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Abstract
Black holes are among the most fascinating and weird objects in the universe. They distort space and time in their
close neighborhood in a way that is far beyond our every day experience. We demonstrate the visual effects of
this curved spacetime by means of four-dimensional nonlinear ray tracing applied to an accretion disk around a
spinning black hole and a sphere oscillating between two static, charged black holes. We discuss how visualization
helps predict and communicate the interesting effects of general relativity, in particular, its geometric effects on
light propagation. The nonlinear behavior of light propagation leads to a compute-intensive rendering process;
we report on our experiences with highly parallel rendering in this context.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In 1905, Albert Einstein showed that space and time are not
two distinct qualities but one single entity called spacetime.
Special relativity, based on this fact, describes relative mo-
tion near the speed of light and the resulting effects. Ten
years later, Einstein generalized the idea of spacetime to in-
corporate gravitation. From that time on, gravitation is no
longer considered as a force like in Newton’s theory, but as a
consequence of curved spacetime mathematically subsumed
in the general theory of relativity.

The most extreme object described by general relativity is
a black hole. Even though the existence of black holes lacks
a direct proof, astrophysicists are convinced that a black hole
exists at the center of each galaxy. Probably, in the next ten
years it will become feasible to directly observe the close
neighborhood of a black hole. Hence, it is important to un-
derstand what will probably be seen in such an observation.

We follow the basic approach of egocentric visualization
[We06]: such first-person visualization aims to depict the im-
age a virtual camera or telescope would actually produce in
a general relativistic setting. This approach is conceptually
simple and intuitive because it resembles a visual experiment
in which we—as viewers of the visualization—are virtually
put into a scene governed by general relativity.

Technically, the rendering process for such visualization

is based on four-dimensional nonlinear ray tracing, where
the propagation of light is reversed by starting light rays
from the observer and tracing them back in time [Wei00].
Compared to standard three-dimensional ray tracing, the fi-
nite speed of light, the motion of objects, and the influence
of the curved spacetime on light ray trajectories resulting in
gravitational lensing and frequency shifts have to be taken
into consideration. These lead to a rendering process with
very high compute costs. Therefore, we have to employ par-
allelization strategies on cluster computers to make the ren-
dering problem tractable.

Not only since the motion picture “Interstellar” by
Christopher Nolan and Kip Thorne [JvTFT15], general rela-
tivistic visualization has become attractive for astrophysical
modeling and, in particular, for educational and communi-
cation purposes. For example, the Einstein year 2005—the
100th anniversary of Special Relativity and Einstein’s annus
mirabilis—led to numerous visualization activities centered
around Einstein’s theory of relativity and corresponding mu-
seum exhibitions for the general public [We06].

Over the following ten years, we have been making much
progress in dealing with more complex scenarios and types
of spacetimes. In this showcase paper, we demonstrate that
such advanced visualization can help better understand such
relativistic scenes and the curious bending of light due to
curved spacetime. In particular, we show the influence of
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the angular momentum and the mass of a black hole on the
visual appearance of an accretion disk that might also be in-
teresting for real observations. We also present a scenario of
a dihole metric that serves as a first step to study multi black
hole systems—a scenario not previously covered in motion
pictures or advanced animation productions.

2. Four-Dimensional Ray Tracing

The transition from 3D to 4D ray tracing bears several chal-
lenges. First of all, light rays no longer follow straight lines
but lightlike geodesics bent due to curved spacetime. The
underlying geodesic equation reads

d2xµ

dλ2 +Γ
µ
ρσ

dxρ

dλ

dxσ

dλ
= 0, (1)

where the Christoffel symbols Γ
µ
ρσ depend on the met-

ric (i.e., a mathematical description of the geometry of
the spacetime) and its partial derivatives. The 4D positions
(space and time) along the light rays are described by xµ,
and λ serves to parametrize the 4D curve of the light ray.
The Greek indices run from 0 to 3, indicating the 4D space-
time coordinates. The geodesic equation is a second-order
nonlinear ordinary differential equation that has to be inte-
grated from the observer into the scene in order to determine
the primary rays for ray tracing. Implicitly, the finite speed of
light becomes crucial while solving the geodesic equation. A
detailed discussion of relativistic visualization can be found
elsewhere [Wei01].

With the above approach, we can compute the propaga-
tion of light. However, we also need a scene description to
produce contents for the image. Unfortunately, modeling a
relativistic scene is much more demanding than a 3D nonrel-
ativistic scene because the geometry of the underlying space
is curved already, i.e., the deformation of the spacetime af-
fects the physical model of the scene object.

As one solution to this problem, we adopt the approach of
local linearization: a small (static or moving) object can be
defined with respect to its local reference frame, i.e., a local
coordinate system centered around the object. Here, the term
small has to be related to the curvature of spacetime. Within
the reference frame, the object can be described as in the 3D
linear and static case. The object’s motion is relegated to the
local tetrad that represents the object’s reference frame. If
there is no propulsion, the tetrad follows the path of a time-
like geodesic. Therefore, we have to integrate the geodesic
equation (1) again, but now for the motion of the object. We
also have to take into account that the local tetrad changes
its orientation while it is moving along its timelike geodesic:
we additionally solve the equation for the parallel-transport
of the tetrad vectors to determine the geodesic precession of
the local tetrad [MG09]. For example, an object on the last
stable circular orbit around a Schwarzschild black hole (i.e.,
a black hole that is not spinning and has no charge) under-
goes a 105◦ rotation due to precession.

Another solution to the issue of scene modeling uses co-
ordinate objects to represent scene objects. Even extended
objects can be used, as long as there is a mapping from
some appropriate internal coordinate system of the object to
the overall coordinate system in which ray tracing is com-
puted. The internal coordinates should resemble Cartesian
coordinates so that the object description can be understood
intuitively. Since the internal coordinates are often not per-
pendicular in the Euclidean sense, they are called pseudo-
Cartesian coordinates. For example, the special, yet relevant
cases of a background image (at infinity) or a simple accre-
tion disk model can be handled as coordinate objects.

In our visualization showcase, we use and combine both
types of scene modeling; the rendering process is based
on 4D nonlinear ray tracing. Furthermore, we deliberately
“switch off” relativistic effects on illumination like modifi-
cations of color (e.g., gravitational red shift) or luminance
(e.g., from gravitational lensing). In this way, we let the
viewer focus on the geometric effects of general relativity,
which are the main purpose of our video showcase.

3. Parallel Rendering and Implementation

From the previous section, it is clear that rendering has to
deal with high computational costs due to 1) the integration
of curved light rays and 2) the computation of the intersec-
tion between curved rays and the complex scene description.
As a result, straightforward and nonparallel rendering would
lead to extremely long production timelines that would make
long or complex videos infeasible.

Therefore, parallel computation is indispensable. Since
rays are traced from the camera independently from each
other, we use image decomposition for parallelization. This
leads to a simple variant of sort-first rendering [MCEF94]:
The scene descriptions tend to be quite compact and, thus,
can be replicated on each of the parallel compute nodes. The
only purpose of parallelization is to scale rendering speed,
but not memory. The parallelization works by splitting the
image space into stripes (for all images of an animated film),
leading to a queue of working sets to be processed by the
nodes. Once finished with one working set, a node fetches
the next working set from the queue. We organize the work-
ing sets at an appropriate granularity in order to achieve ex-
cellent load balancing and scalability. The intermediate re-
sults are collected and combined on the master node.

Parallelization by image-space decomposition addresses
the problem of high computational costs for solving the
geodesic equation and light tracing. The other compute-
intensive part is the calculation of intersections between light
rays and objects. In a naive implementation, each ray seg-
ment (of the polygonal approximation of the ray) has to be
tested against each motion segment of an object and all its
components (e.g., triangles). In other words, the single in-
tersection computation that would be needed for a single
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ray–object pair (i.e., O(1)) now leads to an O(n2) com-
putation, where n represents the number of discretization
steps along geodesics. One acceleration strategy could use
space partitioning such as octrees. However, such partition-
ing techniques are based on Euclidean distances and par-
tially on Cartesian coordinates, but general relativity is based
on semi-Riemannian manifolds and arbitrary coordinate sys-
tems. Instead, we adopt another acceleration strategy: the use
of bounding volumes. We employ a spacetime tube that acts
as a bounding box around the scene object but has an addi-
tional time extent, thus largely reducing the number of inter-
section computations between a ray segment and the object.

For the implementation, parallel computation on GPUs
would be one option [KMA∗12, WSE04]. Unfortunately,
GPU architectures are less suited for high-quality general
relativistic visualization than standard 3D rendering (but
rather for interactive rendering). One issue is that floating-
point precision is not sufficient because of the high accuracy
needed for solving the geodesic equations. Another issue is
the stepsize control for the geodesic integration which is in-
evitable because of the possibly large differences in curva-
ture along a light ray. Furthermore, we need an implementa-
tion of the spacetime tube as an acceleration strategy.

Instead, we use parallelization on a CPU cluster com-
puter. We use the 4D ray tracing code GeoViS [Mül14],
which is based on the Motion4D-library [MG09] and
has an educational focus. The source code is freely
available from http://go.visus.uni-stuttgart.
de/geovis. Alternative ray tracing codes—albeit with
different focal points—include GYOTO [VPGP11] or
GRay [CPÖ13].

Our showcase video was rendered on a Linux cluster
with 64 Intel Xeon E5620 (2.4 GHz) CPUs (with a total of
512 cores), 1.5 TB of combined main memory, and Infini-
band interconnect. GeoViS is parallelized using OpenMPI
and scenes are implemented using a description language
based on the Scheme programming language. The Runge-
Kutta Fehlberg integrator from the GNU Scientific Library
(GSL) with stepsize control was used integrate the lightlike
geodesics. The images were rendered at 1280 × 720 reso-
lution with 2× 2 supersampling. To obtain nearly optimal
load balancing and for quick previews, we split each image
into 512 stripes. For the dihole sequence consisting of 2100
images, this yields a total of about 1 075 200 working sets.
Table 1 documents the overall rendering times and the num-
ber of cores used. The scene names refer to the scenarios
described in the following section.

Table 1: Calculation times and number of compute cores.

Scene # Images Compute time # Cores

kerr_accrDisk 900 4 h 15 min 288
kerr_passing 1700 7 h 20 min 288
dihole 2100 48 h 11 min 232

4. Video

We now provide a brief description of the scenes shown in
the video, along with the physical story behind them.

4.1. Accretion Disk around Kerr Black Hole

The Kerr spacetime can describe a rotating black hole—a
typical scenario of a massive object in the center of a galaxy
or a massive remnant of a star. Matter cannot directly col-
lapse into a black hole because it first has to get rid of an-
gular momentum. Hence, a star that approaches a black hole
will first be torn apart and its remnants will build an accre-
tion disk, see Fig. 1. The inner rim is determined by the last
stable orbit where the velocity is just high enough to com-
pensate for the gravitational attraction. For the sake of con-
venience, we use the last stable orbit r = 6 M for a black hole
with zero angular momentum, a = 0, and we neglect the ac-
tual velocity of the disk particles by using a fixed checkered
texture. We use geometric units, where distances are given
in multiples of the black hole mass M.

x

y

6M

16M

Figure 1: The infinitely thin accretion disk around the Kerr
black hole is modeled using pseudo-Cartesian coordinates.

The video starts with the view above the accretion disk
(“kerr_accrDisk” in Table 1). While increasing the inclina-
tion angle from zero to 80◦, the back side of the disk appears
to bend like an arch above and below the black hole. The oc-
currence of these apparent structures can be understood by
tracing some responsible light rays, see Fig. 2. The asymme-
try of the shadow of the black hole (black region) decreases
with decreasing angular momentum a of the Kerr black hole.
For a = 0, the spacetime simplifies to a static Schwarzschild
black hole. Reducing the mass of the black hole finally yields
flat spacetime and an undistorted ring.

The second part of the video (“kerr_passing”) shows the
free-fall of an observer along a timelike geodesic that pene-
trates the plane of the accretion disk between the black hole
horizon and the inner rim of the disk. The observer’s refer-
ence frame undergoes a geodesic precession with a rotation
along the trajectory. Hence, the special-relativistic aberra-
tion effect due to the high velocity at the point of closest
approach to the black hole is nearly unnoticeable.
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Figure 2: Geodesics responsible for the apparent distortion of the accretion disk for M = 1 and a = 0. Dashed lines represent
geodesics coming from the bottom side of the disk while solid lines start from the top side.

4.2. Multi Black Hole System

A simple model of a multiple black hole system is described
by the extreme Reissner-Nordstrøm dihole metric, where
two maximally charged black holes with identical masses
are fixed on the z-axis [WMWW13]. Compared to the disk
scene, we use a moving, checkered sphere that starts from
rest at (x = 5,y = z = 0), in the symmetry plane between the
two black holes. The curved spacetime then lets the sphere
oscillate along the x-axis with a period of T ≈ 110.59.

The third part of the video (“dihole”) begins with the
sphere at its initial position in flat space. While increasing
the masses of the black holes from zero to their maximum
value, multiple shadows of the black holes appear, and also
the sphere appears multiple times, see Fig. 3. The observer is
located at (x = 0,y = 80,z = 0) when the sphere is released
and begins to oscillate along the x-axis. After one period, the
observer pans along a circular line to (x = 80,y = 0,z = 0)
while the sphere is still moving along its trajectory. After an-
other full period, the observer pans to (x = 0,y = 0,z = 80)
and then waits until the sphere has finished its fifth oscilla-
tion. In the end, the sphere is fixed again at its initial position
while the masses of the black holes are decreased to zero.

Figure 3: Sphere at rest in the dihole metric. The four dark
regions represent the shadows of the two black holes. To the
right, the sphere has two apparent images.
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