Moreland for his help with
using IceT.

References
[ABC∗10] ASHBY S., BECKMAN P., CHEN J., COLELLA P.,
COLLINS B., CRAWFORD D., DONGARRA J., KOTHE D.,
LUSK R., MESSINA P., OTHERS: The opportunities and chal-
lenges of exascale computing. summary report of the advanced
scientific computing advisory committee (ASCAC) subcommittee
at the US Department of Energy Office of Science (2010). 1

[CBB∗05] CHILDS H., BRUGGER E. S., BONNELL K. S.,
MEREDITH J. S., MILLER M., WHITLOCK B. J., MAX N.: A
contract-based system for large data visualization. In Proceed-
ings of IEEE Visualization 2005 (2005), pp. 190–198. 2

[CD12] CAVIN X., DEMENGEON O.: Shift-Based Parallel Im-
age Compositing on InfiniBand TM Fat-Trees. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (2012),
Childs H., Kuhlen T., Marton F., (Eds.), The Eurographics As-
sociation. doi:10.2312/EGPGV/EGPGV12/129-138. 2,
5

c© The Eurographics Association 2015.

75

P. Grosset, M. Prasad, C. Christensen, A. Knoll & C. Hansen / TOD-Tree Image Compositing for Hybrid MPI Parallelism

[CHPvdG07] CHAN E., HEIMLICH M., PURKAYASTHA A.,
VAN DE GEIJN R.: Collective communication: The-
ory, practice, and experience: Research articles. Con-
curr. Comput. : Pract. Exper. 19, 13 (Sept. 2007), 1749–
1783. URL: http://dx.doi.org/10.1002/cpe.v19:
13, doi:10.1002/cpe.v19:13. 5

[DM98] DAGUM L., MENON R.: Openmp: An industry-standard
api for shared-memory programming. IEEE Comput. Sci. Eng.
5, 1 (Jan. 1998), 46–55. URL: http://dx.doi.org/10.
1109/99.660313, doi:10.1109/99.660313. 6

[EP07] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In Proceedings of the 7th
Eurographics Conference on Parallel Graphics and Visual-
ization (Aire-la-Ville, Switzerland, Switzerland, 2007), EG
PGV’07, Eurographics Association, pp. 29–36. URL:http://
dx.doi.org/10.2312/EGPGV/EGPGV07/029-036,
doi:10.2312/EGPGV/EGPGV07/029-036. 2

[HAL04] HENDERSON A., AHRENS J., LAW C.: The ParaView
Guide. Kitware Inc., Clifton Park, NY., 2004. 2

[HBC10] HOWISON M., BETHEL E. W., CHILDS H.: Mpi-
hybrid parallelism for volume rendering on large, multi-
core systems. In Proceedings of the 10th Eurographics
Conference on Parallel Graphics and Visualization (Aire-
la-Ville, Switzerland, Switzerland, 2010), EG PGV’10,
Eurographics Association, pp. 1–10. URL: http://
dx.doi.org/10.2312/EGPGV/EGPGV10/001-010,
doi:10.2312/EGPGV/EGPGV10/001-010. 1, 3

[HBC12] HOWISON M., BETHEL E., CHILDS H.: Hybrid paral-
lelism for volume rendering on large-, multi-, and many-core sys-
tems. Visualization and Computer Graphics, IEEE Transactions
on 18, 1 (Jan 2012), 17–29. doi:10.1109/TVCG.2011.24.
1, 3

[Hsu93] HSU W. M.: Segmented ray casting for data paral-
lel volume rendering. In Proceedings of the 1993 Symposium
on Parallel Rendering (New York, NY, USA, 1993), PRS ’93,
ACM, pp. 7–14. URL: http://doi.acm.org/10.1145/
166181.166182, doi:10.1145/166181.166182. 2

[KBVH14] KERBYSON D. J., BARKER K. J., VISHNU A.,
HOISIE A.: A performance comparison of current hpc systems:
Blue gene/q, cray xe6 and infiniband systems. Future Gener.
Comput. Syst. 30 (Jan. 2014), 291–304. URL: http://
dx.doi.org/10.1016/j.future.2013.06.019,
doi:10.1016/j.future.2013.06.019. 3

[LMAP03] LUM E., MA K.-L., AHRENS J., PATCHETT J.: Slic:
Scheduled linear image compositing for parallel vollume render-
ing. Parallel Visualization and Graphics 2003, IEEE. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS
H.: A sorting classification of parallel rendering. Com-
puter Graphics and Applications, IEEE 14, 4 (1994), 23–32.
doi:10.1109/38.291528. 2

[MKPH11] MORELAND K., KENDALL W., PETERKA T.,
HUANG J.: An image compositing solution at scale. In
Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (New
York, NY, USA, 2011), SC ’11, ACM, pp. 25:1–25:10. URL:
http://doi.acm.org/10.1145/2063384.2063417,
doi:10.1145/2063384.2063417. 2, 6

[Mor11] MORELAND K.: IceT Users’ Guide and Reference.
Tech. rep., Sandia National Lab, January 2011. 2

[MPHK93] MA K.-L., PAINTER J., HANSEN C., KROGH M.: A
data distributed, parallel algorithm for ray-traced volume render-
ing. In Parallel Rendering Symposium, 1993 (1993), pp. 15–22,
105. doi:10.1109/PRS.1993.586080. 2, 4

[MTT∗09] MALLÓN D. A., TABOADA G. L., TEIJEIRO C.,
TOURIÑO J., FRAGUELA B. B., GÓMEZ A., DOALLO
R., MOURIÑO J. C.: Performance evaluation of mpi,
upc and openmp on multicore architectures. In Pro-
ceedings of the 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface (Berlin, Heidelberg,
2009), Springer-Verlag, pp. 174–184. URL: http://
dx.doi.org/10.1007/978-3-642-03770-2_24,
doi:10.1007/978-3-642-03770-2_24. 1

[NER15] NERSC: Edison configuration, Febru-
ary 2015. URL: https://www.nersc.gov/
users/computational-systems/edison/
configuration/. 5, 6

[Neu94] NEUMANN U.: Communication costs for parallel
volume-rendering algorithms. IEEE Comput. Graph. Appl. 14,
4 (July 1994), 49–58. URL: http://dx.doi.org/10.
1109/38.291531, doi:10.1109/38.291531. 2

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-
W., THAKUR R.: A configurable algorithm for parallel image-
compositing applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Anal-
ysis (New York, NY, USA, 2009), SC ’09, ACM, pp. 4:1–
4:10. URL: http://doi.acm.org/10.1145/1654059.
1654064, doi:10.1145/1654059.1654064. 2, 5

[RHI∗14] RIZZI S., HERELD M., INSLEY J., PAPKA M. E.,
URAM T., VISHWANATH V.: Performance Modeling of vl3
Volume Rendering on GPU-Based Clusters. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (2014),
Amor M., Hadwiger M., (Eds.), The Eurographics Association.
doi:10.2312/pgv.20141086. 2

[RHJ09] RABENSEIFNER R., HAGER G., JOST G.: Hybrid
mpi/openmp parallel programming on clusters of multi-core smp
nodes. In Proceedings of the 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Process-
ing (Washington, DC, USA, 2009), PDP ’09, IEEEComputer So-
ciety, pp. 427–436. URL:http://dx.doi.org/10.1109/
PDP.2009.43, doi:10.1109/PDP.2009.43. 1

[SDM11] SHALF J., DOSANJH S., MORRISON J.: Exascale
computing technology challenges. In Proceedings of the 9th
International Conference on High Performance Computing for
Computational Science (Berlin, Heidelberg, 2011), VECPAR’10,
Springer-Verlag, pp. 1–25. URL: http://dl.acm.org/
citation.cfm?id=1964238.1964240. 1

[SGS91] SHAW C. D., GREEN M., SCHAEFFER J.: Advances
in computer graphics hardware iii. Springer-Verlag New York,
Inc., New York, NY, USA, 1991, ch. A VLSI Architecture for
Image Composition, pp. 183–199. URL: http://dl.acm.
org/citation.cfm?id=108345.108358. 2, 4

[TAC15] TACC: Stampede user guide, February 2015.
URL: https://portal.tacc.utexas.edu/
user-guides/stampede [cited 04.02.2015]. 6

[YWG∗10] YU H., WANG C., GROUT R. W., CHEN J. H., MA
K.-L.: In situ visualization for large-scale combustion simu-
lations. IEEE Comput. Graph. Appl. 30, 3 (May 2010), 45–
57. URL: http://dx.doi.org/10.1109/MCG.2010.
55, doi:10.1109/MCG.2010.55. 1

[YWM08] YU H., WANG C., MA K.-L.: Massively paral-
lel volume rendering using 2-3 swap image compositing. In
Proceedings of the 2008 ACM/IEEE Conference on Super-
computing (Piscataway, NJ, USA, 2008), SC ’08, IEEE Press,
pp. 48:1–48:11. URL: http://dl.acm.org/citation.
cfm?id=1413370.1413419. 2, 4

c© The Eurographics Association 2015.

76

