Eurographics Symposium on Parallel Graphics and Visualization (2015)
C. Dachsbacher and P. Navratil (Editors)

Packet-Oriented Streamline Tracing on Modern SIMD
Architectures

B. Hentschel,? J. H. Gobbert,!> M. Klemm,? P. Springer,“’6 A. Schnorr,? and T. W. Kuhlen??

!Virtual Reality Group, RWTH Aachen University, Germany
2JARA — High Performance Computing

3Software and Services Group, Intel GmbH, Germany
4 Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University
3Jiilich Supercomputing Centre, Forschungszentrum Jiillich GmbH
SHPAC - High Performance and Automatic Computing, RWTH Aachen University

Abstract

The advection of integral lines is an important computational kernel in vector field visualization. We investigate
how this kernel can profit from vector (SIMD) extensions in modern CPUs. As a baseline, we formulate a stream-
line tracing algorithm that facilitates auto-vectorization by an optimizing compiler. We analyze this algorithm and
propose two different optimizations. Our results show that particle tracing does not per se benefit from SIMD com-
putation. Based on a careful analysis of the auto-vectorized code, we propose an optimized data access routine
and a re-packing scheme which increases average SIMD efficiency. We evaluate our approach on three different,
turbulent flow fields. Our optimized approaches increase integration performance up to 5.6 X over our baseline
measurement. We conclude with a discussion of current limitations and aspects for future work.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Computer Systems Organization]: Mul-
tiple Data Stream Architectures (Multiprocessors)—Single-instruction-stream, multiple-data-stream processors
(SIMD) 1.3.1 [Computer Graphics]: Hardware Architecture—Parallel Processing 1.6.6 [Computing Methodolo-
gies]: Simulation and Modeling—Simulation Output Analysis

1. Introduction can typically be handled more efficiently using an optimized,
single-ray traversal. Analogously, diverging particle trajec-
tories, e.g., due to different lengths, may reduce or even ne-

glect the performance benefit of SIMD-parallel processing.

The computation of integral lines is both a fundamental
building block and one of the computationally more de-
manding kernels in vector field visualization. In this paper,
we investigate the use of vector extensions of modern CPUs
for particle tracing. Our approach groups multiple seeds into
a packet. Advection is then performed for the entire packet at
once, following the single instruction, multiple data (SIMD)
approach. SIMD extensions are available in most contempo-
rary CPU architectures (e.g., SSE or AVX for x86, AltiVec

Our main goal is to increase the performance of CPU-
based particle tracing on a single CPU core. Our optimized
SIMD tracer kernel complements work in the large-data
arena in that it can be integrated into a distributed memory
parallel particle tracer in order to increase per-node integra-
tion performance.

or VMX for Power, NEON for ARM) and their use is key to
achieving peak performance. This idea is akin to packet ray
tracing [WSBWO1] in global illumination. Previous work in
that area, however, shows that SIMD-parallel execution is
not per se beneficial [WBB08, BWW™12]. Typically, only
coherent rays, which result in (almost) identical traversals
of the underlying bounding volume hierarchy, lead to an ac-
tual speed-up. Quickly diverging rays, e.g., secondary rays,
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In summary, we make the following two contributions:
First, we present a SIMD-parallel formulation for stream-
line computation which relies on the auto-vectorization fea-
tures of an optimizing compiler. Second, we develop two
optimization approaches which target performance issues in
the initial version. Our analysis shows that optimized SIMD
computations have a significant impact on the performance,
outperforming the scalar version of the same code by a fac-
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tor of up to 5.6 x. We conclude with a discussion of the pre-
sented approaches, their benefits and shortcomings and out-
line possible areas of future work.

2. Related Work

Integral curves serve to directly and intuitively depict vector-
valued data [SKH™05] and they are a basic building block of
a wide range of more sophisticated vector field visualiza-
tion algorithms, e.g., line integral convolution [CL93], inte-
gral surface generation [Hul92, GKT*08], and the computa-
tion of the Finite Time Lyapunov Exponent (FTLE) [HalO1,
GGTHO7, SPO7]. For a comprehensive overview, we refer
to [MLP*10]. Here, we focus on parallel integral line com-
putation.

Tracing large amounts of particle traces by independently
computing individual traces is an embarrassingly parallel
problem. Hence, it is well-suited for GPGPU implemen-
tations [KKKWO05, SBK06, BSK*07, HSW11]. The effect
of data reduction by mesh decimation has been investi-
gated in [BRKE™11]. Ferstl et al. use the GPU to interac-
tively compute separating structures [FBTW10]. All these
approaches target highly interactive use cases. At the same
time, they are inherently limited in the data-set size, either
because of the relatively small GPU memory or due to the
size of the host workstation’s RAM.

In the realm of large-data particle tracing, parallel ex-
ecution on distributed memory machines is mandatory.
Pugmire et al. investigate the scalability of the two stan-
dard parallelization approaches: parallelize-over-seeds and
parallelize-over-blocks [PCG*09]. They identify balanc-
ing issues and propose a hybrid master-slave approach
to solve these. Nouanesengsy et al. perform workload-
aware partitioning of the underlying vector field [NLS11].
In [NLL"12], a parallel pathline computation is introduced,
which enables large-scale FTLE computations.

Hybrid approaches integrate mixed hardware resources.
Camp et al. combine a distributed memory parallel par-
ticle tracer with local, thread-level parallelism [CGC*11],
whereas GPUs are used as accelerator devices in [CKP*13].

The algorithm proposed in this paper focuses on SIMD-
parallel execution on the CPU and hence on low-level
memory layout optimization. Our approach complements
distributed memory parallel approaches such as [PCG*09,
NLS11] or the hybrid approach presented in [CGC*11]
by optimizing the low-level advection kernel for individual
cores. It differs from GPU-based approaches in that it en-
tirely runs on the CPU and aims to achieve peak performance
there. In particular, our algorithm has direct access to the en-
tire host memory without the need to transfer memory back
and forth between host and device memory. In order to be
able to measure peak CPU performance without confound-
ing factors, we rely on in-core data in this paper. Thus, we
do not include a discussion of I/O, which has been shown to

be a significant bottleneck. Approaches that help to alleviate
this issue are discussed, e.g., in [CCC*11,JEHG14].

SIMD-parallel execution has extensively been studied in
the area of ray-casting for global illumination [BWW*12,
WSBWO1,WBB08, WWB* 14]. These approaches are based
on the observation that neighboring rays typically intersect
the same scene objects. Hence, coherent rays are merged
into a packet and the tracing computation is executed in a
SIMD-parallel fashion which results in highly localized data
accesses [WSBWO1]. This principle has successfully been
applied to the ray-casting of implicit functions [KHH"(07]
and to direct volume rendering of data given by a set of ra-
dial basis functions [KTW™ 11]. However, performance will
quickly degrade if rays diverge from each other, as is the
case, e.g., for secondary rays. Vectorized single ray traversal
may then be more efficient [WBB08, BWW " 12].

3. Experimental Setup

We will discuss our findings inline with the technical exhibi-
tion, because the optimizations discussed in the next section
build on each other. Therefore, we introduce our experimen-
tal setup in this section.

3.1. Test Data & Parameter Settings

In order to cover a number of different application settings,
we chose three different flow fields. All three are from turbu-
lent fluid mechanics research and represent real-world par-
ticle tracing problems. They share the following character-
istics: all three result from Direct Numerical Simulations
(DNS) of turbulent flows; they are given on a Cartesian grid;
only the vector field is loaded, neglecting all other avail-
able data fields. The data is given as single precision floating
point numbers and in each scenario we seed 10,000 stream-
lines.

Turbulent Channel Flow The data set is a fully devel-
oped, wall-bounded turbulent flow with a resolution of 512 x
512 x 385 grid points which amounts to 1.13 GB of vector
data. The vector field has a dominant velocity component
along the x-axis, resulting mostly straight-line traces. Seeds
are placed on a uniform lattice which is aligned with the
channel entry.

Turbulent Shear Flow This data set shows a turbulent
shear flow given on a grid of 1,024 x 768 x 768 which
amounts to 6.75 GB of raw data. In this case, particles are
seeded in a plane inside the turbulent region, as shown by
Gampert et al. [GBH™ 14]. The complex flow structure in this
region, which is evident from Fig. 1 (center) results in rela-
tively long, curled traces.

Homogeneous Isotropic Turbulence This data set of an
homogeneous isotropic forced turbulent flow with zero-

mean velocity field has a resolution of 1,4403 grid points
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Figure 1: Overview of the three different data sets and their seed set distribution: channel flow (left), turbulent shear flow
(center), and isotropic turbulence (right). Velocity magnitude is color coded to the slices in the background whereas streamlines

show integration time (dark to light blue).

resulting in 33.37 GB of vector data. In this scenario, seeds
are randomly dispersed throughout the domain. Therefore,
this benchmark creates a number of quasi-random data ac-
cesses for a large number of particle traces.

We use the following integration settings. Traces are com-
puted for at most 1,000 steps unless they pre-maturely
leave the domain. Integration uses a fixed-step, fourth-
order Runge-Kutta (RK4) scheme. Preliminary experiments
showed that performance heavily depends on the integration
step length. For shorter steps, data accesses become more
localized since particles remain within the same grid cell
for several iterations; hence, performance increased due to
cache hits. Therefore, we decided to present performance
with respect to a number of integration step settings: for the
minimum step length the code will perform 20 integrations
per cell at maximum velocity, whereas the maximum step
length would allow the code to pass two cells within a sin-
gle integration. We argue that this choice broadly covers the
range of practical settings.

3.2. Hardware Configuration

Most modern CPUs feature instruction set extensions that
target vector math operations. One instance is the Intel®
Xeon® E5-2600v3 family processor. The Xeon proces-
sor’s design strives to balance single-threaded performance
and multi-threaded performance through a moderate num-
ber (up to 18) out-of-order cores. In addition to the instruc-
tions of the IA-32 and Intel64 instruction sets [Corl4b], the
Xeon processor’s SIMD units can execute Intel® Advanced
Vector Extensions 2 (AVX2, includes Intel® SSE instruc-
tions) with 256-bit vector registers. Our benchmark system
is equipped with two Intel Xeon E5-2699v3 processors, each
of which features 18 cores and a total of 64 GB of RAM at
2133 MHz. All benchmarks are compiled with the Intel®
Composer XE 15.0.1 20141023.

The Xeon processor’s front-end uses a pre-decoding stage
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Figure 2: Design of the Xeon core with eight execution
pipelines (from [Cor14a]).

that feeds instructions into the back-end (see Fig. 2). The
back-end’s execution stages have a total of eight pipeline
ports: two load/store address ports, one store port, one store
address port, and four ports for a mix of scalar and SIMD
instructions [Corl4a]. While a scheduling stage performs an
out-of-order allocation of the instructions to pipeline ports,
the retirement stage at the end of the execution material-
izes the effects of instructions in correct program order. The
pipeline can execute two fused-multiply add instructions or
an arbitrary mix of addition and multiplication operations
at the same time. For maximum throughput, the instruction
stream must equally utilize the different ports by providing
a mix of arithmetic, shuffle, and load/store instructions. Un-
balanced instruction streams saturate one port, which then
becomes the bottleneck and causes the other ports to effec-
tively stall, waiting for overloaded pipelines to finish.

The memory sub-system uses several levels of cache start-
ing with private, inclusive L1 (32 KB) and L2 (256 KB) data
caches. The last level cache is a distributed cache structure
which can be shared between all cores of the processor pack-
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Algorithm 1 Standard particle tracer

Algorithm 2 SIMD-parallel packet particle tracer

for all seed points s do
currentPt :=s
while trace not terminated do
record current Pt
current Pt :=integrate(v, current Pt)
check termination for current Pt
end while
end for

age. The Xeon processor uses several prefetchers to load
data from the main memory into the L1 and L2 caches ahead
of time.

4. SIMD-Parallel Particle Tracing

Algorithm 1 shows the pseudo-code of a standard particle
tracer which advects seeds s through a vector field v. There
are two options to make use of SIMD-parallel execution.
First, we could use SIMD extensions in order to speed up
the computation of a single trace, e.g., by an SIMD imple-
mentation of the low-level math computations involved in
integration and interpolation. Second, we could exploit the
observation that particle advection follows the same compu-
tational pattern for all particles, albeit on different data and
for a potentially different number of integration iterations.

As stated above, contemporary CPU architectures feature
SIMD registers of 256 bits or more. Therefore, basic vec-
tor math operations on single-precision floats for 4D points
(xx,,z,¢) will not fill these registers, which jeopardizes some
of the performance potential. Thus, we follow the example
of SIMD parallel packet ray tracing: we group multiple parti-
cles into a packet and perform advection for the entire packet
in a SIMD-parallel fashion. This includes the stages of point
location, velocity field interpolation, and integration. Algo-
rithm 2 shows the resulting packet-parallel tracer code.

4.1. Facilitating Auto-vectorization

In order to implement an efficient, yet maintainable SIMD
parallel particle tracing algorithm, we first investigate the
use of auto-vectorization by the compiler. In this way, the
algorithm can be implemented in a high-level program-
ming language (here: C++) without the need to fall back
to hardware-specific features such as intrinsics or assem-
bly programming. This approach’s main advantage is that is
portable across different architectures. Given a suitable com-
piler, code can be optimized for a number of target archi-
tectures, regardless of specifics such as hardware vendor or
size of SIMD registers. Its main disadvantage is that ultimate
performance critically depends on the compiler’s sophistica-
tion.

In order to reveal the inherent parallelism of SIMD

while un finishedSeedSet #+ & do
currentPacket :=
groupSeedsIntoPacket(un finishedSeedSet)
while HasActiveSeeds(current Packet) do
record positions from current Packet
currentPacket :=integrate(v, current Packet)
check termination for current Packet
end while
end while
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Figure 3: Schematic view of the hybrid data layout assuming
a simple Euler integration step.

computations to the compiler, we formulate the integration
and interpolation computations in terms of fixed-sized
tuples. Each such tuple contains data for simd-width
many entries per component. All computations use a
structure of arrays (SOA) layout, i.e., tuples take the form
(Xo,xl 3 X253 Y05 V15 Y25 - -+ 9205215225+ - -5 20,11,12, .+ ) as
shown in the lower part of Fig. 3. Computations on these
tuples are implemented using for-loops whose iteration
count is compile-time fixed. These loops form the basic unit
for auto-vectorization: whenever deemed save, the compiler
automatically translates them into SIMD code.

The SOA layout is flexible with respect to vector reg-
ister size. For example, a 128 bit-wide SIMD architecture
processes four single precision floats in parallel, whereas
512 bit-wide registers pack 16 such entries. Thus, the SOA
layout allows us to adjust the size of the packets—the num-
ber of particles being processed in parallel—to the target ar-
chitecture. This can be generically expressed with C++ tem-
plates.

(© The Eurographics Association 2015.
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Data layout in SOA
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Figure 4: AOS and SOA data layouts for the raw vector data
given on a structured grid.

While SOA storage is the default choice for SIMD algo-
rithms, it turns out that this does not straightforwardly ap-
ply to particle tracing with its data-dependent, quasi-random
data access pattern. The vector field v has to be interpolated
at each particle position. For any two particles, these posi-
tions result in data accesses that typically are not adjacent to
each other in memory.

Fig. 4 contrasts the two layouts for raw data storage. For
a single, trilinear interpolation, the algorithm has to load
the eight vector values at the current cell’s vertices. For an
SOA layout, these loads will result in requests for at most 24
cache lines, one per point per vector field component. As-
suming that consecutive entries along the x-axis collocate in
the same cache line, the demand is reduced to 12 potential
cache misses. However, out of every line, the interpolation
will only consume two float values, i.e., eight bytes, while
typical cache lines contain on the order of 64 bytes.

In the AOS layout, the data is packed more tightly. Hence,
we need to access only eight cache lines, one per point. Sim-
ilarly to the AOS case, we can assume that the two data en-
tries in x-direction share the same cache line. As a result,
only four cache lines are touched by an interpolation result-
ing in the consumption of 24 bytes out of every line fetched.
Due to this increase, and based on the assumption that par-
ticles will rarely be close enough to each other in space that
the respective data accesses target the same cache lines, we
decided to use an SOA layout for our raw data.

This hybrid layout—i.e., SOA for computation and AOS
for data storage—necessitates an on-the-fly format conver-
sion during data access. Fig. 3 gives a schematic view of this
process. The interpolation routine first determines the cur-
rent cells for each particle position in the current packet. It
then fetches the corresponding data values in AOS and per-
forms a swizzle operation to form eight SOA data tuples each
of which holds s imd-width many vector values for one of
the cell’s vertices. This data is then used for linear interpola-
tion and subsequent integration in SOA. Note that although
Fig. 3 sketches the process for an explicit Euler scheme, our
code relies on fourth-order Runge-Kutta integration.

Fig. 5 summarizes our measurements for our test cases

(© The Eurographics Association 2015.

(cf. Sec. 3.1). The following particle tracer configurations
are shown: tracing with auto-vectorization disabled (no-vec),
scalar tracing using a packet size of one trace but with auto-
vectorization enabled (SIMDI), vectorized tracing with a
packet size of four (SIMD4), vectorized tracing with eight
traces per packet (SIMDS), optimized interpolation (AVX2,
see Sec. 4.2), and tracing with re-packing (packed-AVX2, see
Sec. 4.3).

The results for the first four configurations show that
packet tracing with auto-vectorization does not outperform
the SIMD] setting. We find that auto-vectorization yields
only a small speedup far from the theoretically possible
8. Specifically, we see an average vectorization speedup of
1.13x%, 1.34 %, and 1.35x for SIMD1, SIMD4, and SIMDS,
respectively. Despite the fact that wider a simd-width
benefits more from vectorization, we see an overall slow-
down compared to the the single-trace configuration. This
is due to the divergence in the packed particle traces: some
traces finish earlier than others, causing redundant compu-
tations which are later masked out. This effect is illustrated
in Fig. 6, which closely resembles the performance degra-
dation of Fig. 5. Overall, these measurements show that the
compiler was not able to take advantage of the vectorization-
friendly data layout.

An analysis of the compiler-generated assembly code re-
veals that the compiler has not been able to vectorize the data
transformation from AOS to SOA. Instead, it heavily relies
on scalar load and store operations, which reduce the num-
ber of useful memory operations in-flight and thus degrade
effective memory bandwidth. An TACA [Cor12] analysis of
the auto-vectorized code shows that the data ports (i.e., ports
2 and 3 in Fig. 2) are clogged by the instruction stream.

4.2. Optimized Data Access

To address these issues, we decided to optimize the interpo-
lation routine using AVX2 intrinsics. This approach, how-
ever, sacrifices portability for performance. The main idea
behind the intrinsic implementation is to fully utilize vec-
torized loads while retaining the hybrid memory layout.
Moreover, our AVX2 version directly exploits the fact that
the values of two neighboring velocity vectors along the x-
dimension are successively stored in main memory. Thus,
they can be loaded with a single 256 bit-wide load instruc-
tion. This is a distinct advantage of the AOS data layout of
the vector field: six out of the eight bytes provided by a sin-
gle load operation are used for computation.

We provide the full source code of our trilinear interpola-
tion scheme in Algorithm 4 on page 10. The SOA layout of
the packed traces results in perfect vectorization, i.e., there
is not a single scalar instruction.

The interpolation function (cf. Algorithm 4) starts by cal-
culating the offset of the current probe position with re-
spect to the data grid’s origin. Since we are using a regular
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Figure 5: Benchmark results for the three different test cases.
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Figure 6: SIMD efficiency (average percentage of active
traces) over integration step (normalized by the maximum
step for the respective configuration).

grid, we can multiply this offset by the reciprocal grid spac-
ing (lines 11-13) and then convert these values to integers
in order to obtain the grid coordinates (lines 16-21). Once
these are available for each probe (lines 39-40), we load-
and-transpose the velocities v}y and v} for each probe i €
{0,1,...,7} of the current packet (lines 56, 63, 71, and 79).
These operations are performed with only eight vectorized
loads compared to 48 scalar loads of the compiler-generated
version. Please note that we had to force the compiler to in-
line these function calls (using ___forceinline) which
resulted in an overall speedup of roughly 15% over the non-
inlined version. Because the transpose is fully inlined and
intermediate results can be kept in registers, the remainder
of the trilinear interpolation (lines 57-93) is trivially vector-
ized.

Another optimization unique to our AVX?2 implementa-
tion is that we provide a low-level interface to for the RK4
integrator such that unnecessary loads and stores can be
avoided and most of the computation is kept in registers.

inside the same cell which in turn results in better cache per-
formance.

4.3. Re-Packing Particle Traces

The second bottleneck which we have identified in Sec. 4.1
is the degradation of performance due to different trace
length and degrading SIMD efficiency (cf. Fig. 6). In or-
der to mitigate this issue, we propose a re-packing scheme
that periodically interrupts the advection process, detects ter-
minated traces, and re-packs traces in a way that particles
within each packet are spatially close to each other. Algo-
rithm 3 illustrates this process.

Fig. 5 (packed-AVX2) shows the integration performance
of the re-packing tracer using the AVX2-optimized interpo-
lation, a uniform binning grid of 323 meta cells, and a re-
packing every 100 integrations. For the turbulent shear flow,
the integration rate for the re-packing tracer is consistently
lower than the AVX2-only tracer. For the other two scenar-
ios, however, it eventually passes the AVX2 version.

A closer look at the integration scenarios reveals that
most of the traces in the shear flow do not terminate be-
fore reaching the threshold of 1,000 integration steps. Thus,
there is no significant difference in trace lengths and conse-
quently SIMD efficiency remains uniformly high. Therefore,
the overhead of repeatedly re-organizing particles into new
packets is not offset by a performance benefit due to more

(© The Eurographics Association 2015.
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Algorithm 3 Particle tracer with re-packing.

for all seed points s do
insert s into meta grid
end for
numActiveTraces = numSeeds
while numActiveTraces > 0 do
for all bins b € meta grid do
while b # & do
currentPacket :=
getPacketSeedsFromBin(b)
advectNiterations(N,current Packet)
terminates =
checkTermination(current Packet)
hashEndPoints(current Packet)
numActiveT races— = terminates
end while
end for
end while

homogeneous packet runtimes. In contrast, traces regularly
terminate before reaching their maximum length for longer
integration steps in the other two scenarios. Consequently,
we do see a positive effect of re-packing here. A compari-
son of the relative performance of the AVX2 scheme and the
repacking scheme with Fig. 6 shows that the performance
benefits are clearly related to SIMD efficiency. The data sug-
gests that the break even point for the re-packing scheme is
slightly below 80%.

5. Discussion

Our results show that it is not straightforward to harness the
computational power of SIMD parallel execution for parti-
cle tracing computations. Among the challenges that need to
be addressed are data layout, efficient data access, and non-
uniform trace lengths.

The hybrid memory layout is beneficial from a mem-
ory access point of view. Yet, it prevents the compiler to
auto-vectorize low-level data accesses. Thus, performance
of the portable, auto-vectorized code is not better than that
of the optimized single-trace version. A manually optimized
version of the data AOS-to-SOA data transformation and
the subsequent interpolation, however, shows that packet
streamline tracing outperforms the scalar code by a factor
of up to 5.6 %.

Our low-level analysis revealed the following interesting
points. First, the auto-vectorized code did not suffer so much
from a lack of bandwidth as it did from an excessive number
of scalar load operations that clogged up the CPU’s corre-
sponding ports 2 and 3 (cf. Fig. 2). Re-arranging the com-
putation greatly reduced pressure on these ports. While this
issue seemed to be due to memory bandwidth limitations at
first glance, it turned out to be a low-level bottleneck of the
underlying CPU architecture.

(© The Eurographics Association 2015.

Second, we observed little to no memory re-use or
caching effects for the n-wide packet particle tracer. This is
in stark contrast to packet ray-tracing, where ray coherence
is key to good performance. In future work, we would like
to investigate several options of how to increase memory lo-
cality.

There are several aspects that we have not addressed in
this paper. First, our algorithm currently relies on a fixed-
step, fourth order Runge-Kutta scheme. We deliberately de-
cided not to implement an adaptive step-size scheme. Step-
size control critically depends on the integration of each
particle. It is non-trivial to perform efficiently in an SIMD-
parallel fashion. Nonetheless, we plan to integrate and assess
an adaptive integration scheme in future work.

Second, we have not investigated the relationship between
SIMD parallel packet tracing and thread-level parallelism.
Since all cores on a single CPU share the same memory con-
trollers and the L3 cache, we expect that there will be signif-
icant, potentially adverse effects. Moreover, when we move
to larger, multi-socket systems, NUMA effects will likely
become an issue.

Third, our algorithm currently only works on Cartesian
grids. Handling unstructured meshes poses several chal-
lenges, chief among them being efficient point location.
Tree-based schemes as the CellTree introduced in [GJ10]
provide a good solution to this problem. However, it remains
to be seen how that solution can be transformed to cater for
SIMD queries which comprise multiple particle positions at
once. Here, work on the SIMD-parallel traversal of BVHs
may provide valuable insights.

Finally, we would like to note that although we hand-
coded all routines for the experiments described in this pa-
per, this is hardly a feasible strategy for large-scale, pro-
duction environments. One way to mitigate this issue is
the development of and contribution to highly optimized,
visualization APIs which feature basic data structures and
algorithms, as recently demonstrated, e.g., in [MAGM11,
LSA12, MAPS12]. These APIs abstract much of the low-
level optimizations and thus enable the development of
portable, yet high-performing visualization codes.

6. Conclusion

In this paper, we have presented a packet streamline tracer
which exploits low-level SIMD parallelism. Our optimized
solution outperforms the scalar version of our code by a fac-
tor of up to 5.6x. A low-level analysis has revealed two
performance bottlenecks, which have been addressed in this
paper. A manually optimized data access scheme helps to
increase interpolation performance, whereas regularly re-
packing traces helps to maintain good SIMD efficiency.

The optimizations presented in this paper should provide
immediate benefit for other visualization methods that rely
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on the computation of large amounts of particle traces, e.g.,
dissipation elements [WP06]. Our future work will focus on
the extension of our approach to multi-socket, multi-core
machines in order to speed up such large-scale computa-
tions.
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Algorithm 4: AVX2 Interpolate()

__m256 Interpolate_avx_sp(const

_m256 pos[3], __m256 *result)

//create mask

__m256 mask = _mm256_cmp_ps (pos[0], _BoxMin[0], 13);

mask = _mm256_and_ps (mask, _mm256_cmp_ps(pos[1], _BoxMin[1], 13));
mask = _mm256_and_ps (mask, _mm256_cmp_ps(pos[2], _BoxMin[2], 13));
mask = _mm256_and_ps (mask, _mm256_cmp_ps (pos[0], _BoxMax[0], 2));
mask _mm256_and_ps (mask, _mm256_cmp_ps(pos[1], _BoxMax[1], 2));
mask = _mm256_and_ps(mask, _mm256_cmp_ps(pos[2], _BoxMax[2], 2));
__m256 gridCoordsFraction_x = _mm256_mul_ps (pos[0], _1DivSpacingl[0]);
__m256 gridCoordsFraction_y = _mm256_mul_ps(pos[1], _1DivSpacingl[1]);
__m256 gridCoordsFraction_z = _mm256_mul_ps(pos[2], _1DivSpacingl[2]);

//in case a trace becomes inactive,

we load the first grid point

__m256 gridCoords_x = _mm256_and_ps (mask, _mm256_floor_ps(gridCoordsFraction_x));
__m256 gridCoords_y = _mm256_and_ps (mask, _mm256_floor_ps(gridCoordsFraction_y));
__m256 gridCoords_z = _mm256_and_ps (mask, _mm256_floor_ps(gridCoordsFraction_z));

__m256i gridCoords_idx
__m256i gridCoords_idy
__m256i gridCoords_idz

= _mm256_cvtps_epi32(gridCoords_x);
= _mm256_cvtps_epi32(gridCoords_y);
= _mm256_cvtps_epi32(gridCoords_z);

/*

*

* v6 -—-—----- v7
* /| /|
* | /|
* / | / | Ple
* V2 —------ v3 |
* | | | |
* | v4d ------- v5
*y | / [
* I/ |/ z
* | I/

* v0 ------- vi

* X

*/

ase note: Each trace might belong to a different box.
Thus, the samples vO0, vl,..., v7 might be

different for each trace.

//compute offset vO for each trace

__m256i vO =
_mm256_add_epi32(v0,

vo =

int pointIds[8]

_mm256_add_epi3

__attribute_

_mm256 _mullo_epi32(gridCoords_idz,

2(gridCoords_idx, _mm256_mullo_epi32(gridCoords_idy,

_grid_resolution_xy));

_((aligned (32)));

_grid_resolution[0]));

__m256 samples[8] __attribute__((aligned(32)));

/%%

* Linear interpolation of the form: vO0l = vO + wx * (vl - vO0)

*/

//compute weights used for interpolation

__m256 wx = _mm256_sub_ps(gridCoordsFraction_x, gridCoords_x);

__m256 wy = _mm256_sub_ps(gridCoordsFraction_y, gridCoords_y);

__m256 wz = _mm256_sub_ps(gridCoordsFraction_z, gridCoords_z);

__m256i front_bottom_left = vO;

_mm256_store_si256 ((__m256i #*)pointIds, _mm256_mullo_epi32(front_bottom_left, _dim)

load_and_transpose8x6 (_vectorBasePointer,
// interpolate between vO and vi -> vO1

pointIds, samples);

__m256 v01_x = _mm256_add_ps(samples[0], _mm256_mul_ps(wx, _mm256_sub_ps(samples [3]
__m256 vO01l_y = _mm256_add_ps(samples[1], _mm256_mul_ps(wx, _mm256_sub_ps(samples [4]
__m256 v01_z = _mm256_add_ps (samples[2], _mm256_mul_ps(wx, _mm256_sub_ps(samples [5]

__m256i front_top_left = _mm256_add_epi32(v0, _grid_resolution[0]);
_mm256_store_si256 ((__m256i *)pointIds, _mm256_mullo_epi32(front_top_left,
load_and_transposeSXG(_vectorBasePointer, pointlds, samples);

// interpolate between v2 and v3 -> v23

_dim));

__m256 v23_x = _mm256_add_ps(samples[0], _mm256_mul_ps(wx, _mm256_sub_ps(samples[3]
__m256 v23_y = _mm256_add_ps(samples[1], _mm256_mul_ps(wx, _mm256_sub_ps(samples [4]
__m256 v23_z = _mm256_add_ps(samples[2], _mm256_mul_ps(wx, _mm256_sub_ps(samples [5]

__m256i back_bottom_left = _mm256_add_epi32(front_bottom_left,
_mm256_store_si256 ((__m256i *)pointIds, _mm256_mullo_epi32(back_bottom_left,
load_and_transpose8x6(_vectorBasePointer , pointIds, samples);

// interpolate between v4 and v5 -> v45
__m256 v45_x = _mm256_add_ps(samples[0],
__m256 v45_y = _mm256_add_ps(samples[1],
__m256 v45_z = _mm256_add_ps(samples[2],

_grid_resolution_xy)
_dim))

_mm256_mul_ps (wx,
_mm256_mul_ps (wx,
_mm256 _mul_ps (wx,

_mm256_sub_ps (samples [3]
_mm256_sub_ps (samples [4]
_mm256_sub_ps (samples [5]

__m256i back_top_left = _mm256_add_epi32(front_top_left,
_mm256_store_si256 ((__m256i *)pointIds, _mm256_mullo_epi32(back_top_left,
load_and_transpose8x6(_vectorBasePointer , pointIds, samples);

// interpolate between v6 and v7 -> v67

_grid_resolution_xy);
_dim));

__m256 s67_x = _mm256_add_ps (samples[0], _mm256_mul_ps(wx, _mm256_sub_ps(samples [3]
__m256 s67_y = _mm256_add_ps (samples[1], _mm256_mul_ps(wx, _mm256_sub_ps(samples [4]
__m256 s67_z = _mm256_add_ps (samples[2], _mm256_mul_ps(wx, _mm256_sub_ps(samples [5]
// interpolate between vOl and v23 -> v0123

// (omitted)

// interpolate between v45 and v67 -> v4567

// (omitted)

// interpolate between v0123 and v4567 -> result

result [0] = _mm256_add_ps(v0123_x, _mm256_mul_ps(wz, _mm256_sub_ps(v4567_x, v0123_x
result[1] = _mm256_add_ps(v0123_y, _mm256_mul_ps(wz, _mm256_sub_ps(v4567_y, v0123_y
result [2] = _mm256_add_ps(v0123_z, _mm256_mul_ps(wz, _mm256_sub_ps(v4567_z, v0123_z

)

, samples[0])));
, samples[1])));
1))

, samples[2

, samples[0]1)));
, samples[1]1)));
, samples[2]1)));

, samples [0])));
, samples[1])));
, samples[2]1)));

, samples[0])));
, samples[1])));
, samples[2]1)));

)));
)));
)));
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